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INTRODUCTION

Throughout this paper, R will denote an integral domain with quotient
field K. For a pair of fractional ideals I and J of a domam R welet (J: 1)

denote the sot {t € K|t] C J}. Often, we shall use IV in place of (R: I).
Recall that the “v” of a fractional ideal I is the set I, =(R:(R:1I))
and the “¥” of I is the set I, = UJ ‘with the union ta,ken over all finitely
generated fractional ideals contalned in I. An ideal 7 is divisorial if 7 = I,
and Iis a t-ideal if I = 1I,.

Let K be an integral domain and let M be an R-module. Then the trace
of M is the ideal generated by the set {fm| f € Hom(M, R) and m € M}.

For a fractional ideal I of R, the trace is simply the product of I and 7 -l
We call an ideal of B a trace ideal of R if it is the trace of some R-module.
An elementa,ry result due to H. Bass is that if J is a trace ideal of R, then
JJ = J; e, J = (J : J) [b, Proposition 7.2]. It follows that J is a

trace ideal if and only if J g (J : J). (Such ideals are also referred to as
being “strong”; see, for example, [3].) In 1987, D.D. Anderson, J. Huckaba
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and . Papick proved that if I is & noninvertible ideal of a valuation domain
V, then I(V : I} is prime [1, Theorem 2.8]. Later in the same year, M.,
Fontana, Huckaba and Papick began the study of the “trace property” and
“TP domains”. A domain R is said to satisfy the trace property (or to be
a TP domam) if for each R-module M, the trace of M is equal to either R
or a prime ideal of R [8, page 169]. Among other things, they showed that
each valuation domain satisfies the trace property [8, Proposition 2.1}, and
that if X satisfies the trace property, then: it has at most one noninvertible
maximal ideal [8, Corollary 2.11]). For Noetherian domains they proved
that if B is a Noetherian domain, then it is a TP domain if and only if it
is one-dimensional, has at most ons noninvertible maximal ideal M, and

if such a maximal 1deal exists, then M equals the integral closure of R

(or, equivalently, M~ = (M : M} is a Dedekind domain) [8, Theorem 3.5].
In Section 2 of [10], S. Gabelli showed that by replacing “integral closure”
with “complete integral closure”, the same list of conditions characterizes
the class of Mori domains which satisfy the trace property. Recall that
a Mori domain is an integral domain which satisfies the ascending chain
condition on divisorial ideals.

In 1988, W. Heinzer and Papick introduced the “radical trace property”
declaring that an integral domain R satisfies the radical trace property (or
is an RTP domain) if for each noninvertible ideal I Ir lisa radical ideal.
For Noetherian domains, they proved that if R is a Noetherian domain,
then it satisfies the radical trace property if and only if R p 18 a2 TP domain
for each prime ideal P [12, Proposition 2.1]. Gabelli extended this result to
Mori domains [10, Theorem 2.14).

For Priifer domains there are results concerning the trace property in [6),
[8] and [16] and the radical trace property in [12] and [16]. For a Priifer
domain R, Theorem 23 of [16] gives the following equivalent conditions;

(1) R satisfies the radical trace property.

(2) For each primary ideal Q, eitherlQ is invertible or QQ”I is prime.
(8) For each primary ideal Q, if @ is a ring, then @ is prime.

(4) Each branched prime is the radical of a finitely generated ideal.

(A prime ideal P is said to be branched if there is a P-primary ideal Q such
that Q # P [11, page 189)].)
- In Theorem 10, we will show that the following statement can be added
to this list:
(5) _]}J‘or each trace ideal I, IR, = PR, for each prime P minimal over

Moreover, we will give a new proof for the equivalence of (1)-(3).
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According to [16], a domain R is said to satisfy the trace property for
primary ideals (or to be a T'PP domain), if for each primary ideal @}, either

Q) is invertible or QQ 'is prime. By Corollary 8 of [16] Ris a TPP domain

if and only if for each primary ideal Q, either QQ = /@, or Qs invertible
and /@ is maximal, Also from [16], R is a PRIP domain if for each primary
ideal @, Q—'1 a ring implies ) is prime. We say that a domain is an LTP
domain if for each trace ideal I, IR, = PR, for each prime P minimal
over I. Tt is known that each RTP domain is a TPP domain [16, Theorem
4] and that there are Noetherian domains which satisfy the radical trace
property (and even the trace property) but are not PRIP domains (see, for
example, [16, Example 30]). We will show that each TPP domain is an LTP
domain and that each PRIP domain is an LTP domain (Corollary 3).

It is easy to see that for one-dimensional domains, each LTP domain is
also an RTP domain. Also, it is known that for Mori domains, the radlcai
trace property and the trace property for primary ideals are equlva,lent
In Theorem 18, we show that if R is a Mori domain, then it is an LTP
domain if and only if it is an RTP domain. However, in general, we have
been unable to determine whether each TPP domain is an RTP domam, or
whether each LTP domain is an TPP domain {or RTP domain).

A field is trivially an RTP domain. While most of the results in this
paper are true for fields, the emphasis is on integral domains that are not
fields. To avoid having to add the phrase “but not a field” when it would
be required, we will simply assume that R is an integral domain which is
not a field. We shall also assume that all of the ideals are nonzero.

Notation is standard as in [Gilmer]. In particular, “C” denotes contain-

ment and “C” denotes proper containment.
We shall make use of a number of results concerning consequences of

I bemg a ring. We close the Introductxon thh a theorem where we hst
several of these results. :

THEOREM 0 Let R be an. mtegra.l domam and let I be an 1deal of R
such that 7~ is a rmg Then : :
@ I =0"=@, )= " 11"y = (I"") " ([14, Proposition
2.2]). _ 3 : .
(b) \/T—l is a ring ([13, Proposition 2.1]). Moreover, \/T_l = (\/T :/T)
({2, Proposition 3.3)). -
(¢) P is a ring for each prime P minimal over I ([13, Proposition 2.1]
and [16, Lemma 13]) Moreover, P~ = (P : P) ([14, Proposition
2.3]). - : -
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1 . LTP.DOMAINS . .. .

The first lemma we present is a variation on a result which appears in
Fossum’s book [9, Lemma 3.7]. (See also, Lemmas 0 and 1 of [16].)

LEMMA 1 Let R be an integral domain and let Q be a primary ideal of
R with radical P. If P does not contain QQ ™", then (R: QQ ") = (QQ ™"
QQ_ ) = (Q Q) and so (R : I) = (@ : Q) for each ideal I such that
Qcilc QQ ! and I1¢ P,

Proof. Tt is always the case that (Q: @) C (QQ :QQ ) =(R:QQ )
Assgrlne P does not contain Q¢ ~! and let I be an ideal such that QCcIC
QQ” and I ¢ P. Since I contains @ and is contained in Qo™ o™

QR Y=(R:QQ YC(R:IC(R:Q). Obvicusly, QI(R: I) C Q.
Since @ is P-primary and I is not contained in P, @Q(R : I) C €. Hence
(B:1)C (Q:Q) and it follows that (R: 1) = (@: Q) = @Q™':QQ™") =
(R:QQ7). ¢

Qur first use of Lemma 1 is to establish a characterization of LTP do-
mains in terms of primary ideals.

THEOREM 2  The following are equivalent for a domain R.

(1) ‘R is an LTP domain.

(2) For each non1nvert1ble prlma,ry ideal Q, Q(R : Q)R, = PR, where

" pa \/Q-

(3) Ifa prlma,ry ideal is also a trace ideal, then it is pmme
Proof. ((1) = (2)) Assume R is an LTP domam and let be a noninvertible
P-primary ideal of R. Since R is an LTP doma,m and QQ~ ' is a trace ideal,
it suffices to show that P conta,ms QQ . By way of contradiction assume

there is an element ¢t € QQ \P and set J = 2R+ Q. Then from Lemma
1, we ilzi.ve (R:I)=(Q:Q). Let J = I(R:I). Then J is also contained
in QQ . Hence wehave (J:J)=(R:J)=(R: 1) =(Q:Q).

Let N be a prime minimal over J. Then JR, = NR, since R is an
LTP domain. In particular, t € JR,. It follows that there are elements
ec(R:I)=(J:J),geQand s € R\N such that st = at? + ¢. Hence,
g = t(s ~ at). But a®t? is in J since (R: 1) = (J : J). Thus at € N and so
s'~'at is ot in P. As ne:ther ¢ nor § — at is in P we have a contradiction.

Hence we must have QQ~ C P.

({2) = (8)) Obvious.

((3) = (1)) Assume that if an ideal is both a primary ideal and a trace
ideal, then it is prime. Let I be a trace ideal of B and let P be a minimal
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prime of 1. Then @ = IR, N R is a P-primary ideal which is-also a trace
ideal. It follows that ) = P and IR, = PR, 0

COROLLARY 3 Let B be an integral domain. If R is an RTP domain,
a TPP domain or a PRIP domain, then R is an LTP domain. ..

Proof. By Theorem 2 it suffices to show that for RTP domains, TPP do-
mains and PRIP domains, if an ideal is both primary and a trace ideal,
then it is prime. Let () be a trace ideal which is also a primary ideal of
R. Then obviously Q—1 is a ring. Hence if R is a PRIP domain, then () is
prime. Also, if R is either an RTP domain or & TPP domain, then we have

QQHI = () is prime.¢

Statement (3) in Theorem 2 is very close to the definition of a PRIP
domain. To see that the two are not equivalent consider the ring B =
F[[x3,x1,x%]) where F is a field. The ideal' @ = (x?,X*) is primary but
not prime and Q' = F([X]] is a ring. Thus R is not a PRIP domain.
However, note that QQHI — (x%,x4,x%) is the maximal ideal of R and

QQ ) F[[x]). That R is an L’I‘P domain now follows from [8, Theo-
rem 3.5] and Coro]]ary 3. At this time we do not know whether each LTP
domain is a TPP domain and/or whether each TPP domain is an RTP
domain. However in Theorem 10, we prove that if R is a Priifer domain,
then each LTP domain is also a PRIP domain, a TPP domain and an RTP
domain.

If R is an RTP domain (a TPP domain), then for each prime ideal P,
both R, and R/P are RI'P domains (TPP domains) [16, Theorems 3 a,nd
9). Next we establish an analogous result for LTP domams

THEOREM 4 Lot P be a prime ideal of a domain R and let D = R/P.
If Ris an LTP domain, then R, and D are LTP domains.

Proof. Assume R iz an LTP domain.

We first show that D is an LTP domain. Let T be a trace ideal of D.
Since (R:NC (D:Nand(T:NCT:1N),{I:1)=(R:I). Thus for
each prime N minimal over I, IR, = N R, . 1t follows that T Dy = N Dy
Hence, D is an LTP domain.

To show R, is an LTP domain, let /R, be a trace ideal of Rp. Then
B=IR,nN R is a trace ideal of R. Hence for each prime N mlmmal over
B, BR,, = NR,,. The result follows from the fact that IR, = BR for
each NCP. ¢

- Our next result collects other useful mforma,tlon concermng the prame
ideals of an LTP domain. : -
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THEOREM 5 - Let R.be an LTP domain.. Then

(a) Each maximal ideal is a ¢-ideal.
(b) Each nonmaximal prime ideal is a divisorial trace ideal.
(¢} Each maximal ideal is either idempotent or divisorial.

Proof. To prove (a), it suffices to show that if R is an LTP domain, then
for each finitely generated ideal I, (R : I} # R. By way of contradiction,

let I be a finitely generated ideal of R for which I ~! = R. Then we also

2, ~1 \
have (I") ~ = R. Obviously, both I and I ? are trace ideals of B. While it
may be that IR, = PR, for some prime P, the same cannot be true for

2 p N
§ . Hence if R is an LTP domain, 7 ! # R for each finitely generated ideal
‘For the proof of (b), first note that by statement (2) of Theorem 2,

'PP—IRP = PR,. Hence we must have PP =P.

Since PP™" = P, we also have P, = P~ = (P: P) = (P, : P,) [14,
Proposition 2.2]. Lemma 1 no longer applies, but in its place we simply note
that each ideal between P, and P has inverse equal to (R : P). Starting
with an ideal I = r? + P for some r € P,\ P, we can repeat the proof given
for (1)=>(2) in Theorem 2 to show that -we must have P = P,,

For (c), let M be a maximal ideal which is not idempotent, Since R is
an LTP domain, M C M (R: M), But (R: M°) = ((R: M) : M). As
M is not idempotent, we cannot have (R : M) = R. Hence M is divisorial.

¢

.. For a TPP domain R, it is known that if R and (I : I) satisfy INC for
each trace ideal I, then R is an RTP domain [16, Lemma 33). We wish to
show that the same occurs for LTP domains. Before proving this result, we
present a pair of useful lemmas and then prove that if I is a trace ideal of
' ?;1 IITl; gomain R such that R and (I : I) satisfy INC, then [ is a radical

ideal of R.

LEMMA 6 Let I be a trace ideal of an integral domain E and let J' be
an ideal of (1 : 1), |

(a) If J' contains I, then J' () R is a trace ideal of R.

(b) X J'is a trace ideal of (7 : I), then IJ' is a trace ideal of R.

Prc;of. F_olr (a), assume J' contains  and set J = J'[1R. Since I C J',
J eI =) Hence JJ™F C I I)NRC I NR=1J.

To prove (b), assume J' is a trace ideal of (I : I) = (R : I}. Then
IJNR:IJ)=1J'((R:1):J') = 1] i.e.,, IJ' is a trace ideal of R. ¢

LEMMfﬂt 7 - Let-I be a trace ideal of an LTP. domain R and let P’ C N’
be a pair of prime ideals of (I : I} which contain I. Then P'(MR = N'R.

S e e i e
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Proof. Set T = (I : I} and let Q' be-a primary-ideal of T that contains
1. Then Q = Q'R is a primary ideal of B which is also a trace ideal
by Lemma 6. Since R is an LTP domain, @ must be prime. If P # N,
then there is an element » € N\P. Without loss of generality, we may
assume N’ is minimal over J' = r*T + P’ and that Q' = J'T,(\T. As
the corresponding ideal @ = Q'R is a prime ideal of R, we must have
@ = N. But as in the proof of Theorem 2, Q contains r* but not r. Hence
it must be that P=N. ¢ IR ' o

THEOREM 8 Let I be a trace ideal of an LTP domain R. If the pair R
and (I : I) satisfy INC, then I is a radical ideal of &,

Proof. Set T = (I : I) and assume R and (7 : I) satisfy INC. Let r € Vi
and let’ P! be a prime of 7" that is minimal over I. By Lemma 7, if N'is 2
maximal ideal of T that contains P', then P'(\R = N'(\R. But since R
and T satisfy INC, we must then have that P’ = N'; i.e.; each prime of T’
that is minimal over I is also a maximal ideal of T. Let J = {t € T'|tr€ I}.
Let Q' = IT,, (T and Q@ = Q' R. By Lemma 6, Q is a trace ideal of R.
But it is also a primary ideal of R, so @ must be prime. In particular, Q'
must contain 7. Hence P’ cannot contain J. Since J ‘obvicusly contains 7,
we must have J = T and, therefore, I = V. ¢ S

COROLLARY 9 let R be an LTP domain. -If the pair R and (7 : 1)
satisfy INC for each trace ideal I, then R is an RTP domain. '

We are now in a position to show that if R is simultaneously a Priifer
domain and an LTP domain, then it is also an RTP domain and a PRIP

domain,

THEOREM 10 Let R be a Priifer domain. Then the following are equiv-
alent '

(1) Ris an RTP domain.

(2) Ris a TPP domain.

(3) Ris an LTP domain.

(4) Ris a PRIP domain.

Proof, For the equivalence of (1)—(4), Corollary 3 handles the implications
of (1)=(3), (2)=(3) and (4)=(3). Furthermore, as each RTP domain is
also a TPP domain, all we need prove is that if R is a Priifer LTP domain,
then it is also an RTP domain and a PRIP domain.
Assume R is an L'TP domain. Since R is a Priifer domain, if 7" is an
overring of R, then the primes of 7' are all extended from primes of R 11,
Theorem 26.2].. Hence the pair R and T satisfy INC. That R is an RTP
domain now follows from Corollary 9. ' I :
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- ‘_Illetr @ be a primary ideal of R. Since R is Priifer, if Q_1 is a ring, then
@ ={(Q:Q) by Lemma 4.4 of [8]; i.e., @ is a trace ideal. Hence, Qul a
ring implies ¢ is prime and, therefore, R is a PRIP domain. ¢

In [8], it was noted that if R is an almost Dedekind domain which is
not Dedekind, then R is not a TP domain since it contains a maximal
ideal M for which (R: M) =R. As R, is a discrete rank one valuation

. 2 .
dogna,m, M2 # szet (R: Mz) =(R:M): M)=(R:M)=Rso0
M (R : M ).= M~ # M. This same proof shows that R is not an LTP
domain. A different way to establish this result is to use Theorem 5 and

-the faf:t that the only divisorial maximal ideals of a Priifer domain are the
invertible ones (see, for example, [14, Corollary 3.4]).

COROLLARY 11 Let R be an almost Dedekind domain. Then the fol-
lowing are equivalent - - : :
~ (1) Risa TP domain.
“(2) Ris an RTP domain,
* (8) Ris a TPP domain.
(4) R is an LTP domain.
(5) R is Dedekind,.

~ Another corollary to Theorem 5 concerns Priifer v-multiplication do-
mains. (A domain R is a Priifer v-multiplication domain (or PVMD for
short} if R, is a valuation domain for each maximal t-ideal P.) For a
Priifer domain, each maximal ideal is also a maximal t-ideal since each
finitely generated ideal is invertible. Thus an integral domain is a Priifer

g??ailn if and only if it is a PVMD where each maximal ideal is a maximal
-ideal. '

- COROLLARY 12 Let R be a PVMD. If R is an LTP domain, then it is

a Priifer domain and also an RTP domain.

Hein_zer and Papick proved that the only Krull domains which satisfy
the radical trace property are the Dedekind domains [12, page 112]. Since
eachltKrull domain is a PYMD, Corollary 12 gives a different proof of their
result. . '

COROLLARY 13 Let R be an almost Krull domain. Then the following
are equivalent
(1) Ris a TP domain.
(2) R is an RTP domain.
(3) Ris a TPP domain.
(4) R is an LTP domain.
(6) R is a Dedekind domain.
(6) Ris a PRIP domain,

Tréce Properties and Integral Domains 429

Proof. Tt suffices to show (4) implies (5).. Assume R.is an LTP .domain.
Since R is an almost Krull domain, R, is a Krull domain for each. prime
ideal P. By Theorem 4, each R, is also an LTP domain. Hence from
Corollary 12, each R is a Dedekind domain. It follows that R is an almost
Dedekind domajn. From Corollary 11, we have that R is Dedekind. ¢

In [15], J. Lipman considered ideals of one-dimensional semi-local
Macaulay rings. He defined an open ideal I of such a ring to be “sta-
ble” it J(I™ : I™) = (I : ). Building on Lipman’s work, J. Sally and W.
Vasconcelos developed a more general notion of stability by declaring an
ideal to be stable if it was projective over its endomorphism ring [19, page
323]. For a nonzero ideal I of an integral domain '(or just an ideal which
contains an element which is not & zero divisor of a ring), their condition is
equivalent to saving that I is invertible as.an ideal of (I : I} (since for such
an ideal, being projective is equivalent to being invertible). In general, an
ideal I of a domain R can be such that J(I" : I") = (I : I} without. being
atable in the sense of Sally and Vasconcelos. For example, this will be true
for an ideal whose inverse is equal to R. But, if an ideal I is stable in the
sense of Sally and Vasconcelos, then it will be true that (7 "INy =(I:1)
for each positive integer n. Hence, J will be stable in -the sense of Lip-
man. As in 1], we say that an ideal I is L-stable (for Lipman-stable) if
ua® I ™) = (I : I) and SV-stable (for Sally-Vasconcelos-stable) if I is
invertible as an ideal of (I: I). : :

_ Heinzer and Papick showed that if R is an RPT domain and I is.an
integrally closed ideal of R, then I is L-stable [12, Remark 2.13a). They also
observed that in an RTP domain, each ideal J is such that JJ VA
(where J " denotes the inverse of J "} [12, Remark 2.13b]. Our next result
considers the radical ideals of an RTP domain. In [13], E. Houston and the
three authors of this paper proved that if a radical ideal I can be realized as
an intersection of divisorial radical ideals which are also trace ideals, then
I is a trace ideal [13, Proposition 3.15]. We shall make use of this result in
the proof below.

THEOREM 14 Let R be an RTP domain. Then each radical ideal of R
is L-stable,

Proof. Let I be a radical ideal of RB. We first consider the two opposite
cases of I being invertible and I being a trace ideal. Next we show: that
IR,, is L-stable for each maximal ideal. This will complete the proof since
N(BR,, : BR,;) = (B : B) for each ideal Bof B. . - ~ S

If I is invertible, then so is each power of I. Hence I is L-stable since
(I iV n) = R for each positive integer n. -

n

If T is a trace ideal of R, then I"I™" = I1~" = I [12, Remark 2.13b].
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Hence (I" :'I™) € ("1™ 1Py = (I 2 1) and it follows that I is
L-stable. : : '

Let M be a maximal ideal of R. Then R, is an RTP domain by Theorem
4, If M does not contain I, then IR, = R, , so IR, is trivially L-stable.
If M not only contains I, but is also minimal over I, then MR, = IR,
As MR,, is either invertible or a trace ideal of R, , IR, is L- stable. If
M contams I but is not minimal over I, then each of the minimal primes
of IR,, is a divisorial trace ideal of R, [Theorem 5]. That IR, is a trace
ideal of R,, now follows from [13, Proposition 3.15]. Hence, we again have
that IR, is L~ stable. _0

Two of the questions raised in [16] concerning RTP domains were whether
(I : I) will always be an RTP domain when R is an RTP, and whether INC
would always hold between R and (I : I) when R is an RTP domain and
I is a trace ideal. Our next example shows that the answer to the first of
these questions i NO. Then we prove that the answer to both questions is
YES when we restrict to trace ideals which are SV-stable.

EXAMPLE 15 Let V be the power series ring F(X,Y)[[Z]] where F is a
field and let R = ¥F+2V, Then V is a valuation domain with maximal ideal
M = zF(x,Y){[2]] and R is pseudo-valuation domain. By [16, Theorem 31],
R is an RTP domain. Let I be the ideal z (F[X,Y]+ M). Then it is clear
that (7 : I) = F[x,Y]+ M. There are a number of ways to verify that (I : J)
is not an RTP domain. For example: (a) (I : I)/M = F[x,Y]is a Krull
domain which is not an RTP domain since it is not Dedekind (Theorem 4
and [12, page 112]); or (b) the maximal ideal N = (X,Y)(I : I) is neither
idempotent nor divisorial (Theorem 5); or (¢) the ideal P=x(I:1)1is a
principal prime ideal which is not maximal (Theorem 5).

The ideal I in the example above is not a trace ideal of B. Thus this
example leaves open the possibility that (f : ) may be an RTP domain
when I is a trace ideal of B. In our next result we show that if I is SV-
stable, then not only will ({ : I) be an RTP domain, but the pair R and
(I : I) will satisfy INC,

THEOREM 16  Let I be a trace ideal of an RTP domain R. If [ is
SV-stable, then

(2) (I:1)is an RTP domain.

(b). Each ideal of (I : I) that contains I is invertible as an ideal of (I:1).

(c) Each prime of (I: I ) that contains I is minimal over 1.
(d) The pair R and (I : I) satisfy INC.

Proof. Assume [ is SV-stable. To simplify notation, set 7' = (I : I). Hence
r:n= '
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We will first show that 7 is an-RTP domain. To this end let-J be a trace

ideal of T and let %/J denote the radical of J in T. Then {7 is a trace
ideal of T' [18, Proposition 2.1]. By Lemma 6, both IJ and I ¥/J are trace
ideals of R. Since R is an RTP domain, both are radical ideals, Hence we
must have IJ = IY/J. That J = ¥/J now follows from the assumption
that I is an invertible ideal of T = (I : I). Thus {I.: I) is an RTP domain.

For part (b), let B be an ideal of (I : I} which contains I. Then J =
B(T : B) will be a trace ideal of T' that contains I. By part (a), IJ is then
a radical ideal of R. It follows that IJ = I[|J =1 = IT since I C J. As
I is an invertible ideal of T, J = T; i.e., B is an invertible ideal of T'.

By (b), each prime of T' that contams I is invertible. That each of these
primes must then be maximal ideals of T follows from Lemma 1 (see also
11, Theorem 7.6]). Therefore each such prime is also minimal over . Foi
a pair of distinct primes P’ C N’ of T where P’ does not contain I, then
P = P’ﬂR and N = N'[\R will be distinct’ primes of B (no matter
whether 1 is invertible or not) (7, Theorem 1.4]. It follows that the palr R
and (I : J) satisfy INC. ¢

We have not been able to prove an analogous result for either TPP
domains or LTP domains. The best we have been able to do is prove
that statements (b} and (c) will hold for a prime P’ if P/ R is minimal
over I,

THEOREM 17 Let R be an LTP domain and let / be a trace ideal R
which is invertible as an ideal of (I': I). Let P! be a prime of (I : I) whlch
contains I and let P = P'[R. Then .

(a) P’ survivesin (IR, : IR,).
(b) If P is minimal over I, then P! is both maximal and mvert1b]e as
an ideal of (I : I).

Proof. Set T = (I:1). ' o

Since P = P’ ﬂR, R, C T,,. Since I is invertible as an ideal of T,

= (IT, ) (IT, :1) 2 (IR, : I) = (IR, : IR,). Hence P’
survwes in (I R IR,).

Assume P is mlmma,l over I. If P! is not invertible as an ideal of T then
there will be a prime N’ which contains P’ and is a trace ideal of T. Also
N'MNER = P by Lemma 7. So, without loss of generality, we may assume
that P’ is a trace ideal of T'. Hence I P'is a trace ideal of I and P is minimal
over IP'. As R is an LTP domain, we have IP'R, = PR, = IR.

Set, T{ P = (IR, :-IRp). Obviously, IR, is an invertible ideal of

T(P}. Hence P'T( P = P [IRP(T P IRL) = (P'IR,)(T, p) : IRp) =
IR (T( p) : IRy) = (P). This contradlcts the fact that P’ su1v1ves in

(IR, IRP) Thus it must be that P’ is invertible. ¢
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2. . MORI DOMAINS

If I is an ideal of a Mori domain R, then I; = I, = A, for some finitely
generated ideal A contained in I [17, Théoréme 1]. This property of a Mori
domain makes dealing with the various trace properties much easier, For
one thing it guarantees that if R is an LTP domain, then not only is each
maximal ideal divisorial, but also that each is the v of a finitely generated
ideal. We begin this section by showing that each Mori LTP domain is also
a Mori RTP domain. We also give a characterization of Mori LTP domains
in terms of SV-stability.

THEOREM 18 Let R be a Mori domain which is not a field. Then the
following are equivalent

(1) R is an RTP domain,

(2) Ris a TPP domain.

(3) R is an LTP domain.

(4) For each maxnmal ideal M and each M-primary ideal @, M is SV-

stable and QQ ' contains M.
(8) For each maximal ideal M, M is SV-stable and each maximal ideal
of (M : M) that contains M is invertible as an ideal of (M : M).
(6) For each nonzero radical ideal I, I is SV-stable and each maximal
ideal of (I : I) that contains I is invertible as an ideal of (I : I).

Proof, Obviously, (6) implies (5). By [16, Theorem 4] and Corollary 3, it
suffices to show that (3) implies (4), (4) implies (5}, (5) implies (1), and (1)
implies (6).

[(3)=(4)] Assume R is an LTP domain and let M be a ma,x1ma,l ideal of R.
For each M-primary ideal @, either Q i ls invertible or QQ is M-primary.

Thus since R is an LTP domain, QQ must contain M. Also from our
assumption that R is an LTP domain, each nonmaximal prime ideal is a
divisorial trace ideal [Theorem 5]. Obviously, every invertible ideal is SV-
stable, so we need only consider the case where M is not invertible as an
ideal of R. From (the proof of) Theorem 5, if A is a finitely generated
1dea,l of R, then A =Ronlyif A= R. But as E is also a Mori domain,
M =A ! for some finitely generated ideal A C M [17 Théoréme 1]. It
follows that M = M, = A,. Set T = (R : M). As M is not invertible, T'
is a ring equal to (M M ). .Since R is an LTP domain, each nonmaximal
prime of R is divisorial. Thus no such prime can contain A. Also, no other
maximal ideal can contain A, since each maximal ideal is divisorial. Hence

M is minimal over A, and, therefore A is M-primary. By Theorem 2 we
have M CA(R: A)=AR: M) =AT'C MT =M. SoMisa ﬂmtely

generated ideal of T'. As M is not mvertlble as an ideal of R, neither is M
Thus, again by Theorem 2, M C M* (R : M’ )= M[M{(R: M): M)] =
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[M(T M)) € MT = M. In particular, we have M[M (T : M} =M. As
M is finitely generated as an ideal of T', Nakayama’s Lemma implies that
M(T: M) ="T;ie., M is SV-stable.

[(4)=>(5)] Assume tha,t for each maximal ideal M and each M-primary ideal

Q, M is SV-stable and QQ ™ contams M. Let M be a fixed maximal ideal
of R. As in the proof of (3) implies (4), there is nothmg to prove if M is
invertible as an ideal of R. Hence we assume that M is not invertible as
an ideal of R. Set T = (M : M) and let N be a maximal ideal of T' that
contains M. Set B = N(T : N). As B is a trace ideal of T, BM is a trace
ideal of R by L.emma 6. Since N contains M, BM is M-pmma.ry ‘Hence,
by Theorem 2, BM = M = MT. As M is mvertlble as an ideal of T, we
have B =T. ;
[(5)=>(1)] Assume that for each maximal ideal M, M is SV-stable a,nd ea,ch
maximal ideal of (M : M) that contains M is invertible as an ideal of
(M : M). Let M be a maximal ideal of R and let N be a maximal ideal of
(M : M) that contains M. Since R is a Moti domain, so is (M : M) [18,
page 11], [3, Corollary 11]. It follows that N has height one [4, Theorem
2.5], and, therefore, M has height one. Hence R must be one-dimensional.
Let Q be an M-primary ideal of R. Since the radical trace property
and the trace property for primary ideals are known to be equivalent for
one-dimensional domains, we need only show that Q(R : J) contains M.
In (M : M) each maximal ideal that contains @ also contains M and,
therefore, each such ideal is invertible and minimal over Q. It follows that
no maximal ideal of 7' can contain Q(7 : @) [13, Proposition 2.1]. Hence
Q(T:Q)=T. Hence, M = MT = QM (T : Q) C Q(R : @), and, therefore,
R is an RTP domain.
[(1)=(6)] Assume R is an RTP domain and let I be a nonzero ra,dlca,l 1deal
of R. By Proposition 2.1 of [13], there is nothing to prove if I is invertible.
Hence we assume that I is not invertible. From the argument above, R
is one-dimensional and each maximal ideal is divisorial (or see [10, Section
2]). It follows that I is divisorial. Slnce R is a Mori domain, only finitely
divisorial prime ideals can contain I. In this case that means that [ is a
finite intersection of maximal ideals. Let {M,, M,,..., M,} denote the set
of invertible maximal ideals that contain I a.nd let {Nl ) Nz, ...y N, } denote
the set of noninvertible maximal ideals that contain I. Set A =M, and
B =[1N,. Then A and B are comaximal with A an invertible 1deal of B
{13, Propomtmn 2.1] and B a trace ideal of R [13, Proposition 3.15]. Hence,
I= AN B = AB. Since A is invertible, we have (I : I) = (AB : AB) = (B:
B). Thus to show that I is SV-stable, it suffices to show that B'is SV- stable.
Set T'= (I : I). As B is a trace ideal of R, we also have T' = (R : B). Since
B is divigorial, B, = C, for some finitely generated ideal C' C B. Moreover
VC = B. As in the proof of (3) implies (4), B = BT = CT. Let' J be a
trace ideal of T' that contains B, Then by Lemma 6, JB is a trace ideal
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of R. Tt follows that JB = J[|B = B since R'is an RTP domain. But
since B is finitely generated as an ideal of T, JB = BT is possible only if
J = T. Hence each ideal of T that contains B is invertible as an ide.al of
T. In particular, B is invertible as an ideal of T, as is each maximal ideal
of T that contains B,

If M' is a maximal ideal of T that contains I but not B, then M'N R =
M, for some k [7, Theorem 1.4]. Moreover M’ is invertible as an ideal of
T since each of the Ms are invertible ideals of R [7, Theorem 1.4]. ¢

By combining Theorems 16 and 18, we have the following.

COROLLARY 19 Let R be a Mori RTP domain. Then for each nonzero
radical ideal I, (I : I) is an RTP domain and the pair R and (J : I) satisfy

INC.

. One of the classic examples of a Mori domain which is not Noetherian
is the ring R = F+X F[X,Y] where F is a field. If this ring is localized at
its maximal ideal M = X F[X,Y], the resulting ring is a two-dimensional
quasi-local Mori domain whose maximal ideal is SV-stable. As R, is two-
dimensional, it cannot be an RTP domain, The corresponding power ge-
ries ring F+X F[[X,Y]] is also a two-dimensional Mori domain. Unh'ke R,
F+X F[[x,Y]] is quasi-local, but like R, the maximal ideal X F[[X, Y]] is SV-
stable. We will do more with this ring in Example 21, but first we give an
example of a local one-dimensional Noetherian domain where the maximal
ideal is SV-stable yet the ring is not an RTP domain.

EXAMPLE 20 Let R = F[[x3,x% X"]) where F is a field. Then

(a) R is alocal one-dimensional Noetherian domain with maximal ideal
M = (x3,x% X"R. o
(b) (R: M) = (M : M) = F[lx*,x%].
(c) M(M : M) = x3F[[x?,x%) is invertible as an ideal of (M; M)
(d) R is not an RTP domain. For example, @ = (x°, X% x")R is an
M-primary ideal for which (@ : Q) = (R : Q) = F[[x]].
For the ring R = F4 X F[[X,Y]], the ideal P = YXF[[X,Y]] is a height
one prime ideal. Since Y ' isin P~ and X~ is not, PP” = X F[x,v]],
the maximal ideal of &. In our next example we show that even though R

is not an RTP domain, the maximal ideal X F{[X,Y]] is the trace of each
primary ideal whose radical has height one.

EXAMPLE 21  Let R = F++X F[[x,v]] and let M = x F[[X,Y]]. Then
. (a). M is SV-stable and the ideal M (X, Y)F[[X, Y]] is an M-primary trace

ideal.
(b) Each height one prime of R has the form fM for some irreducible

f e () FIX YI\NXFX, Y]]
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(¢) If Q is a primary ideal of R whose radical has height one,. then
Q = f" M for some irreducible f € (X,v)F[[x, v]\x F[[x, v]].
(d) ¥ Q is a primary ideal of R whose radical has height one, then

QQ ' =M,

Proof. Since M is not invertible as an ideal of R, (R: M) = (M;M)is a
ring. Specifically, (R : M) = F[[X,Y]]. Obviously, M is invertible as an
ideal of (M : M). As N = (X,Y)F[[x,Y]] is a trace ideal of F[[x, Y], MN
is a trace ideal of B by Lemma 6,

Let P be a height one prime ideal of R. Then there iz a unique prime ideal
P’ of F[[x,Y]] which contracts to P, namely P’ = {g ¢ F[[x, Yll|gM C P}.
Since F[[X,Y]] is a local UFD, P’ is a principal prime of F[[X, Y}]. Thus
P! = fF[{x,Y]] for some irreducible f € F[[X,Y]]. As P has height one, f
i8 not a multiple of x and it follows that P = MP' = x P' = X fF[[x,v]].

Continuing with the notation above, let ) be a P-primary ideal. Since
P does not contain M, R, = F[[X,Y]] p 18 a discrete rank one valuation

domain. Hence QR p=1F nRP for some integer n. By contracting this ideal
to K we see that Q = anF[[X,Y]] = f" M. Since @ is a principal multiple
of M, Q"= (1/f")M™" and from this it follows that QQ ™" = 1.4
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INTRODUCTION.

Let I be a nonzero ideal of a domain T, ¢:T — T/I the natural
projection and D a domain contained in T'/I. Let R = ¢~ (D) be
the domain arising from the following pullback of canonical homo-
morphisms, )

R — D
! i
T — T/I

We explicitly assume that B C T and we shall refer to this as a
diagram of type (A). ¥ I = P is a prime ideal of T, we use x(P)
to denote the residue field of Tp and ¢f(D) the quotient field of
D. The case where T = V is a valuation domain is of particular
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