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Abstract Let R be an integral domain and I a nonzero ideal of R. An ideal
J ⊆ I is a t-reduction of I if (JIn)t = (In+1)t for some n ≥ 0. An element x of R
is t-integral over I if there is an equation xn + a1xn−1 + ...+ an−1x + an = 0 with
ai ∈ (Ii)t for i = 1, ...,n. The set of all elements that are t-integral over I is called
the t-integral closure of I. This paper surveys recent literature which studies
t-reductions and t-integral closure of ideals in arbitrary domains as well
as in special contexts such as Prüfer v-multiplication domains, Noetherian
domains, and pullback constructions.

1 Introduction

Throughout, all rings considered are commutative with identity. Let R be
a domain with quotient field K, I a nonzero fractional ideal of R, and let
I−1 := (R : I) = {x ∈ K | xI ⊆ R}. The v- and t-closures of I are defined,
respectively, by Iv := (I−1)−1 and It := ∪Jv, where J ranges over the set of
finitely generated subideals of I. The ideal I is a v-ideal (or divisorial) if Iv = I
and a t-ideal if It = I. Under the ideal t-multiplication (I, J) 7→ (IJ)t the set
Ft(R) of fractional t -ideals of R is a semigroup with unit R. Recall that factorial
domains, Krull domains, GCDs, and PvMDs can be regarded as t-analogues
of the principal domains, Dedekind domains, Bézout domains, and Prüfer
domains, respectively. For instance, a domain is Prüfer (resp., a PvMD) if
every nonzero finitely generated ideal is invertible (resp., t-invertible). We
also recall the w-closure of I defined by Iw :=

⋃
(I : J), where the union is

taken over all finitely generated ideals J of R that satisfy Jv = R; equivalently,
Iw =

⋂
IRM, where M ranges over the maximal t-ideals of R. We always have
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I ⊆ Iw ⊆ It ⊆ Iv. For ample details on the v-, t-, and w-operations, we refer
the reader to David Anderson’s papers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16] and also [21, 23, 26, 35, 46, 53, 54, 55, 57, 60, 62, 63, 65, 66, 67].

Let R be a ring and I an ideal of R. An ideal J ⊆ I is a reduction of I if
JIn = In+1 for some positive integer n. An ideal which has no reduction other
than itself is called a basic ideal [38, 39, 59]. The notion of reduction was
introduced by Northcott and Rees and its usefulness resides mainly in two
facts: “First, it defines a relationship between two ideals which is preserved
under homomorphisms and ring extensions; secondly, what we may term
the reduction process gets rid of superfluous elements of an ideal without
disturbing the algebraic multiplicities associated with it” [59]. The main
purpose of their paper was to contribute to the analytic theory of ideals in
Noetherian (local) rings via minimal reductions. An element x ∈ R is integral
over I if there is an equation xn + a1xn−1 + ... + an−1x + an = 0 with ai ∈ Ii for
i = 1, ...,n. The set of all elements that are integral over I is called the integral
closure of I, and is denoted by I. Reductions happened to be a very useful
tool for the theory of integral dependence over ideals. For a full treatment
of these topics, we refer the reader to Huneke and Swanson’s book “Integral
closure of ideals, rings, and modules” [48].

Let R be a domain and I a nonzero ideal. An ideal J ⊆ I is a t-reduction
of I if (JIn)t = (In+1)t for some n ≥ 0; and x ∈ R is t-integral over I if there
is an equation xn + a1xn−1 + ... + an−1x + an = 0 with ai ∈ (Ii)t for i = 1, ...,n.
The set of all elements that are t-integral over I is called the t-integral clo-
sure of I. This paper surveys recent literature which studies t-reductions
and t-integral closure of ideals in arbitrary domains as well as in special
contexts such as Prüfer v-multiplication domains (PvMDs), Noetherian do-
mains, and pullback constructions. The four papers involved in this survey
are [50] (co-authored with A. Kadri), [44] (co-authored with E. Houston and
A. Mimouni), and [51, 52] (co-authored with A. Kadri and A. Mimouni). In
this survey, we present and discuss the results without proofs and provide
most of the examples with full details (from the original papers).

2 The general case of integral domains

This part covers [50] which deals with t-reductions and t-integral closure of
ideals in arbitrary domains. The aim is to provide t-analogues of well-known
results on the integral closure of ideals and the correlations with reductions.
Namely, Section 2.1 identifies basic properties of t-reductions of ideals and
give explicit examples discriminating between the notions of reduction and
t-reduction. Section 2.2 examines the concept of t-integral closure of ideals
as well as its correlation with t-reductions. Section 2.3 studies the persistence
and contraction of t-integral closure of ideals under ring homomorphisms.
All along this part, the main results are illustrated with original examples.
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2.1 t-Reductions of ideals

This section identifies basic ideal-theoretic properties of the notion of t-
reduction including its behavior under localizations. We first provide an
example (with full details) discriminating between the notions of reduction
and t-reduction. Recall that, in a ring R, a subideal J of an ideal I is called a
reduction of I if JIn = In+1 for some positive integer n [59]. An ideal which
has no reduction other than itself is called a basic ideal [38, 39].

Definition 2.1. Let R be a domain and J ⊆ I nonzero [fractional] ideals of R.

• J is a trivial t-reduction of I if Jt = It.
• J is a t-reduction of I if (JIn)t = (In+1)t for some integer n ≥ 0.
• I is t-basic if it has no t-reduction other than the trivial t-reductions.
• R has the t-basic (resp., finite t-basic) ideal property if every nonzero (resp.,

finitely generated) [fractional] ideal of R is t-basic.

This is not to be confused with the identically named notion of Epstein [28,
29, 30], which generalizes the original notion of reduction in a different way
and was studied in different settings. Namely, let c be a closure operation. An
ideal J ⊆ I is a c-reduction of I if Jc = Ic. Thus, Epstein’s c-reduction coincides
with our trivial c-reduction.

Recall a basic property of the t-operation (which, in fact, holds for any
arbitrary star operation): for any two nonzero ideals I and J, we have (IJ)t =
(It J)t = (IJt)t = (It Jt)t. So, for nonzero ideals J ⊆ I, J is a t-reduction of I if
and only if J is a t-reduction of It if and only if Jt is a t-reduction of It. Notice
also that any reduction is also a t-reduction; and the converse is not true, in
general, as shown by the next example which exhibits a domain R with two
t-ideals J $ I such that J is a t-reduction but not a reduction of I.

Example 2.2 ([50, Example 2.2]). We use a construction from [49]. Let x be an
indeterminate over Z and let R := Z[3x, x2, x3], I := (3x, x2, x3), and J :=
(3x, 3x2, x3, x4). Then J $ I are two finitely generated t-ideals of R such that
JIn $ In+1

∀ n ∈N and (JI)t = (I2)t.

Proof. I is a height-one prime ideal and, hence, a t-ideal of R [49]. Next, we
prove that J is a t-ideal. We first claim that J−1 = 1

xZ[x]. Indeed, notice that
Q(x) is the quotient field of R and since 3x ⊆ J, then J−1

⊆
1
3x R. So, let f :=

g
3x ∈ J−1 where g =

∑m
i=0 aixi

∈ Z[x] with a1 ∈ 3Z. Then the fact that x3 f ∈ R
implies that ai ∈ 3Z for i = 0, 2, ...,m; i.e., g ∈ 3Z[x]. Hence f ∈ 1

xZ[x], whence
J−1
⊆

1
xZ[x]. The reverse inclusion holds since 1

x JZ[x] = (3, 3x, x2, x3)Z[x] ⊆
R, proving the claim. Next, let h ∈ (R : Z[x]) ⊆ R. Then xh ∈ R forcing
h(0) ∈ 3Z and thus h ∈ (3, 3x, x2, x3). So, (R : Z[x]) ⊆ (3, 3x, x2, x3), hence
(R : Z[x]) = 1

x J. It follows that Jt = Jv =
(
R : 1

xZ[x]
)

= x(R : Z[x]) = J, as
desired. Next, let n ∈N. It is to see that x3x2n = x2n+3 is the monic monomial
with the smallest degree in JIn. Therefore x2(n+1) = x2n+2

∈ In+1
\ JIn. That
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is, J is not a reduction of I. It remains to prove (JI)t = (I2)t. We first claim
that (JI)−1 = 1

x2Z[x]. Indeed, (JI)−1
⊆ (J−1)2 = 1

x2Z[x] and the reverse inclusion
holds since 1

x2 JIZ[x] = (3, 3x, x2, x3)(3, x, x2)Z[x] ⊆ R, proving the claim. Now,
observe that I2 = (9x2, 3x3, x4, x5). It follows that (IJ)t = (IJ)v =

(
R : 1

x2Z[x]
)

=

x2(R : Z[x]) = xJ ⊇ I2. Thus (IJ)t ⊇ (I2)t, as desired.

In the above example, the domain R is not integrally closed. In fact, there
is a class of integrally closed domains where the notions of reduction and t-
reduction are always distinct. Indeed, in [50, Example 2.3], we show that if R
is any integrally closed Mori domain that is not completely integrally closed,
then there always exist nonzero ideals J $ I in R such that J is a t-reduction
but not a reduction of I. Another crucial fact concerns reductions of t-ideals.
That is, if J is a reduction of a t-ideal, then so is Jt; and the converse is not
true, in general, as shown by [50, Example 2.4] which features a domain R
with a t-ideal I and an ideal J ⊆ I such that Jt is a reduction but J is not a
reduction of I.

In the rest of this section, we provide basic ideal-theoretic properties of
t-reduction. Let R be an arbitrary domain. Recall that, for any nonzero ideals
I, J,H of R, the equality (IJ + H)t = (It J + H)t always holds. This property
allowed us to prove the next basic result which examines the t-reduction of
the sum and product of ideals.

Lemma 2.3. Let J ⊆ I and J′ ⊆ I′ be nonzero ideals of R. If J and J′ are t-reductions of
I and I′, respectively, then J+ J′ and JJ′ are t-reductions of I+ I′ and II′, respectively.

The next basic result examines the transitivity for t-reduction.

Lemma 2.4. Let K ⊆ J ⊆ I be nonzero ideals of R. Then:

(1) If K is a t-reduction of J and J is a t-reduction of I, then K is a t-reduction of I.
(2) If K is a t-reduction of I, then J is a t-reduction of I.

The next basic result examines the t-reduction of the power of an ideal.

Lemma 2.5. Let J ⊆ I be nonzero ideals of R and let n be a positive integer. Then:

(1) J is a t-reduction of I⇔ Jn is a t-reduction of In.
(2) If J = (a1, ..., ak), then: J is a t-reduction of I⇔ (an

1 , ..., a
n
k ) is a t-reduction of In.

The next basic result examines the t-reduction of localizations.

Lemma 2.6. Let J ⊆ I be nonzero ideals of R and let S be a multiplicatively closed
subset of R. If J is a t-reduction of I, then S−1 J is a t-reduction of S−1I.

Note that, in a PvMD, J is a t-reduction of I if and only if J is t-locally a
reduction of I (Lemma 3.9).
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2.2 t-Integral closure of ideals

This section investigates the concept of t-integral closure of ideals and its
correlation with t-reductions. Our objective is to establish satisfactory t-
analogues of (and in some cases generalize) well-known results, in the liter-
ature, on the integral closure of ideals and its correlation with reductions.

Definition 2.7. Let R be a domain and I a nonzero ideal of R. An element
x ∈ R is t-integral over I if there is an equation

xn + a1xn−1 + ... + an−1x + an = 0 with ai ∈ (Ii)t ∀i = 1, ...,n.

The set of all elements that are t-integral over I is called the t-integral closure
of I, and is denoted by Ĩ. If I = Ĩ, then I is called t-integrally closed.

The t-integral closure of the ideal R is always R, whereas the t-integral
closure of the ring R (also called pseudo-integral closure) may be larger than
R. Also, we have J ⊆ I ⇒ J̃ ⊆ Ĩ. More properties are listed in Remark 2.14.
It is well-known that the integral closure of an ideal is an ideal which is
integrally closed. The next theorem provides a t-analogue for this result.

Theorem 2.8. The t-integral closure of an ideal is an integrally closed ideal. In
general, it is not t-closed and, a fortiori, not t-integrally closed.

The proof of the first statement of this theorem relied on the following
lemma which sets a t-analogue for the notion of Rees algebra of an ideal [48,
Chapter 5]. The Rees algebra of an ideal I (in a ring R) is the graded subring
of R[x] given by R[Ix] :=

⊕
n≥0 In xn [48, Definition 5.1.1] and whose integral

closure in R[x] is the graded ring
⊕

n≥0 In xn [48, Proposition 5.2.1].

Lemma 2.9. Let R be a domain, I a t-ideal of R, and x an indeterminate over R. The
t-Rees algebra of I is given by Rt[Ix] :=

⊕
n≥0(In)txn, and it is a graded subring of

R[x] and its integral closure in R[x] is the graded ring
⊕

n≥0 Ĩnxn.

The proof of the last statement of the above theorem is handled by the
next example, which provides a domain with an ideal I such that Ĩ is not a

t-ideal and, hence, not t-integrally closed since ( Ĩ )t ⊆
˜̃I always holds.

Example 2.10 ([50, Example 3.10]). Let R := Z + xQ(
√

2)[x], I := ( x
√

2
), and

a := x
2 , where x is an indeterminate over Q. Then:

(1) I is a t-reduction of I + aR and a < Ĩ.

(2) Ĩ $ ( Ĩ )t and hence Ĩ $˜̃I.



6 Salah Kabbaj Dedicated to David F. Anderson

Proof. (1) First, we prove that (I(I + aR))t = ((I + aR)2)t. It suffices to show that
a2
∈ (I(I + aR))t. For this purpose, let f ∈ (I(I + aR))−1 = ( x2

2 ,
x2

2
√

2
)−1
⊆ ( x2

2 )−1 =

2
x2 R. Then, f = 2

x2 (a0 + a1x + . . .+ anxn), for some n ≥ 0, a0 ∈ Z, and ai ∈ Q(
√

2)
for i ≥ 1. Since x2

2
√

2
f ∈ R, a0 = 0. It follows that (I(I + aR))−1

⊆
1
xQ(
√

2)[x]. On

the other hand, (I(I + aR))( 1
xQ(
√

2)[x]) ⊆ R. So, we have

(
I(I + aR)

)−1
=

(
x2

2
,

x2

2
√

2

)−1

=
1
x
Q(
√

2)[x] (1)

Now, clearly, a2(I(I + aR))−1
⊆ R. Therefore, a2

∈ (I(I + aR))v = (I(I + aR))t, as
desired. Next, we prove that a < Ĩ = I. By [48, Corollary 1.2.2], it suffices to
show that I is not a reduction of I + aR. Deny and suppose that I(I + aR)n =
(I + aR)n+1, for some positive integer n. Then an+1 = ( x

2 )n+1
∈ I(I + aR)n =

x
√

2
( x
√

2
, x

2 )n. One can check that this yields 1 ∈
√

2(
√

2, 1)n
⊆ (
√

2) in Z[
√

2],
the desired contradiction.

(2) We claim that a ∈ ( Ĩ )t. Notice first that x ∈ Ĩ as x2
∈ I2 = (I2)t. Therefore,

A := (x, x
√

2
) ⊆ Ĩ. Clearly, A = 2

x ( x2

2 ,
x2

2
√

2
). Hence, by (1), A−1 = Q(

√
2)[x].

However, aA−1
⊆ R. Whence, a ∈ Av = At ⊆ ( Ĩ )t. Consequently, a ∈ ( Ĩ )t \ Ĩ.

The next result shows that the t-integral closure coincides with the t-
closure in the class of integrally closed domains. It also completes two exist-
ing results in the literature on the integral closure of ideals (Gilmer [37] and
Mimouni [57]).

Theorem 2.11. Let R be a domain. The following assertions are equivalent:

(1) R is integrally closed;
(2) Every principal ideal of R is integrally closed;
(3) Every t-ideal of R is integrally closed;
(4) I ⊆ It for each nonzero ideal I of R;
(5) Every principal ideal of R is t-integrally closed;
(6) Every t-ideal of R is t-integrally closed;
(7) Ĩ = It for each nonzero ideal I of R.

If all ideals of a domain are t-integrally closed, then it must be Prüfer. This
is a well-known result in the literature:

Corollary 2.12 ([37, Theorem 24.7]). A domain R is Prüfer if and only if every
ideal of R is (t-)integrally closed.

Now, we examine the correlation between the t-integral closure and t-
reductions of ideals. In this vein, recall that, for the trivial operation, two
crucial results assert that x ∈ I⇔ I is a reduction of I + Rx [48, Corollary 1.2.2]
and if I is finitely generated and J ⊆ I, then: I ⊆ J ⇔ J is a reduction of I [48,
Corollary 1.2.5]. Here are the t-analogues of these two results:
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Proposition 2.13. Let R be a domain and let J ⊆ I be nonzero ideals of R.

(1) If x ∈ Ĩ, then I is a t-reduction of I + Rx.
(2) If I is finitely generated with I ⊆ J̃, then J is a t-reduction of I.

Moreover, both implications are irreversible in general.

The next remark collects some basic properties of the t-integral closure.

Remark 2.14. Let R be a domain and let I, J be nonzero ideals of R. Then:

(1) ∀ x ∈ R, x Ĩ ⊆ x̃I .
(2) Ĩ ∩ J ⊆ Ĩ ∩ J̃. The inclusion can be strict, see Example 2.15(3).
(3) I ⊆ I ⊆ Ĩ ⊆

√
It. These inclusions can be strict, see Example 2.15(1).

(4) ∀ n ≥ 1, ( Ĩ )n
⊆ Ĩn. The inclusion can be strict, see Example 2.15(2).

(5) Ĩ + J̃ ⊆ Ĩ + J . The inclusion can be strict. For instance, in Z[x], we have
(̃2) + (̃x) = (2, x) and (̃2, x) = (2, x)t = Z[x] (via Theorem 2.11).

Example 2.15 ([50, Example 3.9]). Let R := Z[
√
−3][2x, x2, x3]. Let J := (x3) and

I := (2x2, 2x3, x4, x5), where x is an indeterminate over Z. Then I is a t-ideal
such that

(1) I $ I $ Ĩ $
√

I.
(2) ( Ĩ )2 $ Ĩ2.
(3) J̃ ∩ I $ J̃ ∩ Ĩ.

Proof. We first show that I is a t-ideal. Clearly, 1
x2Z[

√
−3][x] ⊆ I−1. For the

reverse inclusion, let f ∈ I−1
⊆ x−4R. Then f = 1

x4 (a0 + a1x + · · · + anxn) for
some n ∈ N, a0 ∈ Z[

√
−3], a1 ∈ 2Z[

√
−3], and ai ∈ Z[

√
−3] for i ≥ 2. Since

2x2 f ∈ R, then a0 = a1 = 0. It follows that f ∈ 1
x2Z[

√
−3][x]. Therefore I−1 =

1
x2Z[

√
−3][x]. Next, let g ∈ (R : Z[

√
−3][x]) ⊆ R. Then xg ∈ R, forcing g(0) ∈

2Z[
√
−3] and hence g ∈ (2, 2x, x2, x3). So (R : Z[

√
−3][x]) ⊆ (2, 2x, x2, x3). The

reverse inclusion is obvious. Thus, (R : Z[
√
−3][x]) = (2, 2x, x2, x3). Conse-

quently, we obtain It = Iv = (R : 1
x2Z[

√
−3][x]) = x2(R : Z[

√
−3][x]) = I.

(1) Next, we prove the strict inclusions I $ I $ Ĩ $
√

I. For I $ I, notice that

(1 +
√
−3)x2

∈ I \ I as
(
(1 +

√
−3)x2

)3
= −8x6

∈ I3 and 1 +
√
−3 < 2Z[

√
−3].

For I $ Ĩ, we claim that x3
∈ Ĩ \ I. Indeed, let f ∈ (I2)−1

⊆ x−8R. Then
there are n ∈ N, ai ∈ Z[

√
−3] for i ∈ {0, 2, . . . ,n}, and a1 ∈ 2Z[

√
−3] such

that f = 1
x8 (a0 + a1x + · · · + anxn). Since 4x4 f ∈ R, then a0 = a1 = a2 = a3 = 0.

Therefore, (I2)−1
⊆

1
x4Z[

√
−3][x]. The reverse inclusion is obvious. Hence,

(I2)−1 = 1
x4Z[

√
−3][x]. It follows that (I2)t = (I2)v = (R : 1

x4Z[
√
−3][x]) = x4(R :

Z[
√
−3][x]) = x2I. Hence x6

∈ (I2)t and thus x3
∈ Ĩ. It remains to show that x3 <

I. By [48, Corollary 1.2.2], it suffices to show that I is not a reduction of I+(x3).
Let n ∈N. It is easy to see that x4x3n is the monic monomial with the smallest
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degree in I
(
I + (x3)

)n
. Therefore, x3(n+1) = x3n+3

∈

(
I + (x3)

)n+1
\ I

(
I + (x3)

)n
.

Hence, I is not a reduction of I + (x3), as desired.
For Ĩ $

√
I, we claim that x2

∈
√

I \ Ĩ. Obviously, x2
∈
√

I. In order to
prove that x2 < Ĩ, it suffices by Proposition 2.13 to show that I is not a t-
reduction of I + (x2). To this purpose, notice that I + (x2) = (x2). Suppose by
way of contradiction that (I(I + (x2))n)t = ((I + (x2))n+1)t for some n ∈N. Then
(x2)n+1 = x2n+2

∈ (I(I + (x2))n)t = x2nI. Consequently, x2
∈ I, absurd.

(2) We first prove that Ĩ = (2x2, (1 +
√
−3)x2, x3, x4). In view of (1) and its

proof, we have (2x2, (1 +
√
−3)x2, x3, x4) ⊆ Ĩ. Next, let α := (a + b

√
−3)x2

∈ Ĩ
where a, b ∈ Z. If b = 0, then a , 1 as x2 < Ĩ. Moreover, since 2x2

∈ Ĩ, a
must be even; that is, α ∈ (2x2). Now assume b , 0. If a = 0, then b , 1 as
√
−3x2 < Ĩ. Moreover, since 2

√
−3x2

∈ Ĩ, b must be even; that is, α ∈ (2x2).
So suppose a , 0. Then similar arguments force a and b to be of the same
parity. Further, if a and b are even, then α ∈ (2x2); and if a and b are odd,
then α ∈ (2x2, (1 +

√
−3)x2). Finally, we claim that Ĩ contains no monomials

of degree 1. Deny and let ax ∈ Ĩ, for some nonzero a ∈ 2Z[
√
−3]. Then, by

[48, Remark 1.1.3(7)], ax ∈ Ĩ ⊆ (̃x2) = (x2) ⊆ x2Z[
√
−3][x]. By [48, Corollary

1.2.2], (x2) is a reduction of (ax, x2) in Z[
√
−3][x], absurd. Consequently,

Ĩ = (2x2, (1 +
√
−3)x2, x3, x4). Now, we are ready to check that ( Ĩ )2 $ Ĩ2. For

this purpose, recall that (I2)t = x2I. So, 2x4
∈ Ĩ2. We claim that 2x4 < ( Ĩ )2.

Deny. Then, 2x4
∈ (4x4, 2(1 +

√
−3)x4). So x2

∈ (2x2, (1 +
√
−3)x2) ⊆ Ĩ, absurd.

(3) We claim that x3
∈ Ĩ ∩ J̃ \ Ĩ ∩ J . We proved in (1) that x3

∈ Ĩ. So,
x3
∈ Ĩ ∩ J̃. Now, observe that I ∩ J = xI and assume, by way of contradiction,

that x3
∈ Ĩ ∩ J = x̃I . Then x3 satisfies an equation of the form (x3)n +

a1(x3)n−1 + · · · + an = 0 with ai ∈ ((xI)i)t = xi(Ii)t, i = 1, . . . ,n. For each i, let
ai = xibi, for some bi ∈ (Ii)t. Therefore (x2)n + b1(x2)n−1 + · · ·+ bn = 0. It follows
that x2

∈ Ĩ, the desired contradiction.

2.3 Persistence and contraction of t-integral closure

For any ring homomorphism, ϕ : R → T, the persistence of integral closure
describes the fact ϕ( I ) ⊆ ϕ(I)T for every ideal I of R; and the contraction
of integral closure describes the fact ϕ−1(J) = ϕ−1(J) for every integrally
closed ideal J of T. This section deals with the persistence and contraction
of t-integral closure. For this purpose, we first need to introduce the concept
of t-compatible homomorphism (which extends the well-known notion of
t-compatible extension [13]). Throughout, t (resp., t1) and v (resp., v1) denote
the t- and v- closures in R (resp., T).
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Lemma 2.16. Let ϕ : R −→ T be a homomorphism of domains. Then, the following
statements are equivalent:

(1) ϕ(Iv)T ⊆
(
ϕ(I)T

)
v1

, for each nonzero finitely generated ideal I of R;

(2) ϕ(It)T ⊆
(
ϕ(I)T

)
t1

, for each nonzero ideal I of R;

(3) ϕ−1(J) is a t-ideal of R for each t1-ideal J of T such that ϕ−1(J) , 0.

Definition 2.17. A homomorphism of domains ϕ : R −→ T is called t-
compatible if it satisfies the equivalent conditions of Lemma 2.16.

Under the embedding R ⊆ T, this definition matches the notion of t-
compatible extension (i.e., ItT ⊆ (IT)t1 ) well studied in the literature (cf.
[13, 18, 27, 31]). Next, the main result of this section establishes persistence
and contraction of t-integral closure under t-compatible homomorphisms.

Proposition 2.18. Let ϕ : R −→ T be a t-compatible homomorphism of domains.
Let I be an ideal of R and J an ideal of T. Then:

(1) ϕ( Ĩ )T ⊆ ϕ̃(I)T.
(2) ϕ̃−1(J) ⊆ ϕ−1( J̃ ); and if J is t-integrally closed, then ϕ̃−1(J) = ϕ−1(J).

If both R and T are integrally closed, then persistence of t-integral clo-
sure coincides with t-compatibility by Theorem 2.11. So the t-compatibility
assumption in Proposition 2.18 is imperative.

Corollary 2.19. Let R ⊆ T be a t-compatible extension of domains and let I be an
ideal of R. Then:

(1) ĨT ⊆ ĨT.
(2) Ĩ ⊆ ˜IT ∩ R ⊆ ĨT ∩ R.

Moreover, the above inclusions are strict in general.

Corollary 2.20. Let R be a domain, I an ideal of R, and S a multiplicatively closed
subset of R. Then S−1̃I ⊆ S̃−1I.

Recall that, for the integral closure, we have S−1I = S−1I [48, Proposition
1.1.4], whereas in the above corollary the inclusion can be strict, as shown
by the following example.

Example 2.21. We use a construction due to Zafrullah [65]. Let E be the ring of
entire functions and x an indeterminate over E. Let S denote the set generated
by the principal primes of E. Then, we claim that R := E + xS−1E[x] contains
a prime ideal P such that S−1P̃ $ S̃−1P. Indeed, R is a P-domain that is not
a PvMD [65, Example 2.6]. By [66, Proposition 3.3], there exists a prime t-
ideal P in R such that PRP is not a t-ideal of RP. By Theorem 2.11, we have
P̃RP = PRP $ RP = (PRP)t = P̃RP since R is integrally closed. Also notice that
P = ˜PRP ∩ R $ P̃RP ∩ R = R.
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Corollary 2.22. Let R be a domain and I a t-ideal that is t-locally t-integrally closed
(i.e., IM is t-integrally closed in RM for every maximal t-ideal M of R). Then I is
t-integrally closed.

3 The case of Prüfer v-multiplication domains

In [38, 39], Hays investigated reductions of ideals in commutative rings with
a particular focus on Prüfer domains. He studied the notion of basic ideal
and examined domains subject to the basic ideal property. He showed that
this class of domains is strictly contained in the class of Prüfer domains;
namely, a domain is Prüfer if and only if it has the finite basic ideal property
[38, Theorem 6.5]. The second main result of these two papers characterizes
domains with the basic ideal property as one-dimensional Prüfer domains
([38, Theorem 6.1] and [39, Theorem 10]).

This part covers [44] which deals with the extension of Hays’ afore-
mentioned results on Prüfer domains to Prüfer v-multiplication domains
(PvMDs). In Section 3.1 we first extend the definition of t-reduction to ?-
reduction, for any arbitrary ?-operation, and then discuss the notion of
?-basic ideals and prove that a domain with the finite?-basic ideal property
(resp., ?-basic ideal property) must be integrally closed (resp., completely
integrally closed). We also observe that a domain has the v-basic ideal prop-
erty if and only if it is completely integrally closed. Section 3.2 is devoted
to generalizing Hays’ results; we show that a domain has the finite w-basic
ideal property (resp., w-basic ideal property) if and only if it is a PvMD
(resp., PvMD of t-dimension one). In Section 3.3, we present a diagram of
implications among domains having various?-basic properties and provide
examples showing that most of the implications are not reversible.

3.1 ?-basic ideals

Let R be a domain with quotient field K and let F(R) denote the set of nonzero
fractional ideals of R. A map ? : F(R)→ F(R), I 7→ I?, is called a star operation
on R if the following conditions hold for every 0 , a ∈ K and I, J ∈ F(R):

• R? = R and (aI)? = aI?,
• I ⊆ J⇒ I? ⊆ J?,
• I ⊆ I? and I?? = I?.

The next definition extends the notion of t-reduction and related concepts
to an arbitrary star operation ? on R.

Definition 3.1. Let J ⊆ I be nonzero [fractional] ideals of R.
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• J is a trivial ?-reduction of I if J? = I?.
• J is a ?-reduction of I if (JIn)? = (In+1)? for some integer n ≥ 0.
• I is ?-basic if it has no ?-reduction other than the trivial ?-reductions.
• R has the ?-basic (resp., finite ?-basic) ideal property if every nonzero

(resp., finitely generated) [fractional] ideal of R is ?-basic.

If ?1 and ?2 are two star operations on R with I?1 ⊆ I?2 for each ideal I,
then any ?1 reduction is also a ?2-reduction, and the converse is not true in
general; since a t-reduction may not be a reduction (see also Example 2.2).

The next results provide elementary properties and natural examples of
?-basic ideals and domains with the (finite) ?-basic ideal property.

Lemma 3.2. ?-invertible ideals and ?-idempotent ideals are ?-basic.

Recall that R is completely integrally closed (resp., a v-domain) if every
nonzero ideal (resp., finitely generated ideal) of R is v-invertible.

Proposition 3.3. The following assertions always hold:

(1) If R has the finite ?-basic ideal property, then R is integrally closed.
(2) If R has the ?-basic ideal property, then R is completely integrally closed.
(3) R has the v-basic ideal property if and only if R is completely integrally closed.
(4) If R is a v-domain, then R has the finite v-basic ideal property.

The next example features a Noetherian domain with two t-ideals I, J such
that J is a t-reduction, but not a reduction, of I. Since the v- and t-operations
coincide under Noetherianess, such domain is not (completely) integrally
closed by Proposition 3.3.

Example 3.4. Let k be a field, x, y two indeterminates over k, and T := k[x, y].
Consider the Noetherian domain R = k + M2, where M := (x, y)T (cf. [22]).
As an ideal of T, M is basic [38, Theorem 2.3]. In particular, M2 is not a
reduction of M in T, and hence it is not a reduction of M as a fractional ideal
of R. However, M2 is a nontrivial t-reduction of M in R. Indeed, we have
(T : M) = T. It follows that M ⊆ M−1 (= (R : M)) ⊆ T. On the other hand, if
f ∈ T satisfies f M ⊆ R, then, writing f = a + m with a ∈ k and m ∈ M, we
immediately obtain that aM ⊆ R, whence a = 0, i.e., f ∈ M. Thus M−1 = M,
whence also Mt = Mv = M. However, (R : T) = M2, whence (M2)−1 = ((R :
M) : M) = (M : M) = T and then (M2)t = (M2)v = (R : T) = M2, where the
t- and v-operations are taken in R. A similar argument yields (Mn)t = M2

for n ≥ 2. Hence M2 = (M3)t = (M2M)t. Consequently, J := xM2
⊆ I := xM

are two (integral) t-ideals of R, where J is a non-trivial t-reduction, but not a
reduction, of I.

Recall that, to the star operation ?, we may define an associated star
operation ? f by setting, for each I ∈ F(R), I? f =

⋃
J?, where J ranges over all

finitely generated subideals of I; and then ? is of finite type if ? = ? f . In this
case, minimal primes of ?-ideals are necessarily ?-ideals and each ?-ideal is
contained in a maximal ?-ideal. For instance, v f = t and t f = t.
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Lemma 3.5. Assume that ? is of finite type. If I is a finitely generated ideal of R
and J is a ?-reduction of I, then there is a finitely generated ideal K ⊆ J such that K
is a ?-reduction of I.

This lemma allows to prove the following result.

Proposition 3.6. If R has the finite ?-basic ideal property, then R also has the finite
? f -basic ideal property. In particular, if R has the finite v-basic ideal property, then
R also has the finite t-basic ideal property.

Corollary 3.7. A v-domain has the finite t-basic ideal property.

3.2 Characterizations

At this point, we recall Kang’s result [55, Theorem 3.5] that a PvMD is an
integrally closed domain in which the t- and w-operations coincide. The next
theorem features an analogue of Hays’ first result that “a domain is Prüfer if
and only if it has the finite basic ideal property” [38, Theorem 6.5].

Theorem 3.8. A domain is a PvMD if and only if it has the finite w-basic ideal
property.

Hays proved that, in a Prüfer domain, the definition of a reduction can be
restricted; namely, J ⊆ I is a reduction if and only if JI = I2 [39, Proposition
1]. The next lemma establishes a similar property for t-reductions and shows
that this notion is local in the class of PvMDs.

Lemma 3.9. Let R be a PvMD and J ⊆ I nonzero ideals of R. Then, the following
assertions are equivalent:

(1) (JI)t = (I2)t;
(2) J is a t-reduction of I;
(3) JRMIRM = (IRM)2 for each maximal t-ideal M of R.

It is useful to note if J is a t-reduction of an ideal I, then a prime t-
ideal of R contains I if and only if it contains J. We also recall that if I is a
nonzero ideal of a domain R and S is a multiplicatively closed subset of R,
then (ItRS)tRS

= (IRS)tRS
(this fact follows from [64, Lemma 4] and is stated

explicitly in [55, Lemma 3.4]).

Lemma 3.10. Let R be a PvMD and let 0 , x ∈ R. Let P be a minimal prime of xR
and set I := xRP ∩ R. Then

(1) I is a w-ideal of R.
(2) xR + I2 is a w-reduction of I.
(3) If I is w-basic, then P is a maximal t-ideal of R.
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The above two lemmas allowed us to prove the next theorem, which
features an analogue of Hays’ second result that “a domain has the basic ideal
property if and only if it is a Prüfer domain of dimension 1” [39, Theorem 10].

Theorem 3.11. A domain has the w-basic ideal property if and only if it is a PvMD
of t-dimension 1.

3.3 Examples

Consider the following diagram of implications putting in perspective the
(finite) v-, t-, and w-basic ideal properties.

Krull

w-basic = PvMD + t-dim 1

finite w-basic = PvMD

v-domain

finite v-basic=finite t-basic

integrally closed

t-basic

v-basic = completely
integrally closed

(1)

(2)

(3)

(4)

(5)

(7)

(6)

(8)

Notice that the implications (1)-(3) and (8) are well known, and (4)-(7)
follow from Proposition 3.3, Proposition 3.6, Theorem 3.11, and the fact that
the w- and t-operations coincide in a PvMD. Also, it is well-known that (1)-(3)
and (8) are irreversible in general. Moreover, the finite v-basic ideal property
obviously implies the finite t-basic ideal property, and in Section 5.2 we will
see that in fact they are equivalent (Theorem 5.5).

Next, we provide examples with full details, from [44], proving that the
remaining implications in the diagram are, too, irreversible in general.

Example 3.12 ([44, Example 3.1]). Implication (4) is irreversible.

Proof. Let k be a field and X,Y,Z indeterminates over k. Let T := k((X)) + M
and R := k[[X]] + M, where M := (Y,Z)k((X))[[Y,Z]]. Let A be an ideal of
R. Then A is comparable to M. Suppose A ⊆ M and A is not invertible. If
AA−1 ) M, then AA−1 is principal, and hence A is invertible, contrary to
assumption. Hence AA−1

⊆ M. We claim that (AA−1)v = M. To verify this,
first recall that M is divisorial in R. Then, since AA−1 is a trace ideal, that is,
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(AA−1)−1 = (AA−1 : AA−1), we have (AA−1)−1
⊆ (AA−1T : AA−1T) = T = M−1

(the first equality holding since T is Noetherian and integrally closed). This
forces (AA−1)−1 = M−1, whence (AA−1)v = Mv = M, as claimed. Now let I be
a finitely generated ideal of R and J a v-reduction of I, so that (JIn)v = (In+1)v
for some positive integer n. We shall show that J−1 = I−1 (and hence that
Jv = Iv), and for this we may assume that I is not invertible. Suppose, by way
of contradiction, that IT(T : IT) = T, i.e., that IT is invertible in T. Then, since
T is local, IT is principal and, in fact, IT = aT for some a ∈ I. We then have
R ⊆ a−1I ⊆ T. Then k[[X]] � R/M ⊆ a−1I/M ⊆ T/M � k((X)), from which it
follows that a−1I/M must be a cyclic k[[X]]-module. However, this is easily
seen to imply that a−1I, hence I, is principal, the desired contradiction. We
therefore have (T : IT)I ⊆ M, whence (IM)−1 = (R : IM) = ((R : M) : I) = (T :
I) = (M : I) ⊆ I−1. This immediately yields I−1 = (IM)−1.

Now set Q = In(In)−1. From above (setting A = In), we have Qv = M.
Therefore, I−1

⊆ J−1
⊆ (JM)−1 = (JQ)−1 = (IQ)−1 = (IM)−1 = I−1, which yields

J−1 = I−1, as desired. Hence R has the finite v-basic property. Finally, again
from above, we have ((y, z)(y, z)−1)v = M, so that R is not a v-domain.

Example 3.13 ([44, Example 3.2]). Implication (5) is irreversible.

Proof. Let k be a field and X,Y indeterminates over k. Let V = k(X)[[Y]] and
R = k + M, where M = Yk(X)[[Y]]. Clearly, R is an integrally closed domain.
Of course, M is divisorial in R. Also, (M2)−1 = ((R : M) : M) = (V : M) = Y−1V,
and so (M2)v = (R : Y−1V) = Y(R : V) = YM = M2, i.e., M2 is also divisorial.
We claim that R does not have the finite t-basic ideal property. Indeed,
let W := k + Xk and consider the finitely generated ideal I of R given by
I = Y(W + M). We have (k : W) = (0); otherwise, we have 0 , f ∈ (k : W), and
both f and f X ∈ k, whence X ∈ k, a contradiction. Therefore, I−1 = Y−1M and
thus It = Iv = YM−1 = M. Now, let J = YR. Then Jt = YR ( M = It. However,
(JI)t = (YI)t = YIt = YM = M2 = ((It)2)t = (I2)t, and so R does not have the
finite t-basic ideal property.

Example 3.14 ([44, Example 3.3]). Implication (6) is irreversible.

Proof. In [42] Heinzer and Ohm give an example of an essential domain that
is not a PvMD. In that example, k is a field, y, z, and {xi}

∞

i=1 are indeterminates
over k, and D = R ∩ (

⋂
∞

i=1 Vi), where R = k({xi})[y, z](y,z)k({xi})[y,z] and Vi is the
rank-one discrete valuation ring on k({x j}

∞

j=1, y, z) with xi, y, z all having value
1 and x j having value 0 for j , i (using the “infimum” valuation). As further
described in [58, Example 2.1], we have Max(D) = {M} ∪ {Pi}, where M is the
contraction of (y, z)R to D and the Pi are the centers of the maximal ideals of
the Vi; moreover, DM = R and Vi = DPi .

It was pointed out in [35, Example 1.7] that each finitely generated ideal
of D is contained in almost all of the Vi. If fact, one can say more. Let a
be an element of D. We may represent a as a quotient f/g with f , g ∈ T :=
k[{xi}, y, z](y,z)k[{xi},y,z] and g < (y, z)T (and hence g < M). Since f and g involve
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only finitely many x j and g < M, the sequence {vi(a)} must be eventually
constant, where vi is the valuation corresponding to Vi. We denote this
constant value by w(a). A similar statement holds for finitely generated
ideals of D.

Let K be a nonzero ideal of D. Then KtDPi ⊇ KDPi = (KDPi )tDPi
=

(KtDPi )tDPi
⊇ KtDPi , whence KtDPi = KDPi . Now suppose that we have

nonzero ideals J ⊆ I of D with (JIn)t = (In+1)t. Let a ∈ I, and choose a0 ∈ I so
that w(a0) is minimal. Then aan

0 ∈ In+1
⊆ (JIn)t, and so aan

0 ∈ (BAn)v for finitely
generated ideals B ⊆ J and A ⊆ I. With the observation in the preceding para-
graph, we then have aan

0 ∈ BAnDPi for each i. However, since w(a0) ≤ w(A), it
must be the case that w(a) ≥ w(B); i.e., for some integer k, a ∈ BDPi for all i > k.
Since the equality (JIn)t = (In+1)t yields JDPi = IDPi for each i, we may choose
elements b j ∈ J for which v j(a) = v j(b j), j = 1, . . . , k. With B′ = (B, b1, . . . , bk),
we then have a ∈ B′DPi for each i. This yields a(B′)−1

⊆
⋂

DPi .
Next, we consider extensions to DM. From (JIn)t = (In+1)t, we obtain

(JInDM)tDM
= (In+1DM)tDM

. Since DM is a regular local ring, each nonzero
ideal of DM is t-invertible, and we may cancel to obtain (IDM)tDM

= (JDM)tDM
.

There is a finitely generated subideal B1 of J with B1DM = JDM. We then
have IB−1

1 ⊆ IDMB−1
1 DM = IDM(B1DM)−1

⊆ (JDM(JDM)−1)tDM
⊆ DM. Now let

B2 = B′+B1. Then a(B2)−1
⊆ DM∩

⋂
DPi = D, whence a ∈ (B2)v ⊆ Jt. It follows

that D has the t-basic property. However, since D is not a PvMD, D cannot
have the (finite) w-basic property.

Example 3.15 ([44, Example 3.4]). Implication (7) is irreversible. For instance,
the ring of entire functions is a completely integrally closed Prüfer domain
with infinite Krull dimension, and hence it does not have the (t-) basic ideal
property by [39, Theorem 10].

4 The case of Noetherian domains

This part covers [52], which studies t-reductions and t-integral closure of ide-
als in Noetherian domains. The main objective is to establish t-analogues for
well-known results on reductions and integral closure of ideals in Noetherian
rings. Section 4.1 investigates t-reductions of ideals subject to t-invertibility
and localization in arbitrary Noetherian domains. Section 4.2 investigates the
t-integral closure of ideals and its correlation with t-reductions in Noetherian
domains of Krull dimension one.
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4.1 t-reductions subject to t-invertibility and localization

This section deals with t-reductions of ideals subject to t-invertibility and
localization in Noetherian domains. The first main result establishes a t-
analogue for Hays’ result on the correlation between invertible reductions
and the Krull dimension [38, Theorem 4.4]; and the second main result estab-
lishes a t-analogue for Hays’ global-local result on the basic ideal property
[38, Theorem 3.6]. In 1973, Hays proved the following result:

Theorem 4.1 ([38, Theorem 4.4]). Let R be a Noetherian domain such that R/M
is infinite for every maximal ideal M of R. Then, each nonzero ideal has an invertible
reduction if and only if dim(R) ≤ 1.

The t-dimension of a domain R, denoted t-dim(R), is the supremum of
the lengths of chains of prime t-ideals in R (here (0) is considered as a prime
t-ideal although technically it is not); and the inequality t-dim(R) ≤ dim(R)
always holds [43]. Here is a t-analogue of the above result.

Theorem 4.2. Let R be a Noetherian domain such that the residue field of each
maximal t-ideal is infinite. Then, the following statements are equivalent:

(1) Each t-ideal of R has a t-invertible t-reduction;
(2) Each maximal t-ideal of R has a t-invertible t-reduction;
(3) t-dim(R) ≤ 1.

The next lemma handles the implication (2) ⇒ (3) without the infinite
residue field assumption.

Lemma 4.3. Let R be a Noetherian domain. If every maximal t-ideal of R has a
t-invertible t-reduction, then t-dim(R) ≤ 1.

Observe that, in general, the converse of Lemma 4.3 is not true. For in-
stance, colnsider an almost Dedekind domain R which is not Dedekind.
Then R is a one-dimensional locally Noetherian Prüfer domain. Hence R has
the basic ideal property [38, Theorem 6.1]. Since R is not Dedekind, it has a
non-invertible maximal ideal which has no proper reduction.

Next, we move to the global-local transfer of the t-basic ideal property.
For this purpose, recall that an ideal I is locally basic (resp., t-locally t-basic)
if IRM is basic (resp., t-basic) for each maximal ideal (resp., maximal t-ideal)
M of R containing I. In 1973, Hays proved the following result:

Theorem 4.4 ([38, Theorem 3.6]). In a Noetherian ring, an ideal is basic if and
only if it is locally basic.

Here is a t-analogue for the “if” assertion of this result.

Theorem 4.5. In a Noetherian domain, if an ideal is t-locally t-basic, then it is
t-basic.
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Now, note that, in his proof of the implication “basic ⇒ locally basic,”
Hays used two basic facts. The first one states that, in an arbitrary ring R, if
J ⊆ I and JRM is a reduction of IRM, then (J ∩ I) + IM is a reduction of I; and
here is a t-analogue for this result.

Proposition 4.6. Let R be a domain, M a maximal t-ideal of R, and I ⊆M a nonzero
ideal of R. If J is an ideal of R such that JRM is a t-reduction of IRM, then (J∩ I)+ IM
is a t-reduction of I.

However, the second fact was Nakayama’s lemma, which ensures that
J ⊆ I ⊆ J + IM in a local Noetherian ring (R,M) forces J = I; and a t-analogue
for this Nakayama property is not true in general. For example, consider the
local Noetherian ring R := k+M2

⊆ k[x, y], where M = (x, y) and (M2)t = (M3)t
[44, Example 1.5].

4.2 t-reductions and t-integral closure in one-dimensional
Noetherian domains

This section deals with the t-integral closure of ideals and its correlation with
t-reductions in Noetherian domains of Krull dimension one. The objective
is to establish t-analogues of well-known results, in the literature, on the
integral closure of ideals and its correlation with reductions of ideals in
Noetherian settings.

Recall from Section 2.2 that “̃I is an integrally closed ideal which is not t-
integrally closed in general.” Several ideal-theoretic properties of Ĩ are collected
in Remark 2.14, including the inclusions I ⊆ I ⊆ Ĩ ⊆

√
It. Consider the two

sets related to the (trivial) d-operation and t-operation, respectively:

Î
d

:=
{
x ∈ R | I is a reduction of (I, x)

}
Î

t
:=

{
x ∈ R | I is a t-reduction of (I, x)

}
For the trivial operation, it is well-known that the equality I = Î

d
always

holds [48, Corollary 1.2.2]. This fact which was used to show that I is an

ideal [48, Corollary 1.3.1]. However, it is still an open problem of whether Î
t

is an ideal [51, Question 3.5]. We always have It ⊆ Ĩ ⊆ Î
t

where the second
containment is proved by [50, Proposition 3.7] and can be strict as shown by
[50, Example 3.10(a)]. Moreover, “It = Ĩ for each nonzero ideal I if and only if R

is integrally closed” [50, Theorem 3.5], and “It = Î
t

for each nonzero ideal I if and
only if R has the finite t-basic ideal property” [51, Theorem 3.2].

The class of Prüfer domains is the only known class of domains, where
the two notions of reduction and t-reduction coincide (since the trivial and



18 Salah Kabbaj Dedicated to David F. Anderson

t- operations are the same). The next result shows that the same happens in
one-dimensional Noetherian domains (where the trivial and t- operations
are not necessarily the same).

Theorem 4.7. In a one-dimensional Noetherian domain, the notions of reduction

and t-reduction coincide. Moreover, I = Ĩ = Î
t

for any nonzero ideal I.

As illustrative examples, consider one-dimensional Noetherian domains
which are not divisorial (i.e., t-operation is not trivial), as shown below.

Example 4.8. Let R := Q + xQ(
√

2,
√

3)[[x]], where Q is the field of rational
numbers and x is an indeterminate over Q. Then, R is a pseudo-valuation
domain (see definition in Section 5.1) issued from the DVR Q(

√
2,
√

3)[[x]]
and hence is a one-dimensional Noetherian domain. Further, R is not a
divisorial domain by [40, Theorem 3.5] or [45, Theorem 2.4] since [V/M :
R/M] , 2.

One wonders whether there exist Noetherian domains of dimension > 1
where the notions of reduction and t-reduction coincide. Next, we show this
cannot happen in a large class of Noetherian domains.

Proposition 4.9. Let R be a Noetherian domain with (R : R) , 0. Then, the notions
of reduction and t-reduction coincide in R if and only if dim(R) = 1.

5 The case of pullbacks

This part covers [51], which investigates t-reductions of ideals in pullback
constructions (defined in Section 5.3). Section 5.1 examines the correlation
between the notions of reduction and t-reduction in pseudo-valuation do-
mains. Section 5.2 solves an open problem raised in [44] on whether the finite
t-basic and v-basic ideal properties are distinct. In fact, these two notions co-
incide in any arbitrary domain (Theorem 5.5). Section 5.3 features the main
result, which establishes the transfer of the finite t-basic ideal property to
pullbacks in line with Fontana-Gabelli’s result on PvMDs [31, Theorem 4.1]
and Gabelli-Houston’s result on v-domains [34, Theorem 4.15]. This allows
us to enrich the literature with new examples, putting the class of domains
subject to the finite t-basic ideal property strictly between the two classes of
v-domains and integrally closed domains.

5.1 t-Reductions in pseudo-valuation domains

Recall that a pseudo-valuation domain (PVD) R is a special pullback issued
from the following diagram
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R = ϕ−1(k) −→ k
↓ ↓

V
ϕ
−→ K := V/M

where (V,M) is a valuation domain with residue field K and k is a subfield
of K. We say that R is a PVD issued from (V,M, k). For more details on
pseudo-valuation domains, see [40, 41] and also [17, 19, 24, 25, 61].

Note that a reduction is necessarily a t-reduction; and the converse is
not true in general. The next result investigates necessary and sufficient
conditions for the notions of reduction and t-reduction to coincide in PVDs.
This result can be used readily to provide examples discriminating between
the two notions of reduction and t-reduction.

Theorem 5.1. Let R be a PVD issued from (V,M, k) with K := V/M. Then, the
following statements are equivalent:

(1) For every nonzero ideals J ⊆ I, J is a t-reduction of I⇔ J is a reduction of I.
(2) For each k-vector subspace W of K containing k, Wn is a field for some n ≥ 0.

Note that Condition (2) in the above result forces K to be algebraic over
k, and so this fact can be used to build examples where the two notions of
reduction and t-reduction are the same or distinct, as shown below.

Example 5.2 ([51, Example 2.3]). Let R be a PVD issued from (V,M, k) with
K := V/M.

(1) Assume K is a transcendental over k. Then, the notions of reduction and
t-reduction are distinct in R. For example, pick a transcendental element
λ ∈ K over k and let W := k + kλ, I := aϕ−1(W) and J =: aR. Then, J is a
proper t-reduction of I, whereas I is basic in R.

(2) Assume [K : k] is finite. Then for every k-submodule W of K with k ⊆W ⊆
K, some power of W is a field, and hence the notions of reduction and
t-reduction coincide in R.

Given nonzero ideals J ⊆ I, if Jt is a reduction of It, then J is a t-reduction of
I. The converse is not true in general as shown by Example 2.2. The next result
provides a class of (integrally closed) pullbacks where the two assumptions
are always equivalent.

Proposition 5.3. Let R be a PVD and let J ⊆ I be nonzero ideals of R. Then, J is a
t-reduction of I if and only if Jt is a reduction of It.

The class of Prüfer domains is, so far, the only known class of domains
where the two notions of reduction and t-reduction coincide. We close this
section with the next result, which features necessary conditions for such
a coincidence. For this purpose, recall that a domain where the trivial and
w-operations are the same is said to be a DW-domain [36, 47, 57]. Common
examples of DW-domains are pseudo-valuation domains, Prüfer domains,
and quasi-Prüfer domains (i.e., domains with Prüfer integral closure) [32,
Page 190].
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Proposition 5.4. Let R be a domain where the notions of reduction and t-reduction
coincide for all ideals of R. Then:

(1) Every nonzero prime ideal of R is a t-ideal. In particular, R is a DW-domain.
(2) R is integrally closed if and only if R has the finite t-basic ideal property.
(3) R is a PvMD if and only if R is a Prüfer domain.

5.2 Equivalence of the finite t- and v-basic ideal properties

A domain is called a v-domain if all its nonzero finitely generated ideals are v-
invertible; a comprehensive reference for v-domains is Fontana & Zafrullah’s
survey paper [33]. Also, recall the finite v-basic ideal property obviously
implies the finite t-basic ideal property, and the question of whether this
implication is reversible was left open in [44, Section 3]. The main result of
this section (Theorem 5.5) solves this open question. For this purpose, recall
from Section 4.2 the following objects Ĩ :=

{
x ∈ R | x is t-integral over I

}
and Î

t
:=

{
x ∈ R | I is a t-reduction of (I, x)

}
along with the basic inclusions

It ⊆ Ĩ ⊆ Î
t
. Finally, in order to put the main result into perspective, recall the

important result that “a domain R is integrally closed if and only if It = Ĩ for each
nonzero (finitely generated) ideal I of R” (Theorem 2.11).

Here is the main result of this section.

Theorem 5.5. For a domain R, the following assertions are equivalent:

(1) It = Î for each nonzero (finitely generated) ideal I of R;
(2) R has the finite t-basic ideal property;
(3) R has the finite v-basic ideal property.

The proof of this result required the following two elementary lemmas.

Lemma 5.6 (cf. Lemma 3.5). Let R be a domain and let I be a finitely generated
ideal of R. If J ⊆ I is a t-reduction of I, then there exists a finitely generated ideal
K ⊆ J such that K is a t-reduction of I.

Lemma 5.7. For a domain R, let K ⊆ J ⊆ I and J′ ⊆ I′ be nonzero fractional ideals,
and let n and k be positive integers.

(1) If J and J′ are ?-reductions of I and I′, respectively, then J + J′ and JJ′ are
?-reductions of I + I′ and II′, respectively.

(2) Assume K is a ?-reduction of J. If J is a ?-reduction of I, then so is K.
(3) If K is a ?-reduction of I, then J is a ?-reduction of I.
(4) J is a ?-reduction of I if and only if Jn is a ?-reduction of In.
(5) J = (a1, ..., ak) is a ?-reduction of I⇔ (an

1 , ..., a
n
k ) is a ?-reduction of In.
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New examples of domains subject to the finite t-basic (equiv., v-basic)
ideal property will be provided in the next section. We close this section
with the following open question:

Question 5.8 ([51, Question 3.5]). Let I be a nonzero ideal, is Î always an ideal?

5.3 Transfer of the finite t-basic ideal property to pullbacks

Throughout, R will be the pullback issued from the following diagram of
canonical homomorphisms:

R −→ D
↓ ↓

T
ϕ
−→ K = T/M.

where T is a domain, M is a maximal ideal of T with residue field K,ϕ : T −→
K is the canonical surjection, and D is a proper subring of K with quotient
field k. So, R := ϕ−1(D) $ T. First, note that Proposition 3.3 ensures that a
domain with the t-basic ideal property is necessarily completely integrally
closed, and so, by [37, Lemma 26.5], R never has the t-basic ideal property.
This section investigates conditions for R to inherit the finite t-basic (or,
equivalently, v-basic) ideal property when T is local.

Recall from Sections 3.3 and 5.2 that the finite t-basic ideal property lies
between the two notions of v-domain and integrally closed domain; and that
the finite w-basic ideal property coincides with the PvMD notion. Also, at
this point, it is worthwhile recalling Fontana & Gabelli’s [31] and Gabelli &
Houston’s [34] well-known results, which establish the transfer of the notions
of PvMD and v-domain to pullbacks, respectively, and which summarize as
follows:

Theorem 5.9 ([31, Theorem 4.1] & [34, Theorem 4.15]). R is a PvMD (resp.,
v-domain) if and only if T and D are PvMDs (resp., v-domains), TM is a valuation
domain, and k = K.

Here is the main result of this section.

Theorem 5.10. Assume that T is local. Then, R has the finite t-basic ideal property
if and only if T and D have the finite t-basic ideal property and k = K.

This result enables the construction of new examples, which put the finite
t-basic ideal property strictly between the two notions of integrally closed
domain and v-domain. Follow some examples with full details from [51].

Example 5.11 ([51, Example 4.3]). Consider any non-trivial pseudo-valuation
domain R issued from (V,M, k) with k algebraically closed in K := V/M. Then,
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R is an integrally closed domain by [20, Theorem 2.1], which does not have
the finite t-basic ideal property by Theorem 5.10. Moreover, the two notions
of reduction and t-reduction are distinct in R by Proposition 5.4.

Example 5.12 ([51, Example 4.4]). Consider a pullback R issued from (T,M,D),
where T is a non-valuation local v-domain and D is a v-domain with quotient
field T/M. Then, R has the finite t-basic ideal property by [44, Proposition 1.6]
and Theorem 5.5 and Theorem 5.10, which is not a v-domain by [34, Theo-
rem 4.15]. One can easily build non-valuation local v-domains via pullbacks
through [34, Theorem 4.15].

Example 5.13 ([51, Example 4.5]). Let T := Q(X)[[Y,Z]] = Q(X) + M and R :=
Z[X] + M. Clearly, T and D := Z[X] have the finite t-basic property (since
they are Noetherian Krull domains). By Theorem 5.10, R has the finite t-basic
property. Also R is not a v-domain since T is a non-valuation local domain.
Next, let 0 , a ∈ Z and consider the finitely generated ideal of R given by
I := (a,X)Z[X] + M = aR + XR. Clearly I−1 = R and so (Is)−1 = R, for every
positive integer s. In particular, we have (I2I)t = (I3)t = (I3)v = R = (I2)v = (I2)t
and hence I2 is a t-reduction of I. However, I2 is not a reduction of I; otherwise,
if In+2 = I2In = In+1, for some n ≥ 1, this would contradict [56, Theorem 76].
It follows that the notions of reduction and t-reduction are distinct in R.

We close this section with the following two open questions from [51].

Question 5.14 ([51, Question 4.6]). Is Theorem 5.10 valid for the classical pull-
backs R = D + M issued from T := K + M not necessarily local? The idea here
is that (since k = K, then) T = S−1R for S := D \ {0}. Clearly, the current proof
of the “only if” assertion works for this context.

Question 5.15 ([51, Question 4.7]). Is Theorem 5.10 valid for the non-local case
through an additional assumption on TM? The idea here is that, “(k = K and
hence) RM = TM” is a necessity for the finite t-basic property; and for the
PvMD and v-domain notions, RM = TM is a valuation domain. So, one needs
to investigate this localization for the t-basic ideal property in this context.
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