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Abstract. The t-class semigroup of an integral domain is the semigroup of the iso-
morphy classes of the t-ideals with the operation induced by ideal t-multiplication. This
paper investigates ring-theoretic properties of an integral domain that reflect reciprocally
in the Cli¤ord or Boolean property of its t-class semigroup. Contexts (including Lipman
and Sally-Vasconcelos stability) that suit best t-multiplication are studied in an attempt
to generalize well-known developments on class semigroups. We prove that a Prüfer v-
multiplication domain (PVMD) is of Krull type (in the sense of Gri‰n [24]) if and only if
its t-class semigroup is Cli¤ord. This extends Bazzoni and Salce’s results on valuation do-
mains [11] and Prüfer domains [7], [8], [9], [10].

1. Introduction

The class semigroup of an integral domain R, denoted SðRÞ, is the semigroup of
nonzero fractional ideals modulo its subsemigroup of nonzero principal ideals [11], [45].
We define the t-class semigroup of R, denoted StðRÞ, to be the semigroup of fractional
t-ideals modulo its subsemigroup of nonzero principal ideals, that is, the semigroup of the
isomorphy classes of the t-ideals of R with the operation induced by t-multiplication. One
may regard StðRÞ as the t-analogue of SðRÞ, exactly, as the class group ClðRÞ is the t-
analogue of the Picard group PicðRÞ. We have PicðRÞLClðRÞLStðRÞLSðRÞ. The first
and third containments turn into equality in the class of Prüfer domains as the second does
so in the class of Krull domains. More details on the t-operation are provided in the next
section.

A commutative semigroup S is said to be Cli¤ord if every element x of S is (von Neu-
mann) regular, i.e., there exists a A S such that x2a ¼ x. The importance of a Cli¤ord semi-
group S resides in its ability to stand as a disjoint union of subgroups Ge, where e ranges
over the set of idempotent elements of S, and Ge is the largest subgroup of S with identity
equal to e (cf. [30]). The semigroup S is said to be Boolean if for each x A S, x ¼ x2.

Divisibility properties of R are often reflected in group or semigroup-theoretic proper-
ties of ClðRÞ orSðRÞ. If R is a Prüfer domain, ClðRÞ equals its ideal class group, and then R
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is a Bézout domain if and only if ClðRÞ ¼ 0. If R is a Krull domain, ClðRÞ equals its usual
divisor class group, and then R is a UFD if and only if ClðRÞ ¼ 0. So an integral domain R

is a UFD if and only if every t-ideal of R is principal. Trivially, Dedekind domains (resp.,
PIDs) have Cli¤ord (resp., Boolean) class semigroup. In 1994, Zanardo and Zannier proved
that all orders in quadratic fields have Cli¤ord class semigroup [45]. They also showed that
the ring of all entire functions in the complex plane (which is Bézout) fails to have this prop-
erty. In 1996, Bazzoni and Salce investigated the structure of SðVÞ for any arbitrary valua-
tion domain V , stating that SðVÞ is always Cli¤ord [11]. In [7], [8], [9], Bazzoni examined
the case of Prüfer domains of finite character, showing that these, too, have Cli¤ord class
semigroup. In 2001, she completely resolved the problem for the class of integrally closed
domains by proving that ‘‘R is an integrally closed domain with Cli¤ord class semigroup if

and only if R is a Prüfer domain of finite character’’ [10], Theorem 4.5. It is worth recalling
that, in the series of papers [39], [40], [41], Olberding undertook an extensive study of (Lip-
man and Sally-Vasconcelos) stability conditions which prepared the ground to address the
correlation between stability and the theory of class semigroups.

A domain R is called a PVMD (Prüfer v-multiplication domain) if the v-finite v-ideals
form a group under the t-multiplication; equivalently, if RM is a valuation domain for each
t-maximal ideal M of R. Ideal t-multiplication converts ring notions such as PID, Dede-
kind, Bézout (of finite character), Prüfer (of finite character), and integrality to UFD,
Krull, GCD (of finite t-character), PVMD (of finite t-character), and pseudo-integrality, re-
spectively. Recall at this point that the PVMDs of finite t-character (i.e., each proper t-ideal
is contained in only finitely many t-maximal ideals) are exactly the Krull-type rings intro-
duced and studied by Gri‰n in 1967–68 [23], [24]. Also pseudo-integrality (which should be
termed t-integrality) was introduced and studied in 1991 by D. F. Anderson, Houston and
Zafrullah [4]. We’ll provide more details about this property which turned to be crucial for
our study.

This paper examines ring-theoretic properties of an integral domain which recipro-
cally reflect in semigroup-theoretic properties of its t-class semigroup. Notions and contexts
that suit best t-multiplication are studied in an attempt to parallel analogous developments
and generalize well-known results on class semigroups. Recall from [10], [32] that an inte-
gral domain R is Cli¤ord regular (resp., Boole regular) ifSðRÞ is a Cli¤ord (resp., Boolean)
semigroup. A first correlation between regularity and stability conditions can be sought
through Lipman stability. Indeed, R is called an L-stable domain if

S
nf1

ðI n : I nÞ ¼ ðI : IÞ

for every nonzero ideal I of R [1]. Lipman introduced the notion of stability in the specific
setting of one-dimensional commutative semi-local Noetherian rings in order to give a
characterization of Arf rings; in this context, L-stability coincides with Boole regularity
[37]. By analogy, we call an integral domain R Cli¤ord (resp., Boole) t-regular if StðRÞ is a
Cli¤ord (resp., Boolean) semigroup. Clearly, a Boole t-regular domain is Cli¤ord t-regular.

Section 2 establishes t-analogues of basic results on t-regularity. We notice that a
Krull domain (resp., UFD) is Cli¤ord (resp., Boole) t-regular. These two classes of do-
mains serve as a starting ground for t-regularity (as Dedekind domains and PIDs do for
regularity). We show that t-regularity stands as a default measure for some classes of
Krull-like domains. For instance, it measures how far a t-almost Dedekind domain [33] is
from being a Krull domain or a UFD. In particular, we’ll see that ‘‘UFD ¼ Krullþ Boole
t-regular’’. While an integrally closed Cli¤ord regular domain is Prüfer [45], an integrally
closed Cli¤ord t-regular domain need not be a PVMD; an example is provided in this re-
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gard (cf. Example 2.8). As a prelude to this, our main theorem of this section (Theorem 2.8)
investigates the transfer of t-regularity to pseudo-valuation domains; namely, a PVD R is
always Cli¤ord t-regular; moreover, R is Boole t-regular if and only if it is issued from a
Boole regular valuation ring.

Section 3 seeks a satisfactory t-analogue for Bazzoni’s theorem on Prüfer domains of
finite character [10], Theorem 4.5 (quoted above). From [4], the pseudo-integral closure of
a domain R is defined as ~RR ¼

S
ðIt : ItÞ, where I ranges over the set of finitely generated

ideals of R; and R is said to be pseudo-integrally closed if R ¼ ~RR. Clearly R 0 L ~RRLR,
where R 0 and R are respectively the integral closure and the complete integral closure of
R. In view of Example 2.8 (mentioned above), one has to elevate the ‘‘integrally closed’’
assumption in regularity results to ‘‘pseudo-integrally closed’’. In this vein, we conjecture
that ‘‘a pseudo-integrally closed domain is Cli¤ord t-regular if and only if it is a Krull-type

domain’’. Our main theorem of this section (Theorem 3.2) asserts that ‘‘a PVMD is Cli¤ord

t-regular if and only if it is a Krull-type domain’’. It recovers Bazzoni’s theorem and also
reveals the fact that in the class of PVMDs, Cli¤ord t-regularity coincides with the finite
t-character condition. Moreover, we are able to validate the conjecture in a large class of
integral domains (Corollary 3.12).

Section 5 is devoted to generating examples. We treat the possible transfer of the
PVMD notion endowed with the finite t-character condition to pullbacks and polynomial
rings. Original families of integral domains with Cli¤ord t-class semigroup stem from our
results.

All rings considered in this paper are integral domains. For the convenience of the
reader, Figure 1 displays a diagram of implications summarizing the relations between the
main classes of integrally closed domains that provide a suitable environment for our study.
It also places (t-)regularity in a ring-theoretic perspective.

Acknowledgments. This work was funded by King Fahd University of Petroleum &
Minerals under Research ProjectKMS/t-Class/257. The authors would like to thank the
referees of the paper for a very careful reading and useful comments and suggestions.

2. Basic results on t-regularity

Let R be a domain with quotient field K . We first review some terminology re-
lated to the v- and t-operations. For a nonzero fractional ideal I of R, let I�1 denote
ðR : IÞ ¼ fx A K j xI LRg. The v- and t-closures of I are defined, respectively, by
Iv ¼ ðI�1Þ�1 and It ¼

S
Jv where J ranges over the set of finitely generated subideals of I .

The (nonzero) ideal I is said to be divisorial or a v-ideal if Iv ¼ I , and a t-ideal if It ¼ I .
Under the ideal t-multiplication ðI ; JÞ 7! ðIJÞt, the set FtðRÞ of fractional t-ideals of R is
a semigroup with unit R. An invertible element for this operation is called a t-invertible
t-ideal of R. So that the set InvtðRÞ of t-invertible fractional t-ideals of R is a group with
unit R. For more basic details about star operations, we refer the reader to [22], Sections
32 and 34. Let FðRÞ, InvðRÞ, and PðRÞ denote the sets of nonzero, invertible, and non-
zero principal fractional ideals of R, respectively. Under this notation, the (t-)class groups
and semigroups are defined as follows: PicðRÞ ¼ InvðRÞ=PðRÞ, ClðRÞ ¼ InvtðRÞ=PðRÞ,
SðRÞ ¼ FðRÞ=PðRÞ, and StðRÞ ¼ FtðRÞ=PðRÞ.
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Recall two basic properties of the t-operation which will be used (in di¤erent forms)
throughout the paper. For any two nonzero ideals I and J of a domain R, we have
ðIJÞt ¼ ðItJÞt ¼ ðIJtÞt ¼ ðItJtÞt. Also one can easily check that ðIt : JÞ ¼ ðIt : JtÞ. In partic-
ular, we have I�1 ¼ ðR : IÞ ¼ ðR : ItÞ and, if I is a t-ideal, ðI : I 2Þ ¼

�
I : ðI 2Þt

�
. Actually,

these properties hold for any star operation.

Throughout, we shall use qfðRÞ to denote the quotient field of a domain R and I to
denote the isomorphy class of an ideal I of R in StðRÞ.

Our first result displays necessary and/or su‰cient ideal-theoretic conditions for the
isomorphy class of an ideal to be regular in the t-class semigroup.

Lemma 2.1. Let I be a t-ideal of a domain R. Then:

(1) I is regular in StðRÞ if and only if I ¼
�
I 2ðI : I 2Þ

�
t
.

(2) If I is t-invertible, then I is regular in StðRÞ.

Proof. (1) Assume I is regular in StðRÞ. Then there exist a fractional t-ideal J of
R and 03 c A qfðRÞ such that I ¼ cðJI 2Þt ¼ ðcJI 2Þt. We may denote cJ by J, that is,

Figure 1. A ring-theoretic perspective for (t-)regularity
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I ¼ ðJI 2Þt. Since JI 2 L ðJI 2Þt ¼ I , JL ðI : I 2Þ. So I ¼ ðJI 2ÞtL
�
I 2ðI : I 2Þ

�
t
L I and

hence I ¼
�
I 2ðI : I 2Þ

�
t
. The converse is trivial.

(2) Assume ðII�1Þt ¼ R. Then RL ðI : IÞL ðII�1 : II�1ÞL
�
ðII�1Þt : ðII�1Þt

�
¼ R.

So ðI : I 2Þ ¼
�
ðI : IÞ : I

�
¼ I�1. Hence

�
I 2ðI : I 2Þ

�
t
¼ ðI 2I�1Þt ¼

�
IðII�1Þ

�
t
¼

�
IðII�1Þt

�
t
¼ I :

By (1), I is regular in StðRÞ. r

Next, we show that Krull domains (resp., UFDs) are Cli¤ord (resp., Boole) t-regular.
Further, we identify t-regularity as a default condition for some classes of Krull-like do-
mains towards the Krull (or UFD) property. Recall at this point that a domain R is Krull
if and only if every t-ideal of R is t-invertible.

Proposition 2.2. (1) Any Krull domain is Cli¤ord t-regular.

(2) A domain R is a UFD if and only if R is Krull and Boole t-regular.

Proof. (1) Follows from Lemma 2.1(2).

(2) Clearly, a UFD is Boole t-regular. We only need to prove the ‘‘if ’’ assertion. As-
sume R is Krull and Boole t-regular and let I be a t-ideal of R. There exists 03 c A qfðRÞ
such that ðI 2Þt ¼ cI . Then ðI : I 2Þ ¼

�
I : ðI 2Þt

�
¼ ðI : cIÞ ¼ c�1ðI : IÞ. R is completely in-

tegrally closed, then ðI : IÞ ¼ R, so that ðI : I 2Þ ¼ ðR : IÞ ¼ I�1. Therefore I�1 ¼ c�1R, and
hence II�1 ¼ c�1I . Since I is t-invertible, R ¼ ðII�1Þt ¼ ðc�1IÞt ¼ c�1I , hence I ¼ cR. It
follows that ClðRÞ ¼ StðRÞ ¼ 0, i.e., R is a UFD. r

Recall from [33] that a domain R is said to be t-almost Dedekind if RM is a rank-one
DVR for each t-maximal ideal M of R. This notion falls strictly between the classes of
Krull domains and PVMDs. Our next result shows that t-regularity measures how far a
t-almost Dedekind domain or completely integrally closed domain is from being Krull or
a UFD. A domain R is said to be strongly t-discrete if it has no t-idempotent t-prime ideals,
i.e., for every t-prime ideal P of R, ðP2ÞtkP (cf. [15]).

Proposition 2.3. Let R be a domain. The following statements are equivalent:

(i) R is Krull (resp., a UFD).

(ii) R is t-almost Dedekind and Cli¤ord (resp., Boole) t-regular.

(iii) R is strongly t-discrete, completely integrally closed, and Cli¤ord (resp., Boole)
t-regular.

Proof. (i) ) (ii) Straightforward.

(ii) ) (i) Suppose there exists a t-ideal I of R which is not t-invertible. Then
J ¼ ðII�1Þt is a proper trace t-ideal of R with J�1 ¼ ðJ : JÞ. Further, R is completely inte-
grally closed since R ¼

T
RM , where M ranges over the t-maximal ideals of R [33], Propo-

sition 2.9. Therefore J�1 ¼ ðJ : JÞ ¼ R, so that
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J 2ðJ : J 2Þ ¼ J 2
�
ðJ : JÞ : J

�
¼ J 2J�1 ¼ J 2:

Now, J is regular in StðRÞ, then J ¼
�
J 2ðJ : J 2Þ

�
t
¼ ðJ 2Þt. By induction, we get J ¼ ðJ nÞt,

for each nf 1. By [33], Proposition 2.54, J ¼
T
nf1

ðJ nÞt ¼ ð0Þ, the desired contradiction.

(i) ) (iii) Let P be a t-prime ideal of R. Since R is Krull, ðPP�1Þt ¼ R.
Suppose P is t-idempotent, i.e., ðP2Þt ¼ P. Then

�
ðP2ÞtP�1

�
t
¼ ðPP�1Þt ¼ R. Hence

P ¼
�
ðPP�1ÞtP

�
t
¼ ðP2P�1Þt ¼

�
ðP2ÞtP�1

�
t
¼ R, absurd.

(iii) ) (i) Suppose there is a t-ideal I of R such that J ¼ ðII�1ÞtkR. Here too
we have J�1 ¼ ðJ : JÞ ¼ R. Let M be a t-maximal ideal of R containing J. Necessarily,
ðM : MÞ ¼ M�1 ¼ R. Therefore ðM : M 2Þ ¼

�
ðM : MÞ : M

�
¼ ðR : MÞ ¼ M�1 ¼ R. So

M 2ðM : M 2Þ ¼ M 2. Since R is Cli¤ord t-regular, then M ¼
�
M 2ðM : M 2Þ

�
t
¼ ðM 2Þt

and hence M is t-idempotent, absurd.

The Boolean statements follow readily from the Cli¤ord statements combined with
Proposition 2.2, completing the proof. r

Notice that the ring of all entire functions in the complex plane is (Bézout) strongly
(t-)discrete [18], Corollary 8.1.6, and completely integrally closed, but it is not (t-)almost
Dedekind (since it has an infinite Krull dimension). Also the ‘‘strongly t-discrete’’ assump-
tion in (iii) is not superfluous, since a non-discrete rank-one valuation domain is completely
integrally closed and Cli¤ord (t-)regular [11], but it is not Krull.

The next result establishes the transfer of t-regularity to polynomial rings. Recall at
this point that Cli¤ord or Boole regularity of a polynomial ring R½X � forces R to be a field
[32], Corollary 2.5.

Proposition 2.4. Let R be an integrally closed domain and X an indeterminate over R.

Then R is Cli¤ord (resp., Boole) t-regular if and only if so is R½X �.

Proof. Assume that R is Cli¤ord t-regular and let J be a t-ideal of R½X � with
I ¼ JXR. If I 3 0, then I is a t-ideal of R and hence J ¼ I ½X �. If I ¼ ð0Þ, then
J ¼ fA½X � for some f A R½X � and A a fractional t-ideal of R [42]. So that J 2ðJ : J 2Þ equals�
I 2ðI : I 2Þ

�
½X � or f

�
A2ðA : A2Þ

�
½X �. In both cases,

�
J 2ðJ : J 2Þ

�
t
¼ J by [33], Proposition

2.3(1) (which ensures that the t-operation is stable under ideal extension). Therefore J is
regular in StðR½X �Þ. Conversely, if I is a t-ideal of R, consider the t-ideal I ½X � of R½X �
and apply the same techniques backward. Similar arguments as above lead to the conclu-
sion for the Boolean statement. r

The next result establishes the transfer of t-regularity to two types of overrings.

Proposition 2.5. Let R be a Cli¤ord (resp., Boole) t-regular domain. Then:

(1) RS is Cli¤ord (resp., Boole) t-regular, for any multiplicative subset S of R.

(2) ðIv : IvÞ is Cli¤ord (resp., Boole) t-regular, for any nonzero ideal I of R.

For the proof, we need the following lemma.
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Lemma 2.6. Let R be a domain, I a fractional ideal of R, and S a multiplicative subset

of R. Then It L ðIRSÞt1 , where t1 denotes the t-operation with respect to RS.

Proof. Let x A It. Then there exists a finitely generated ideal A of R such
that AL I and xðR : AÞLR. Hence xðRS : ARSÞ ¼ xðR : AÞRS LRS. Therefore
x A ðARSÞt1 L ðIRSÞt1 . r

Proof of Proposition 2.5. (1) If J is a t-ideal of RS, then I ¼ JXR is a t-ideal of
R by Lemma 2.6. Since R is Cli¤ord (resp., Boole) t-regular, then I ¼

�
I 2ðI : I 2Þ

�
t
(resp.,

ðI 2Þt ¼ cI for some nonzero c A qfðRÞ). Hence

J ¼ IRS ¼
�
I 2ðI : I 2Þ

�
t
RS L

��
I 2ðI : I 2Þ

�
RS

�
t1
L

�
J 2ðJ : J 2Þ

�
t1
L J

(resp., cJ ¼ cIRS ¼ ðI 2ÞtRS L ðI 2RSÞt1 ¼ ðJ 2Þt1 L cJ, since I 2 L ðI 2Þt ¼ cI and then
J 2 L cJ). Therefore J ¼

�
J 2ðJ : J 2Þ

�
t1
(resp., ðJ 2Þt1 ¼ cJ). It follows that RS is Cli¤ord

(resp., Boole) t-regular.

(2) Let I be a nonzero ideal of R and set T ¼ ðIv : IvÞ. Since

T ¼ ðII�1Þ�1 ¼ ðII�1 : II�1Þ ¼
�
ðII�1Þv : ðII�1Þv

�
;

without loss of generality, we may assume that I is a trace v-ideal of R, that is
T ¼ I�1 ¼ ðI : IÞ. Also denote by v1 and t1 the v- and t-operations with respect to T . Let
J be a nonzero ideal of T . Then J is a fractional ideal of R and we claim that JtL Jt1 .
Indeed, let x A Jt. Then there exists a finitely generated (fractional) ideal A of R such
that AL J and xðR : AÞLR. Let z A ðT : ATÞ. Then zAI L I LR, hence zI L ðR : AÞ,
whence xzI L xðR : AÞLR and xz A I�1 ¼ T . Therefore xðT : ATÞLT , and hence
x A ðATÞv1 ¼ ðATÞt1 L Jt1 . Consequently, if J is a t-ideal of T , then it’s a t-ideal of R. Since
R is Cli¤ord (resp., Boole) t-regular, then J ¼

�
J 2ðJ : J 2Þ

�
t
L

�
J 2ðJ : J 2Þ

�
t1
L J (resp.,

cJ ¼ ðJ 2ÞtL ðJ 2Þt1 L cJ, since J 2 L ðJ 2Þt ¼ cJ, for some nonzero c A qfðRÞ ¼ qfðTÞ).
Hence J ¼

�
J 2ðJ : J 2Þ

�
t1

(resp., ðJ 2Þt1 ¼ cJ) and therefore T is Cli¤ord (resp., Boole)
t-regular. r

We close this section with an investigation of the integrally closed setting. In this vein,
recall Zanardo-Zannier’s crucial result that an integrally closed Cli¤ord regular domain is
necessarily Prüfer [45]. In [32], we stated an analogue for Boole regularity, that is, an inte-
grally closed Boole regular domain is Bézout. Next, we show that an integrally closed Clif-
ford (or Boole) t-regular domain need not be a PVMD, the natural context for t-regularity.
Our family of such examples stems from the following theorem on the inheritance of
t-regularity by PVDs (i.e., pseudo-valuation domains). We refer the reader to [25] for the
definition and the main properties of PVDs.

Theorem 2.7. Let R be a PVD. Then:

(1) R is Cli¤ord t-regular.

(2) R is Boole t-regular if and only if its associated valuation overring is Boole

regular.
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Proof. (1) We may assume that R is not a valuation domain. [3], Proposition 2.6
characterizes PVDs in terms of pullbacks. The aforementioned proposition states that R
is a PVD if and only if R ¼ f�1ðkÞ for some subfield k of K ¼ V=M, where V is the asso-
ciated valuation overring of R, M its maximal ideal and f the canonical homomorphism
from V onto K . Now, let I be a t-ideal of R. If I is an ideal of V , we are done (since V

is Cli¤ord regular). If I is not an ideal of V , then I ¼ cf�1ðWÞ, where 03 c A M and W

is a k-vector space such that kLW HK (cf. [6], Theorem 2.1(n)). Assume kkW .
Then ðk : W Þ ¼ ð0Þ. Hence I�1 ¼ ðR : IÞ ¼

�
f�1ðkÞ : cf�1ðW Þ

�
¼ c�1f�1ðk : WÞ ¼ c�1M

by [27], Proposition 6. Since R is a PVD which is not a valuation domain, by [29],
Proposition 4.3, R is a TV -domain (i.e. the t- and v-operations coincide in R). Hence
I ¼ It ¼ Iv ¼ ðR : c�1MÞ ¼ cM�1 ¼ cV is an ideal of V , a contradiction. Therefore
k ¼ W and then I ¼ cR is a principal ideal of R. So I is regular in StðRÞ, as desired.

(2) Assume that R is Boole t-regular. By Proposition 2.5, V ¼ ðM : MÞ ¼ ðMv : MvÞ
is Boole regular (the t-operation on V is trivial). Conversely, assume that V is Boole regu-
lar. Similar arguments as above lead to the conclusion. r

Contrast this result with [32], Theorem 5.1, which asserts that a PVD R associated to
a valuation (resp., strongly discrete valuation) domain ðV ;MÞ is Cli¤ord (resp., Boole) reg-
ular if and only if ½V=M : R=M � ¼ 2.

Example 2.8. There exists an integrally closed Boole (hence Cli¤ord) t-regular
domain which is not a PVMD. Indeed, let k be a field and let X and Y be two
indeterminates over k. Let R ¼ k þM be the PVD associated to the rank-one DVR
V ¼ kðXÞ½½Y �� ¼ kðX Þ þM, where M ¼ YV . Clearly, R is integrally closed and, by The-
orem 2.7, R is Boole t-regular. However, R is not a PVMD by [17], Theorem 4.1.

3. Cli¤ord t-regularity

Recall from [24] that a Krull-type domain is a PVMD with finite t-character (i.e.,
each nonzero nonunit is contained in only finitely many t-maximal ideals). Also a domain
R is said to be pseudo-integrally closed if R ¼ ~RR ¼

S
ðIt : ItÞ, where I ranges over the set

of finitely generated ideals of R [4]. This section seeks a t-analogue for Bazzoni’s theorem
that ‘‘an integrally closed domain R is Cli¤ord regular if and only if R is a Prüfer domain
of finite character’’ [10], Theorem 4.5. In view of Example 2.8, one has to elevate the
‘‘integrally closed’’ assumption to ‘‘pseudo-integrally closed.’’ Accordingly, we claim the
following:

Conjecture 3.1. A pseudo-integrally closed domain R is Cli¤ord t-regular if and only

if R is a Krull-type domain.

This is still elusively open. Yet, our main result (Theorem 3.2) of this section recovers
Bazzoni’s theorem and validates this conjecture in large classes of (pseudo-integrally closed)
domains.

Theorem 3.2. A PVMD is Cli¤ord t-regular if and only if it is a Krull-type domain

(i.e., in a PVMD, Cli¤ord t-regularity coincides with the finite t-character condition).
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The proof of the theorem involves several preliminary results, some of which are of
independent interest. Experts of t-operation may skip the proofs of Lemmas 3.8, 3.9 and
3.10 which are similar in form to their respective analogues for the trivial operation.

The following notation, connected with the t-ideal structure of a PVMD, will be
of use in the sequel. Assume R is a PVMD and let I be a t-ideal of R and x a
nonzero nonunit element of R. We shall use MaxtðRÞ to denote the set of maximal
t-ideals of R. Set MaxtðR; IÞ ¼ fM A MaxtðRÞ j I LMg, MaxtðR; xÞ ¼ MaxtðR; xRÞ, and
TtðRÞ ¼ fM A MaxtðRÞ jRM Mj

T
M3N

RN ;N A MaxtðRÞg. Finally, given M and N two

t-maximal ideals of R, we denote by M5N the largest prime ideal of R contained in
MXN. Note that prime ideals of R contained in a t-maximal ideal are necessarily t-ideals
and form a chain.

Lemma 3.3. Let R be a PVMD and I a fractional ideal of R. Then for every t-prime

ideal P of R, ItRP ¼ IRP.

Proof. Here RP is a valuation domain (where the t- and trivial operations coincide),
so Lemma 2.6 leads to the conclusion. r

Lemma 3.4. Let R be a PVMD which is Cli¤ord t-regular and I a nonzero fractional

ideal of R. Then I is t-invertible if and only if I is t-locally principal.

Proof. Suppose I is t-locally principal and set J ¼ ðII�1Þt. Let M A MaxtðRÞ. Then
IRM ¼ aRM for some nonzero a A I . By Lemma 3.3,

ðIt : ItÞL ðItRM : ItRMÞ ¼ ðIRM : IRMÞ ¼ ðaRM : aRMÞ ¼ RM :

Therefore RL ðIt : ItÞL
T

M AMaxtðRÞ
RM ¼ R. So ðIt : I 2t Þ ¼

�
ðIt : ItÞ : It

�
¼ ðR : ItÞ ¼ I�1.

Since R is Cli¤ord t-regular, then It ¼
�
I 2t ðIt : I 2t Þ

�
t
¼ ðI 2t I�1Þt ¼ ðIJÞt. By Lemma 3.3,

aRM ¼ IRM ¼ ItRM ¼ ðIJÞtRM ¼ IJRM ¼ aJRM . It follows that RM ¼ JRM for every
M A MaxtðRÞ, which forces J to equal R, as desired.

Conversely, assume that I is t-invertible. Then there is a finitely generated
ideal J of R such that JL I and It ¼ Jt. Hence for each M A MaxtðRÞ,
IRM ¼ ItRM ¼ JtRM ¼ JRM ¼ aRM for some a A J, since RM is a valuation domain. r

Lemma 3.5. Let R be a PVMD which is Cli¤ord t-regular and let PkQ be two

t-prime ideals of R. Then there exists a finitely generated ideal I of R such that Pk ItLQ.

Proof. Let x A QnP and set J ¼ xRþ P. We claim that J is t-invertible. Indeed, let
M be a t-maximal ideal of R. If JLj M, then JRM ¼ RM . If JLM, then PRM k xRM

since RM is a valuation domain, whence JRM ¼ xRM . So J is t-locally principal and hence
t-invertible by Lemma 3.4. Therefore Jt ¼ It for some finitely generated subideal I of J. It
follows that Pk ItLQ. r

Lemma 3.6. Let R be a PVMD which is Cli¤ord t-regular and P a t-prime ideal of R.

Then EðPÞ ¼ ðP : PÞ is a PVMD which is Cli¤ord t-regular and P is a t-maximal ideal of

EðPÞ.
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Proof. If P A MaxtðRÞ, then EðPÞ ¼ R. We may then assume that P B MaxtðRÞ.
By [26], Proposition 1.2 and Lemma 2.4, EðPÞ ¼ P�1 and P is a t-prime ideal of EðPÞ.
Further EðPÞ ¼ P�1 is t-linked over R, so EðPÞ is a PVMD [33]. Let t1 and v1 denote
the t- and v-operations with respect to EðPÞ and let J be a nonzero fractional ideal of
EðPÞ. Clearly J is a fractional ideal of R and we claim that Jt L Jt1 . Indeed, let x A Jt.
Then there is a finitely generated subideal I of J such that x A Iv. So xI�1 LR. Let
z A

�
EðPÞ : IEðPÞ

�
¼ ðP�1 : IP�1Þ. Then zIP�1 LP�1. So zIPLPLR. Then zPL I�1.

So xzPL xI�1LR. Hence xz A P�1 ¼ EðPÞ. So x
�
EðPÞ : IEðPÞ

�
LEðPÞ and therefore

x A
�
IEðPÞ

�
v1
L Jt1 . Now, let J be a t-ideal of EðPÞ. By the above claim J is a t-ideal of

R. Since R is Cli¤ord t-regular, then J ¼
�
J 2ðJ : J 2Þ

�
t
L

�
J 2ðJ : J 2Þ

�
t1
L J and therefore

J ¼
�
J 2ðJ : J 2Þ

�
t1
. It follows that EðPÞ is Cli¤ord t-regular. To complete the proof, we

need to show that P is a t-maximal ideal of EðPÞ. Deny. Then there is a t-maximal
ideal Q of EðPÞ such that PkQ. By Lemma 3.5, there is a finitely generated ideal J
of EðPÞ such that Pk Jt1 LQ. On the other hand, since P is a non-t-maximal t-prime
ideal of EðPÞ, by [26], Proposition 1.2,

�
EðPÞ : P

�
¼ ðP : PÞ ¼ EðPÞ. It follows that

EðPÞ ¼ Pv1 L ðJt1Þv1 ¼ Jv1 ¼ Jt1 LQ, the desired contradiction. r

Lemma 3.7. Let R be a PVMD which is Cli¤ord t-regular and Q a t-prime ideal of R.

Suppose there is a nonzero prime ideal P of R such that PkQ and htðQ=PÞ ¼ 1. Then there

exists a finitely generated subideal I of Q such that MaxtðR; IÞ ¼ MaxtðR;QÞ.

Proof. By [33], Corollary 2.47, P is a t-prime ideal of R. By [26], Proposition
1.2 and Lemma 2.4, EðPÞ ¼ P�1 and P is a t-prime ideal of EðPÞ. Therefore
EðQÞ ¼ ðQ : QÞLQ�1LP�1 ¼ EðPÞ, and hence P is a prime ideal of EðQÞ. By Lemma
3.6, EðQÞ is a PVMD which is Cli¤ord t-regular and Q is a t-maximal ideal of EðQÞ.
Thus P is a t-prime ideal of EðQÞ. By Lemma 3.5, there is a finitely generated subideal
J ¼

P
1eien

aiEðQÞ of Q such that Pk Jt1 LQ. We claim that Maxt
�
EðQÞ; J

�
¼ fQg. In-

deed, if there is a t-maximal ideal N of EðQÞ such that JLN, then Pk Jt1 LN. So
Pk Jt1 LQ5NkQ, a contradiction since htðQ=PÞ ¼ 1. Now set I ¼

P
1eien

aiR. Clearly

I LQ and IEðQÞ ¼ J. We claim that MaxtðR; IÞ ¼ MaxtðR;QÞ. Let N A MaxtðR; IÞ. If
QLj N, then RLEðQÞLRN . Hence EðQÞRnN ¼ RN . So RN is t-linked over EðQÞ. Since
RN is a valuation domain, then NRN is a t-prime ideal of RN . Hence M ¼ NRN XEðQÞ
is a t-prime ideal of EðQÞ. Since I LN, then I LM. Hence J ¼ IEðQÞLM. Necessarily
MLQ since Maxt

�
EðQÞ; J

�
¼ fQg. So

N ¼ NRN XR ¼ NRN XEðQÞXR ¼ MXRLQXR ¼ Q;

which is absurd. Hence QLN and therefore MaxtðR; IÞLMaxtðR;QÞ. The reverse inclu-
sion is trivial. r

Lemma 3.8. Let R be a PVMD which is Cli¤ord t-regular and M a t-maximal

ideal of R. If M A TtðRÞ, then there exists a finitely generated subideal I of M with

MaxtðR; IÞ ¼ fMg.

Proof. Assume that M A TtðRÞ. Let x A

� T
M3N AMaxtðRÞ

RN

�
nRM . Since RM is a

valuation domain, then x�1 A MRM . Set I ¼ x�1RXR. We claim that I is t-invertible.
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By Lemma 3.4, it su‰ces to check that I is t-locally principal. Let Q be a t-maximal ideal
of R. If Q3M, then I Lj Q. Indeed, since Q3M, then x A RQ. Hence
IRQ ¼ ðx�1RXRÞRQ ¼ x�1RQXRQ ¼ RQ. So I Lj Q. Then M is the unique t-maximal
ideal of R that contains I and IRM ¼ x�1RM , as desired. Hence I is t-invertible. So there
is a finitely generated subideal J of I such that It ¼ Jt and clearly MaxtðR; JÞ ¼ fMg. r

Lemma 3.9. Let R be a PVMD which is Cli¤ord t-regular. Then every nonzero non-

unit element of R belongs to a finite number of t-maximal ideals in TtðRÞ.

Proof. Let x be a nonzero nonunit element of R and let fMaga AW be the set of all
t-maximal ideals in TtðRÞ that contain x. For each a A W, let Aa be a finitely generated sub-
ideal of Ma such that MaxtðR;AaÞ ¼ fMag (Lemma 3.8). Without loss of generality,
we may assume that x A Aa (otherwise, we consider Ba ¼ xRþ Aa). Let B ¼

P
a AW

ðAaÞ�1.

Clearly, xðAaÞ�1 LR, for each a A W. Then xBLR so that B is a fractional ideal of R. We
claim that B is t-locally principal. Indeed, let N be a t-maximal ideal of R. We envisage two
cases.

Case 1. N3Ma for each a A W. Since Aa is finitely generated,
ðAaÞ�1

RN ¼ ðAaRNÞ�1 ¼ RN . So BRN ¼ RN .

Case 2. N ¼ Ma for some a A W. Then ðAbÞ�1
RN ¼ ðAbRNÞ�1 ¼ RN , for each b3 a

in W. Hence BRN ¼ ðAaÞ�1
RN ¼ ðAaRNÞ�1 ¼ a�1RN where AaRN ¼ aRN (since RN is

a valuation domain). It follows that B is t-invertible (Lemma 3.4) and hence there is a
finitely generated subideal J of B such that Jv ¼ Jt ¼ Bt ¼ Bv. So B�1 ¼ J�1. Since J is
finitely generated, then there are a1; . . . ; ar such that JL

P
1eier

ðAaiÞ
�1 LB. Therefore

B�1 ¼ J�1 ¼
� P

1eier

ðAaiÞ
�1

��1

¼
T

1eier

ðAaiÞv ¼
T

1eier

ðAaiÞt. Consequently, for each a A W,

we have
T

1eier

ðAaiÞt ¼ B�1 L ðAaÞv ¼ ðAaÞt LMa. So there is ai such that ðAaiÞt LMa,

hence Ma ¼ Mai , whence a ¼ ai. Therefore W ¼ fa1; . . . ; arg, as desired. r

Lemma 3.10. Let R be a PVMD which is Cli¤ord t-regular and M a t-maximal ideal

of R. Then M A TtðRÞ if and only if Ml
S
N

M5N where N ranges over MaxtðRÞnfMg.

Proof. Let M A TtðRÞ and let A ¼
P

1eier

aiR be a finitely generated subideal of M

such that MaxtðR;AÞ ¼ fMg (Lemma 3.8). Suppose that M ¼
S
N

M5N, where N ranges

over MaxtðRÞnfMg. Then for each ai A A, there is a t-maximal ideal Ni 3M such that
ai A M5Ni. Since fM5Ni j i ¼ 1; . . . ; rg is a chain, let M5Nj be the largest one for
some j A f1; . . . ; rg. So ALNj and then Nj A MaxtðR;AÞ ¼ fMg, absurd.

Conversely, let x A Mn
S
N

M5N. Then, for each t-maximal ideal N3M, x�1 A RN

(since RN is a valuation domain), hence x�1 A
T

M3N AMaxtðRÞ
RN . Since x�1 B RM , then

M A TtðRÞ, as desired. r

The following basic facts provide some background to the theorem and will be of use
in its proof.
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� Fact 1. For each ideal I of R, we have It ¼
T

M AMaxtðRÞ
IRM [33], Theorem 2.9.

� Fact 2. Let R be a Prüfer domain, I an ideal of R, and A and B R-submodules of
qfðRÞ. Then IðAXBÞ ¼ IAX IB [7], Lemma 2.6.

� Fact 3. For a t-ideal I of a domain R, let MðR; IÞ ¼ fM A MaxtðRÞ j I Lj Mg
and CtðIÞ ¼

T
M

RM where M ranges over MðR; IÞ. Then
�
CtðIÞ : I

�
¼ CtðIÞ. Indeed, it is

clear that CtðIÞL
�
CtðIÞ : I

�
. Conversely, let x A

�
CtðIÞ : I

�
. For each M A MðR; IÞ, let

a A InM. Since xI LCtðIÞLRM , then xa A RM . So x ¼ xa

a
A RM . Hence x A CtðIÞ and

therefore
�
CtðIÞ : I

�
¼ CtðIÞ.

� Fact 4. For each t-ideal I of a domain R with finite t-character, there exists a non-
zero finitely generated subideal J of I such that MaxtðR; IÞ ¼ MaxtðR; JÞ. The proof apes
that of [7], Lemma 2.13, by replacing ‘‘maximal ideals’’ with ‘‘t-maximal ideals.’’

Proof of Theorem 3.2. Assume R is a PVMD which is Cli¤ord t-regular and let
03 x A R. We must show that MaxtðR; xÞ is finite. Suppose by way of contradiction that
MaxtðR; xÞ is infinite. By Lemma 3.9, there is M A MaxtðR; xÞnTtðRÞ. By Lemma 3.10,
M ¼

S
N

M5N where N ranges over MaxtðRÞnfMg. Since RM is a valuation domain,

N may range over MaxtðR; xÞnfMg, so that fPaga AW ¼ fM5NgM3N AMaxtðR;xÞ is an infi-
nite totally ordered set. For each a A W, we have 0k ðxÞLPa ¼ M5Na kNa, for some
Na A MaxtðR; xÞ. By [35], Theorem 11, there exist distinct prime ideals P 0

a and Qa such
that 0kPa LP 0

a kQaLNa with htðQa=P
0
aÞ ¼ 1.

Claim 1. For every a3 b, Qa and Qb are incomparable.

We may assume Pa kPb. Suppose that Qa LQb. Then Qa and Pb are comparable. If
Qa LPb, then Pa kQa LM5Na ¼ Pa, absurd. If Pb LQa, then Pb LM5Na ¼ PakPb,
absurd. Now, if Qb LQa, then Pb LM5Na ¼ Pa, which is absurd too. This proves the
claim.

Since Pa kQa, then Qa Lj M. For each a, let aa A QanM and consider the ideal
Ja ¼ Pa þ aaR.

Claim 2. Ja is t-invertible.

By Lemma 3.4, it su‰ces to check that Ja is t-locally principal. Let N be a t-maximal
ideal of R. Assume—without loss of generality—that Ja LN. Since RN is a valuation do-
main and aa B Pa, then PaRN k aaRN . Hence JaRN ¼ aaRN , as desired. Therefore there is a
finitely generated subideal Fa of Ja such that ðFaÞv ¼ ðFaÞt ¼ ðJaÞt ¼ ðJaÞv.

Moreover, by Lemma 3.7, there is a finitely generated subideal Ia of Qa such that
MaxtðR; IaÞ ¼ MaxtðR;QaÞ. Consider the finitely generated ideal given by Aa ¼ Fa þ Ia.
Since IaLAa LQa, then MaxtðR;AaÞ ¼ MaxtðR;QaÞ. Finally, let B ¼

P
a AW

ðAaÞ�1.

Claim 3. B is a fractional ideal of R which is t-invertible.
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Indeed, for each a, we have ðxÞLPa ¼ ðPaÞt L ðJaÞt ¼ ðFaÞtL ðAaÞt. So
xðAaÞ�1 L ðAaÞtðAaÞ�1 ¼ ðAaÞt

�
ðAaÞt

��1
LR. Hence xBLR and therefore B is a frac-

tional ideal of R. Now let N be a t-maximal ideal of R.

Case 1. AaLj N for each a A W. Since Aa is finitely generated, then
ðAaÞ�1

RN ¼ ðAaRNÞ�1 ¼ RN . Hence BRN ¼ RN .

Case 2. AaLN for some a A W. Since MaxtðR;AaÞ ¼ MaxtðR;QaÞ, then for each
b3 a, Ab Lj N. Otherwise, N A MaxtðR;AbÞ ¼ MaxtðR;QbÞ. Then Qa and Qb are compa-
rable since both are included in N, absurd by the first claim. Thus N contains exactly one
Aa. So BRN ¼ ðAaÞ�1RN ¼ ðAaRNÞ�1 ¼ a�1RN where AaRN ¼ aRN since AaRN is a fi-
nitely generated ideal of the valuation domain RN . It follows that B is t-locally principal
and therefore t-invertible (Lemma 3.4).

Consequently, there is a finitely generated subideal L of B such that
Lv ¼ Lt ¼ Bt ¼ Bv. There exist a1; . . . ; ar such that LL

P
1eier

ðAaiÞ
�1 LB. Therefore

B�1 ¼ L�1 ¼
� P

1eier

ðAaiÞ
�1

��1

¼
T

1eier

ðAaiÞv ¼
T

1eier

ðAaiÞt. Now, let a A Wnfa1; . . . ; arg.

Then
T

1eier

ðAaiÞt ¼ B�1 L ðAaÞv ¼ ðAaÞtLQa LNa. So there is i A f1; . . . ; rg such that

ðAaiÞtLNa. Hence Na A MaxtðR;AaiÞ ¼ MaxtðR;QaiÞ and then Qai LNa. This forces Qa

and Qai to be comparable, the desired contradiction. Thus MaxtðR; xÞ is finite.

Next, we prove the converse of the theorem. Assume R is a Krull-type domain. Let
I be a t-ideal of R, MaxtðR; IÞ ¼ fM1; . . . ;Mng and J ¼ I 2ðI : I 2Þ. We wish to show that
I ¼ Jt. By Fact 1, it su‰ces to show that IRM ¼ JRM for each t-maximal ideal of R.
Let M A MaxtðRÞ. If I Lj M, then JLj M (since I 2 L J). So IRM ¼ JRM ¼ RM . Assume
I LM. Mutatis mutandis, we may assume that M ¼ M1. One can easily check via Fact 1

that ðI : IÞ ¼
� Tn

i¼1

ðIRMi
: IRMi

Þ
�
XCtðIÞ. By Fact 3,

ðI : I 2Þ ¼
�Tn

i¼1

ðIRMi
: I 2RMi

Þ
�
XCtðIÞ ¼ ðIRM1

: I 2RM1
ÞX

�Tn
i¼2

ðIRMi
: I 2RMi

Þ
�
XCtðIÞ:

Let A ¼ ðIRM1
: I 2RM1

Þ and B ¼
� Tn

i¼2

ðIRMi
: I 2RMi

Þ
�
. We have

JRM1
¼ I 2RM1

�
ARM1

XBRM1
XCtðIÞRM1

�
:

By applying Fact 2 in the valuation domain RM1
, we obtain

JRM1
¼ ðI 2RM1

ARM1
ÞX ðI 2RM1

BRM1
ÞX

�
I 2RM1

CtðIÞRM1

�
:

On one hand, I 2RM1
ARM1

¼ IRM1
since RM1

is Cli¤ord regular [11]. Further, we
claim that I 2RM1

BRM1
M IRM1

. Indeed,

I 2RM1
BRM1

¼
Tn
i¼2

I 2RM1
ðIRMi

: I 2RMi
ÞRM1

¼
Tn
i¼2

�
I 2ðIRMi

: I 2RMi
Þ
�
RM1

¼
Tn
i¼2

�
I 2RMi

ðIRMi
: I 2RMi

Þ
�
RM1

¼
Tn
i¼2

IRMi
RM1

M IRM1
;
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as claimed; the first equality is due to Fact 2 and the last equality holds because RMi
is

Cli¤ord regular.

On the other hand, CtðIÞRM1
is an overring of RM1

and hence CtðIÞRM1
¼ RP

for some t-prime ideal P of R contained in M1. We claim that I Lj P. Indeed, by
Fact 4, there exists a nonzero finitely generated ideal L with LL Jt L I and
MaxtðR;LÞ ¼ MaxtðR; JtÞ ¼ MaxtðR; IÞ. So CtðIÞ ¼ CtðJÞ ¼ CtðLÞ. Since R is integrally
closed, ðL : L2Þ ¼

�
ðL : LÞ : L

�
¼ ðR : LÞ ¼ L�1. Furthermore it is easily seen that

L�1 LCtðLÞ. So L2ðL : L2ÞLL2CtðLÞ ¼ L2CtðIÞ. Since RM1
is Cli¤ord regular, we get

LRM1
¼ L2RM1

ðLRM1
: L2RM1

Þ ¼
�
L2ðL : L2Þ

�
RM1

LL2CtðIÞRM1
¼ L2RP. It results that

LRP LL2RP and hence LRP ¼ L2RP. By [35], Theorem 76, LRP ¼ RP. Hence LLj P and
thus I Lj P. This proves our claim.

Now, using the above claims, we obtain

JRM1
¼ I 2RM1

ARM1
X I 2RM1

BRM1
X I 2RM1

CtðIÞRM1

¼ IRM1
X I 2RP ¼ IRM1

XRP ¼ IRM1
:

Consequently, I ¼ Jt, as desired. This completes the proof of the theorem. r

Since in a Prüfer domain the t-operation coincides with the trivial operation, we re-
cover Bazzoni’s theorem (mentioned above) as a consequence of Theorem 3.2. Recall at
this point Zanardo-Zannier’s result that ‘‘an integrally closed Cli¤ord regular domain is
Prüfer’’ [45]. Also it is worthwhile noticing that during the proof of Theorem 3.2 we made
use of Bazzoni-Salce result that ‘‘a valuation domain is Cli¤ord regular’’ [11].

Corollary 3.11 (Bazzoni [10], Theorem 4.5). An integrally closed domain R is Clif-

ford regular if and only if R is a Prüfer domain of finite character.

The next result solves Conjecture 3.1 for the context of strongly t-discrete domains.

Corollary 3.12. Assume R is a strongly t-discrete domain. Then R is a pseudo-

integrally closed Cli¤ord t-regular domain if and only if R is a Krull-type domain.

Proof. In view of Theorem 3.2, we only need to prove the ‘‘only if ’’ assertion. Pre-
cisely, it remains to show that R is a PVMD. Let I be a finitely generated ideal of R. If
It ¼ R, then I�1 ¼ R and therefore ðII�1Þt ¼ R, as desired. Assume that It is a proper t-
ideal of R. Suppose by way of contradiction that I is not t-invertible. Let M be a t-maximal
ideal of R containing J ¼ ðII�1Þt. Since R is pseudo-integrally closed, ðIt : ItÞ ¼ R. Hence�
It : ðItÞ2

�
¼

�
ðIt : ItÞ : It

�
¼ ðR : ItÞ ¼ I�1. Further if R is Cli¤ord t-regular, then

It ¼
�
ðItÞ2

�
It : ðItÞ2

��
t
¼ ðI 2t I�1Þt ¼ ðIJÞt:

Therefore RL J�1 ¼ ðJ : JÞL ðIJ : IJÞL
�
ðIJÞt : ðIJÞt

�
¼ ðIt : ItÞ ¼ R. Consequently,

J�1 ¼ ðJ : JÞ ¼ R. Hence RLM�1 L J�1 ¼ R, whence M�1 ¼ ðM : MÞ ¼ R. So
ðM : M 2Þ ¼

�
ðM : MÞ : M

�
¼ ðR : MÞ ¼ R. Since R is Cli¤ord t-regular, then

M ¼
�
M 2ðM : M 2Þ

�
t
¼ ðM 2Þt, and hence M is t-idempotent. This contrasts with the hy-

pothesis that R is strongly t-discrete. It follows that I is t-invertible and thus R is a
PVMD. r
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4. Examples

This section is motivated by an attempt to generating original families of integral do-
mains with Cli¤ord t-class semigroup. Next, we announce our first result of this section. It
provides necessary and su‰cient conditions for a pullback to inherit the Krull type notion.

Proposition 4.1. Let T be an integral domain, M a maximal ideal of T , K its residue

field, f : T ! K the canonical surjection, and D a proper subring of K. Let R ¼ f�1ðDÞ be
the pullback issued from the following diagram of canonical homomorphisms:

R ���! D???y
???y

T ���!f K ¼ T=M:

Then R is a Krull-type domain if and only if D is a semilocal Bézout domain with qfðDÞ ¼ K

and T is a Krull-type domain such that TM is a valuation domain.

Proof. By [17], Theorem 4.1, R is a PVMD if and only if so are T and D,
qfðDÞ ¼ K, and TM is a valuation domain. Now notice that T ¼ S�1R, where
S ¼ f�1ðDnf0gÞ. Moreover, by [33], Corollary 2.47, P is a t-prime ideal of R if and only
if PT is a t-prime ideal of T , for every prime ideal P of R saturated with respect to S. Also,
by [17], Proposition 1.8, q is a t-maximal ideal of D if and only if f�1ðqÞ is a t-maximal
ideal of T , for every prime ideal q of D. Finally, if A is a domain with only a finite number
of maximal t-ideals, then each maximal ideal of A is a t-ideal [44], Proposition 3.5. Using
the above four facts, we can easily see that R has finite t-character if and only if D is a semi-
local Bézout domain and T has finite t-character. r

The next result investigates the transfer of the finite t-character condition to polyno-
mial rings.

Proposition 4.2. Let R be an integrally closed domain and X an indeterminate over R.

Then R has finite t-character if and only if so does R½X �.

Proof. Assume that R has finite t-character and let f be a nonzero nonunit ele-
ment of R½X � and fQaga AW the set of all t-maximal ideals of R½X � containing f . Set
W1 ¼ fa A W jQa XR ¼ 0g and W2 ¼ fa A W j qa ¼ Qa XR3 0g. Assume a A W1 and let
K ¼ qfðRÞ and S ¼ Rnf0g. Then S�1Qa is a maximal ideal of K½X �. Further f is not
a unit in K ½X � since Qa XR ¼ 0. Now K ½X � is of finite character (since a PID), then
fS�1Qaga AW1

is finite (and so is W1). Assume a A W2. By [33], Lemma 2.32, qa is a t-prime
ideal of R with Qa ¼ qa½X �. We claim that qa is t-maximal in R. Deny. Then qa kMa for
some Ma A MaxtðRÞ. So Qa ¼ qa½X �kMa½X �, absurd since Ma½X � is a t-prime ideal of
R½X �. Now let a denote the leading coe‰cient of f . Clearly, 03 a A qa (since Qa ¼ qa½X �).
Therefore fqaga AW2

is finite (and so is W2) since R has finite t-character. Consequently, W is
finite, as desired. The converse lies on the fact that the extension of a t-maximal ideal of R
is t-maximal in R½X �. r

Notice at this point that (as in Example 2.8) one can build numerous examples of
non-PVMD Cli¤ord (or Boole) t-regular domains through Propositions 2.4 or 2.5 com-
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bined with Theorem 2.7. Next, we provide new families of Cli¤ord (or Boole) t-regular do-
mains originating from the class of PVMDs via a combination of Theorems 3.2 and 4.1 and
Propositions 5.1 and 5.2.

Example 4.3. For each integer nf 2, there exists a PVMD Rn subject to the follow-
ing conditions:

(1) dimðRnÞ ¼ n.

(2) Rn is Cli¤ord t-regular.

(3) Rn is not Cli¤ord regular.

(4) Rn is not Krull.

Let V0 be a rank-one valuation domain with K ¼ qfðV0Þ. Let V ¼ K þN be a
rank-one non strongly discrete valuation domain (cf. [14], Remark 6(b)). We
take Rn ¼ V ½X1; . . . ;Xn�1�. For nf 4, the classical DþM construction provides
more examples. Indeed, consider an increasing sequence of valuation domains
V ¼ V1 HV2 H; . . . ;HVn�2 such that, for each i A f2; . . . ; n� 2g, dimðViÞ ¼ i and
Vi=Mi ¼ V=N ¼ K, where Mi denotes the maximal ideal of Vi. Set T ¼ Vn�2½X � and
M ¼ ðMn�2;XÞ. Therefore Rn ¼ V0 þM is the desired example.
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[18] M. Fontana, J. A. Huckaba and I. J. Papick, Prüfer Domains, Monogr. Textb. Pure Appl. Math. 203, Marcel

Dekker, Inc., New York 1997.

[19] M. Fontana, J. A. Huckaba, I. J. Papick and M. Roitman, Prüfer domains and endomorphism rings of their
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