
ON t-REDUCTIONS OF IDEALS IN PULLBACKS (?)

S. KABBAJ, A. KADRI, AND A. MIMOUNI

Abstract. Let R be an integral domain and I a nonzero ideal of R. An ideal J ⊆ I
is a t-reduction of I if (JIn)t = (In+1)t for some positive integer n; and I is t-basic if it
has no t-reduction other than the trivial ones. This paper investigates t-reductions
of ideals in pullback constructions of type �. Section 2 examines the correlation
between the notions of reduction and t-reduction in pseudo-valuation domains.
Section 3 solves an open problem on whether the finite t-basic and v-basic ideal
properties are distinct. We prove that these two notions coincide in any arbitrary
domain. Section 4 features the main result, which establishes the transfer of the
finite t-basic ideal property to pullbacks in line with Fontana-Gabelli’s result on
PvMDs [10, Theorem 4.1] and Gabelli-Houston’s result on v-domains [14, Theorem
4.15]. This allows us to enrich the literature with new families of examples, which
put the class of domains subject to the finite t-basic ideal property strictly between
the two classes of v-domains and integrally closed domains.

1. Introduction

Throughout, all rings considered are commutative with identity. Let R be a ring
and I a proper ideal of R. An ideal J ⊆ I is a reduction of I if JIn = In+1 for some
positive integer n. The notion of reduction was introduced by Northcott and Rees
to contribute to the analytic theory of ideals in Noetherian local rings via minimal
reductions. An ideal which has no reduction other than itself is called a basic
ideal; and a ring has the finite basic ideal property (resp., basic ideal property) if
every finitely generated ideal (resp., every ideal) of R is basic. In [18, 19], Hays
investigated reductions of ideals in Noetherian rings and Prüfer domains. He
provided several conditions for an ideal to be basic. His two main results asserted
that a domain R is Prüfer (resp., one-dimensional Prüfer) if and only if R has the
finite basic ideal property (resp., basic ideal property).

Let R be a domain and I a nonzero fractional ideal of R. The v-, t-, and w-closures
of I are defined, respectively, by Iv := (I−1)−1, It := ∪Jv, where J ranges over the set
of finitely generated subideals of I, and Iw = ∩IRM where M ranges over the set of
maximal t-ideals of R. Now, let ? be a star operation on R and I a nonzero ideal of
R. An ideal J ⊆ I is a ?-reduction of I if (JIn)? = (In+1)? for some positive integer n.

In [23], the authors extended Hays’ aforementioned results to PvMDs; namely,
a domain has the finite w-basic ideal property (resp., w-basic ideal property) if
and only if it is a PvMD (resp., PvMD of t-dimension one). They also investigated
relations among the classes of domains subject to various?-basic properties. In this
vein, the problem of whether the finite t- and v-basic ideal properties are distinct
was left open. In [28], the authors investigated the t-reductions and t-integral
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closure of ideals establishing satisfactory t-analogues of well-known results, in
the literature, on the integral closure of ideals and its correlation with reductions.
One of their main result [28, Theorem 3.5] asserts that the t-closure and t-integral
closure of an ideal coincide in the class of integrally closed domains.

This paper investigates t-reductions of ideals in pullback constructions of type
� (defined in Section 4). Section 2 examines the correlation between the notions of
reduction and t-reduction in pseudo-valuation domains. Section 3 solves an open
problem raised in [23] on whether the finite t-basic and v-basic ideal properties
are distinct. We prove that these two notions coincide in any arbitrary domain.
Section 4 features the main result, which establishes the transfer of the finite t-basic
(equiv., v-basic) ideal property to pullbacks in line with Fontana-Gabelli’s result on
PvMDs [10, Theorem 4.1] and Gabelli-Houston’s result on v-domains [14, Theorem
4.15]. This allows us to enrich the literature with new families of examples, which
put the class of domains subject to the finite t-basic ideal property strictly between
the two classes of v-domains and integrally closed domains.

For a full treatment of the topic of reduction theory, we refer the reader to [26].
For more details about star operations, we refer the reader to [11] and [17, Sections
32 and 34].

2. t-Reductions in pseudo-valuation domains

We first recall the definitions of t-reduction and related concepts such as the trivial
t-reduction and (finite) t-basic ideal property.

Definition 2.1 ([23, 28]). Let R be a domain and I a nonzero ideal of R.

(a) An ideal J ⊆ I is a t-reduction of I if (JIn)t = (In+1)t for some integer n ≥ 0. The
ideal J is a trivial t-reduction of I if Jt = It.

(b) I is t-basic if it has no t-reduction other than the trivial t-reductions.

(c) R has the (finite) t-basic ideal property if every nonzero (finitely generated)
ideal of R is t-basic.

For any star operation ?, the ?-reduction and related concepts are defined
likewise. This is not to be confused with Epstein’s c-reduction [6, 7, 8], which
generalizes the original notion of reduction in a different way and was studied
in different settings. Namely, let c be a closure operation. An ideal J ⊆ I is a c-
reduction of I if Jc = Ic. Thus, for c := ?, Epstein’s c-reduction coincides with the
trivial ?-reduction.

In the sequel, we will be using the following obvious facts, for nonzero ideals
J ⊆ I, without explicit mention:

J is a t-reduction of I⇔ J is a t-reduction of It⇔ Jt is a t-reduction of It.

Recall that R is a pseudo-valuation domain if R is local and shares its maximal
ideal with a valuation overring V or, equivalently, if R is a pullback issued from
the following diagram

R = ϕ−1(k) −→ k
↓ ↓

V
ϕ
−→ K := V/M
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where (V,M) is a valuation domain (with residue field K) and k is a subfield of K.
For the sake of simplicity, we will say that R is a pseudo-valuation domain issued
from (V,M,k). For more details on pseudo-valuation domains, see [20, 21] and also
[1, 2, 4, 5, 33].

Note that a reduction is necessarily a t-reduction; and the converse is not true
in general. The next result investigates necessary and sufficient conditions for
the notions of reduction and t-reduction to coincide in pseudo-valuation domains.
This result can be used readily to provide examples discriminating between the
two notions of reduction and t-reduction.

Theorem 2.2. Let R be a pseudo-valuation domain issued from (V,M,k) and set K := V/M.
Then, the following statements are equivalent:

(i) For every nonzero ideals J ⊆ I, J is a t-reduction of I⇐⇒ J is a reduction of I.
(ii) For each k-vector subspace W of K containing k, Wn is a field for some positive

integer n.

Proof. (i)⇒ (ii) Let W be a k-vector subspace of K with k $W $ K. Let 0 , a ∈M
and consider the ideals of R

J := aR ⊆ I := aϕ−1(W).

Let r ≥ 1. Then, the fact that k $W yields

(R : Ir) = a−rϕ−1(k : Wr) = a−rM

and then
(Ir)v = arM−1 = arV.

By [24, Proposition 4.3], the t- and v- operations coincide in R. Hence, we have

(JI)t = (aI)t = aIt = aIv = a2V = (I2)v = (I2)t

and so J is a t-reduction of I. By (i), J must be a reduction of I and so

an+1ϕ−1(Wn) = JIn = In+1 = an+1ϕ−1(Wn+1)

for some positive integer n. It follows that ϕ−1(Wn) = ϕ−1(Wn+1); i.e., Wn = Wn+1.
Therefore Wn = (Wn)2 and thus Wn is a ring. In particular, let 0 , λ ∈ K and let
Wo := k +λk. Then, there is some positive integer m such that

k +λk + · · ·+λmk = Wm
o

= Wm+1
o

= k +λk + · · ·+λm+1k.

So, λm+1
∈ k +λk + · · ·+λmk. Therefore λ is algebraic over k and thus K is algebraic

over k. Consequently, Wn is a field, as desired.
(ii)⇒ (i) Let J ⊆ I be a t-reduction of I; i.e., (JIn)t = (In+1)t for some positive integer

n. If I is an ideal of V, then both JIn and In+1 are ideals of V so that JIn and In+1 are
divisorial ideals of R by [20, Theorem 2.13]. Therefore, we obtain

JIn = (JIn)v = (JIn)t = (In+1)t = (In+1)v = In+1.

That is, J is a reduction of I. Next, assume that I is not an ideal of V. Then, by [3,
Theorem 2.1(n)], I = aϕ−1(W) for some nonzero a ∈M and some k-vector space W
with k ⊆W ⊂ K. Assume that k = W; i.e., I = aR. Then Jt = aR. Now, if J $ aR, then
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a−1 J $ R, hence a−1 J ⊆M, whence J ⊆ aM. Since M is a divisorial ideal of R [22,
Corollary 5], we obtain

aR = Jt ⊆ (aM)t = aMt = aM
which is a contradiction. So, necessarily, J = I. Next, assume k $W. Suppose J is
an ideal of V. Then JIn would be an ideal of V and hence a divisorial ideal of R,
yielding

an J = JIn = (JIn)v = (JIn)t = (In+1)t = (In+1)v = an+1V,
where the last equality is already handled in (i)⇒ (ii). It follows that

J = aV = IV ⊇ I ⊇ J.

That is, J = I is an ideal of V, absurd. Hence, J is not an ideal of V. So, since J ⊆ I,
we may assume that J = aϕ−1(F), where F is a k-vector subspace of W. Now by
hypothesis, Ws = Ws+1 is a field for some s ≥ 1. It follows that

FWs = Ws+1

yielding
JIs = as+1ϕ−1(FWs) = as+1ϕ−1(Ws+1) = Is+1.

Hence J is a reduction of I, completing the proof of the theorem. �

Note that the condition (ii) in the above result forces K to be algebraic over k. In
this vein, this fact can be used readily to provide examples of domains where the
two notions of reduction and t-reduction are distinct.

Example 2.3. Let R be a pseudo-valuation domain issued from (V,M,k) and set
K := V/M.

(a) Assume that K is a transcendental extension of k. Then, the notions of reduction
and t-reduction are distinct in R. For instance, pick a transcendental element λ ∈ K
over k and let W := k + kλ, I := aφ−1(W) and J =: aR. Then, J is a proper t-reduction
of I, but I is basic in R, as seen in the proof of (i)⇒ (ii) of the above theorem.

(b) Assume that [K : k] is finite. Then for every k-submodule W of K with k⊆W ⊆K,
some power of W is a field, and hence the notions of reduction and t-reduction
coincide in R.

Given nonzero ideals J ⊆ I, if Jt is a reduction of It, then J is a t-reduction of I. The
converse is not true in general as shown by [28, Example 2.2] which consists of a
domain containing two t-ideals J $ I such that J is a t-reduction but not a reduction
of I. The next result provides a class of (integrally closed) pullbacks where the two
assumptions are always equivalent.

Proposition 2.4. Let R be a pseudo-valuation domain and let J ⊆ I be nonzero ideals of R.
Then, J is a t-reduction of I if and only if Jt is a reduction of It.

Proof. Sufficiency is trivial. For the necessity, assume R is issued from (V,M,k)
and, without loss of generality, R $ V. Next, let J be a t-reduction of I. Then,
Jt is a t-reduction of It and hence we may assume that J and I are both t-ideals.
So (JIn)t = (In+1)t, for some integer n ≥ 1. If I is an ideal of V, as in the proof of
Theorem 2.2 ((ii)⇒(i)), we get JIn = (JIn)t = (In+1)t = In+1; that is, J is a reduction of
I. Next, suppose that I is not an ideal of V. By [3, Theorem 2.1(n)], I = aϕ−1(W) for
some nonzero a ∈M and some k-vector space W with k ⊆W ⊂ K := V/M. We claim
that k = W. Otherwise, we would get, via [24, Proposition 4.3], that I = It = Iv = aV,
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where the last equality is already handled in the proof of Theorem 2.2 ((i)⇒(ii)). It
follows that I is an ideal of V, the desired contradiction. So, necessarily, k = W and
then I = aR. By [23, Lemma 1.2], I is t-basic; that is, J = I, completing the proof. �

The class of Prüfer domains is, so far, the only known class of domains where
these two notions of reduction and t-reduction coincide. We close this section
with the next result, which features necessary conditions for such a coincidence.
For this purpose, recall that a domain where the trivial and w-operations are the
same is said to be a DW-domain [16, 25, 31]. Common examples of DW-domains
are pseudo-valuation domains, Prüfer domains, and quasi-Prüfer domains (i.e.,
domains with Prüfer integral closure) [12, Page 190].

Proposition 2.5. Let R be a domain where the notions of reduction and t-reduction coincide
for all ideals of R. Then:

(1) Every nonzero prime ideal of R is a t-ideal. In particular, R is a DW-domain.
(2) R is integrally closed if and only if R has the finite t-basic ideal property.
(3) R is a PvMD if and only if R is a Prüfer domain.

Proof. (1) Let P be a nonzero prime ideal of R. Clearly, P is a t-reduction of Pt. By
hypothesis, P is then a reduction of Pt. But every prime ideal is a C-ideal (i.e., it
is not a proper reduction of any larger ideal) [18, Page 58]. It follows that P = Pt,
as desired. In particular, every maximal ideal of R is a t-ideal and, hence, R is a
DW-domain by [31, Proposition 2.2].

(2) Assume that R is integrally closed and let I be a finitely generated ideal of R
and J a t-reduction of I. By hypothesis, J is a reduction of I. So, by a combination of
[26, Corollary 1.2.5] and [32, Proposition 2.2(iii)], we get I ⊆ J ⊆ Jt, where J denotes
the integral closure of J. It follows that Jt = It; i.e., I is t-basic, as desired. The
converse is true for any arbitrary domain R by [23, Lemma 1.3].

(3) Assume R is a PvMD. By hypothesis, the notions of reduction and t-reduction
coincide in R and, hence, R is a DW-domain by (1) above. By [16, Theorem 1.2], R
is a Prüfer domain. The converse is trivial. �

3. Equivalence of the finite t- and v-basic ideal properties

For the reader’s convenience, recall that a domain is called a v-domain if all its
nonzero finitely generated ideals are v-invertible; an excellent reference for v-
domains is Fontana & Zafrullah’s comprehensive survey paper [13]. Also, recall
from [23] the following diagram of implications, which puts into perspective the
finite basic ideal property for each of the t-, v-, and w-operations:

Krull domain
⇓

PvMD = Finite w-basic ideal property
⇓

v-domain
⇓

Finite v-basic ideal property
⇓

Finite t-basic ideal property
⇓

Integrally closed domain
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The problem of whether the fourth implication is reversible was left open in
[23, Section 3]. The main result of this section (Theorem 3.2) solves this open
problem. For this purpose, recall from [28] the following: Let R be a domain and
I a nonzero ideal of R. An element x ∈ R is t-integral over I if there is an equation
xn + a1xn−1 + ...+ an−1x + an = 0 with ai ∈ (Ii)t ∀i = 1, ...,n. Consider the two sets:

Ĩ :=
{
x ∈ R | x is t-integral over I

}
Î :=

{
x ∈ R | I is a t-reduction of (I,x)

}
.

Ĩ is called the t-integral closure of I and is an integrally closed ideal [28, Theorem
3.2], on the other hand, it is not known if, in general, Î is an ideal (see Question 3.5
below). We always have

It ⊆ Ĩ ⊆ Î
where the first containment is trivial and the second is asserted by [28, Proposition
3.7] and can be strict as shown by [28, Example 3.10(a)]. However, for the trivial
operation, it is well-known that the equality Ĩ = Î always holds [26, Corollary
1.2.2]; this fact was used to show that the integral closure of an ideal is an ideal
[26, Corollary 1.3.1]. Finally, in order to put Theorem 3.2 into perspective, recall
the following important result.

Theorem 3.1 ([28, Theorem 3.5]). For a domain R, the following two assertions are
equivalent:

(i) It = Ĩ for each nonzero (finitely generated) ideal I of R;
(ii) R is integrally closed.

Now, to the main result of this section.

Theorem 3.2. For a domain R, the following assertions are equivalent:

(i) It = Î for each nonzero (finitely generated) ideal I of R;
(ii) R has the finite t-basic ideal property;

(iii) R has the finite v-basic ideal property.

The proof of this result requires the following two lemmas.

Lemma 3.3 ([23, Lemma 1.7]). Let R be a domain and let I be a finitely generated ideal
of R. If J ⊆ I is a t-reduction of I, then there exists a finitely generated ideal K ⊆ J such that
K is a t-reduction of I.

Note that, for any given ?-operation, ?-reductions of (integral) ideals can be
naturally extended to fractional ideals. The following lemma collects basic results
on ?-reductions of (fractional) ideals.

Lemma 3.4. For a domain R, let K ⊆ J ⊆ I and J′ ⊆ I′ be nonzero fractional ideals of R.
(1) If J and J′ are ?-reductions of I and I′, respectively, then J + J′ is a ?-reduction of

I + I′ and JJ′ is a ?-reduction of II′.
(2) If K is a ?-reduction of J and J is a ?-reduction of I, then K is a ?-reduction of I.
(3) If K is a ?-reduction of I, then J is a ?-reduction of I.
(4) J is a ?-reduction of I⇔ Jn is a ?-reduction of In.
(5) If J = (a1, ...,ak), then: J is a ?-reduction of I⇔ (an

1 , ...,a
n
k ) is a ?-reduction of In.

Proof. Substitute “?” for “t” and “fractional ideals” for “(integral) ideals” in the
proofs of [28, Lemmas 2.5, 2.6 and 2.7]. �
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Proof of Theorem 3.2. In view of the aforementioned diagram, we only need to prove
(i)⇔ (ii)⇒ (iii). First, let us prove that if the equality Î = It holds for all nonzero
finitely generated ideals then it holds for all nonzero ideals. Indeed, let I be an
ideal of R and x ∈ R such that I is a t-reduction of (I,x). So,

(I(I,x)n)t = ((I,x)n+1)t

for some positive integer n. Hence, xn+1
∈ (I(I,x)n)t. Whence, xn+1

∈ Av for some
finitely generated ideal A⊆ I(I,x)n. Moreover, there exist finitely generated subide-
als Fo,F1 . . . ,Fn of I such that

A ⊆ Fo(F1,x)(F2,x) · · · (Fn,x).

Set F :=
∑n

i=o Fi ⊆ I. Then, A ⊆ F(F,x)n and so

xn+1
∈ (F(F,x)n)v = (F(F,x)n)t.

It follows that
((F,x)n+1)t = (F(F,x)n,xn+1)t ⊆ (F(F,x)n)t.

Thus, F is a t-reduction of (F,x). Since F is finitely generated, then by hypothesis
x ∈ F̂ = Ft ⊆ It. Consequently, Î ⊆ It and, as mentioned above, the reverse inclusion
always holds by [28, Proposition 3.7].

Assume that R has the finite t-basic ideal property and let I be a finitely generated
ideal of R and x ∈ Î. Necessarily, It = (I,x)t which forces x ∈ It. Consequently, Î = It.
Conversely, assume that (i) holds. Let I := (a1, . . . ,an) be a nonzero finitely generated
ideal of R (n ≥ 1) and let J be a t-reduction of I. By Lemma 3.3, we may assume that
J is finitely generated. Clearly, we have

J ⊆ (J,a1, . . . ,an−1) ⊆ I.

By [28, Lemma 2.6], (J,a1, . . . ,an−1) is a t-reduction of I which can be regarded as(
(J,a1, . . . ,an−1),an

)
. Hence, by hypothesis, an ∈ ̂(J,a1, . . . ,an−1) = (J,a1, . . . ,an−1)t. It

follows that
It = (J,a1, . . . ,an−1)t.

But J, being a t-reduction of It, is also a t-reduction of (J,a1, . . . ,an−1). Therefore, we
re-iterate the above process by removing one generator at each step. Eventually,
we get It = Jt, as desired. This proves (i)⇔ (ii).

Assume that R has the finite t-basic ideal property and let I be a finitely generated
ideal of R and J a v-reduction of I. So

Jv =
⋂
λ∈Λ

(aλ)

where the (aλ)’s are the nonzero principal fractional ideals of R containing J by [17,
Theorem 34.1]. By Lemma 3.4, (aλ) = (J,aλ) is a v-reduction of (I,aλ) for each λ ∈Λ.
Hence (aλ) is a t-reduction of (I,aλ) as both ideals are finitely generated. Since R has
the finite t-basic ideal property, one can easily verify that every nonzero fractional
ideal of R is t-basic. Hence, (aλ) = (I,aλ)t for each λ ∈Λ. Therefore

Iv = It ⊆
⋂
λ∈Λ

(aλ) = Jv.

Hence, Iv = Jv; that is, I is v-basic. This proves (ii)⇒ (iii), completing the proof of
the theorem. �
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New examples of domains subject to the finite t-basic (equiv., v-basic) ideal
property will be provided in the next section. We close this section with the
following open question:

Question 3.5. Let I be a nonzero ideal, is Î always an ideal?

4. Transfer of the finite t-basic ideal property to pullbacks

Let us fix notation for this section. Let T be a domain, M a maximal ideal of T, K
its residue field, ϕ : T −→ K the canonical surjection, and D a proper subring of K
with quotient field k. Let R be the pullback issued from the following diagram of
canonical homomorphisms:

R −→ D
( � ) ↓ ↓

T
ϕ
−→ K = T/M.

So, R := ϕ−1(D) $ T. This section establishes necessary and sufficient conditions
for a pullback of type � issued from local domains to inherit the finite t-basic
(equiv., v-basic) ideal property. Recall, at this point, that a domain with the t-basic
ideal property is completely integrally closed [23, Proposition 1.4]. Therefore, by
[17, Lemma 26.5], a pullback of type � never has the t-basic ideal property.

It is worthwhile recalling that the finite t-basic ideal property lies between the
two notions of v-domain and integrally closed domain [23]; and that the finite
w-basic ideal property coincides with the PvMD property [23, Theorem 2.1]. Also,
the transfer of the notions of PvMD and v-domain to pullbacks was established,
respectively, by Fontana & Gabelli in [10] and by Gabelli & Houston in [14], which
summarizes as follows:

Theorem 4.1 ([10, Theorem 4.1] & [14, Theorem 4.15]). Let R be a pullback of type �.
Then, R is PvMD (resp., v-domain) if and only if T and D are PvMDs (resp., v-domains),
TM is a valuation domain, and k = K.

Finally, recall that if T is integrally closed, then the integral closure of R isϕ−1(D),
where D denotes the integral closure of D in K. This follows easily from the fact
that R and T have the same quotient field. Next, we announce the main result of
this section which allows us to enrich the literature with new families of examples,
putting the new class of domains subject to the finite t-basic ideal property strictly
between the two classes of v-domains and integrally closed domains.

Theorem 4.2. Let R be a pullback of type � such that T is local. Then, R has the finite
t-basic ideal property if and only if T and D have the finite t-basic ideal property and k = K.

Proof. Assume that R has the finite t-basic ideal property. We first prove that k = K.
Assume, by way of contradiction, that k $ K. By [14, Proposition 2.4], there is an
element x ∈ T \R with (R : (1,x)) = M. Hence

x2(R : (1,x)) = x2M ⊆ TM ⊆ R; i.e., x2
∈ (1,x)v.

Therefore, for any nonzero m ∈M, we have

x2m2
∈ (m2,xm2)v = (m2,xm2)t

and so
((m,xm)2)t = (m2,xm2)t = (m(m,xm))t
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forcing (m) to be a t-reduction of (m,xm) in R. Whence, (m,xm)t = (m). It follows
that xm ∈ (m) and thus x ∈ R, the desired contradiction. Next, we prove that T
has the finite t-basic ideal property. Below, we denote by v1 and t1 the v- and t-
operations with respect to T. Let I be a nonzero finitely generated proper ideal
of T and J a t-reduction of I. So (JIn)t1 = (In+1)t1 for some positive integer n. We
may assume, by Lemma 3.3, that J is finitely generated. If (In+1)v1 is principal; say,
(In+1)t1 = (In+1)v1 = (a) for some nonzero a ∈ T, then

aJt1 = (JIn+1)t1 = (In+2)t1 = aIt1

yielding Jt1 = It1 . Next, suppose that (JIn)v1 = (In+1)v1 is not principal. Since k = K,
then T is a localization of R (cf. [9, 27]). So, J = BT and I = AT, for some nonzero
finitely generated ideals B ⊆ A of R. By [14, Proposition 2.7(1)(b)], we obtain

(An+1)t = (An+1)v = (In+1)v1 = (In+1)t1 = (JIn)t1 = (JIn)v1 = (BAn)v = (BAn)t.

It follows that B is a t-reduction of A and thus Bt = At. By [29, Lemma 3.4], we get

Jt1 = (BtT)t1 = (AtT)t1 = It1 .

Therefore, in both cases, we showed that J is a trivial t-reduction of I, as desired.
Next, we show that D has the finite t-basic ideal property. Let A be a nonzero
finitely generated ideal of D and let B be a t-reduction of A. Let tD denote the
t-operation with respect to D. So, (BAn)tD = (An+1)tD for some positive integer n.
We may assume, by Lemma 3.3, that B is finitely generated. By [10, Corollary
1.7], I := ϕ−1(A) and J := ϕ−1(B) are two nonzero finitely generated ideals of R
(containing M). Since k = K, by [10, Proposition 1.6(a) & Proposition 1.8(a3)], we
obtain

(JIn)t = (ϕ−1(BAn))t = ϕ−1((BAn)tD ) = ϕ−1((An+1)tD ) = (ϕ−1(An+1))t = (In+1)t.

Hence J is a t-reduction of I and thus Jt = It. It follows that

BtD = ϕ(ϕ−1(BtD )) = ϕ(Jt) = ϕ(It) = ϕ(ϕ−1(AtD )) = AtD

completing the proof of the “only if” assertion.
Conversely, assume that T and D have the finite t-basic ideal property and k = K.

Notice that, in presence of the latter assumption, M cannot be finitely generated
[14, Lemma 4.1]. Also, recall that we always have Mv = M [22, Corollary 5]. Next,
let I be a nonzero finitely generated ideal of R and let J be a finitely generated
subideal of I with (JIn)t = (In+1)t for some positive integer n. By [15, Proposition
1.6], any ideal of R is comparable to M. So, we envisage two cases:
Case 1: Suppose that M$ I. We first claim that M$ In+1; otherwise, In+1

⊆M yields,
by [10, Proposition 1.1], T = (IT)n+1 = In+1T ⊆MT = M, absurd. Moreover, we have
M $ J; otherwise, we would have

J ⊆M $ In+1
⊆ Jt = Jv,

which is absurd. Further, we claim that M $ JIn; otherwise, JIn
⊆M yields via [10,

Proposition 1.1]
T = (JT)(IT)n = (JIn)T ⊆MT = M,

which is absurd. Now, let A := ϕ(I) and B := ϕ(J), two nonzero finitely generated
ideals of D. Therefore, by [10, Proposition 1.6(b) & Proposition 1.8(b3)], we get

(BAn)tD = (ϕ(JIn))tD = ϕ((JIn)t) = ϕ((In+1)t) = (ϕ(In+1))tD = (An+1)tD .
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Hence B is a t-reduction of A and thus BtD = AtD . It follows that

Jt = ϕ−1(ϕ(Jt)) = ϕ−1(BtD ) = ϕ−1(AtD ) = ϕ−1(ϕ(It)) = It.

Case 2: Suppose that I $M. If II−1 *M, then there is a nonzero x ∈ qf(R) with
M $ xI ⊆ R, hence xJt = xIt by Case 1, whence Jt = It. So, we may assume II−1

⊆M.
Now, note that (JIn)−1 = (In+1)−1. So, by [15, Proposition 2.2(1)], we have

(JInT)t1 = (JInT)v1

= ((JInT)−1)−1

= ((JIn)−1T)−1

= ((In+1)−1T)−1

= ((In+1T)−1)−1

= (In+1T)v1

= (In+1T)t1 .

Hence JT is a t-reduction of IT. It follows, via [15, Proposition 2.2(1)], that

J−1T = (JT)−1 = ((JT)v1 )−1 = ((JT)t1 )−1 = ((IT)t1 )−1 = ((IT)v1 )−1 = (IT)−1 = I−1T.

On the other hand, the assumption II−1
⊆M yields

(IT)(IT)−1 = II−1T ⊆MT = M.

Hence IT is not invertible and, a fortiori, not principal in T. Therefore, by [14,
Proposition 2.7(a)], we get

J−1
⊆ J−1T = I−1T = (IT)−1 = (M : I) = I−1

⊆ J−1.

Consequently, It = Iv = Jv = Jt, completing the proof of the theorem. �

Theorem 4.2 allows us to enrich the literature with new families of examples,
which put the class of domains subject to the finite t-basic ideal property strictly
between the two classes of integrally closed domains and v-domains.

Example 4.3. Consider any non-trivial pseudo-valuation domain R issued from
(V,M,k) with k algebraically closed in K := V/M. Then, R is an integrally closed
domain by [3, Theorem 2.1], which does not have the finite t-basic ideal property by
Theorem 4.2. Moreover, the two notions of reduction and t-reduction are distinct
in R by Proposition 2.5(2).

Example 4.4. Consider any pullback R of type � issued from (T,M,D) where
qf(D) = T/M, T is a non-valuation local v-domain, and D is a v-domain. Then, R
has the finite t-basic ideal property by [23, Proposition 1.6] and Theorem 3.2 and
Theorem 4.2, which is not a v-domain by [14, Theorem 4.15]. One can easily build
non-valuation local v-domains via pullbacks through [14, Theorem 4.15].

Here is a specific example, where we ensure, moreover, that the two notions of
reduction and t-reduction are distinct.

Example 4.5. Let T :=Q(X)[[Y,Z]] =Q(X)+M and R :=Z[X]+M. Clearly, T and D :=
Z[X] have the finite t-basic property (since they are Noetherian Krull domains). By
Theorem 4.2, R has the finite t-basic property. Also R is not a v-domain since T is a
non-valuation local domain. Next, let 0 , a ∈Z and consider the finitely generated
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ideal of R given by I := (a,X)Z[X] + M = aR + XR. Clearly I−1 = R and so (Is)−1 = R,
for every positive integer s. In particular, we have

(I2I)t = (I3)t = (I3)v = R = (I2)v = (I2)t

and hence I2 is a t-reduction of I. However, I2 is not a reduction of I; otherwise, if
In+2 = I2In = In+1, for some n ≥ 1, this would contradict [30, Theorem 76]. It follows
that the notions of reduction and t-reduction are distinct in R, as desired.

We close this section with the following two open questions.

Question 4.6. Is Theorem 4.2 valid for the classical pullbacks R = D + M issued
from T := K + M not necessarily local? The idea here is that (since k = K, then)
T = S−1R for S := D\ {0}. Clearly, the current proof of the “only if” assertion works
for this context.

Question 4.7. Is Theorem 4.2 valid for the non-local case through an additional
assumption on TM? The idea here is that, “(k = K and hence) RM = TM” is a necessity
for the finite t-basic property; and for the PvMD and v-domain notions, RM = TM
is a valuation domain. So, one needs to investigate this localization for the t-basic
ideal property in this context.
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[29] B. G. Kang, Prüfer v-multiplication domains and the ring R[X]Nv , J. Algebra 123 (1989) 151-170. 9
[30] I. Kaplansky, Commutative rings, The University of Chicago Press, Chicago, 1974. 11
[31] A. Mimouni, Integral domains in which each ideal is a w-ideal, Comm. Algebra 33 (2005) 1345–

1355. 5
[32] A. Mimouni, Integral and complete integral closures of ideals in integral domains, J. Algebra Appl.

10 (2011) 701–710. 5
[33] M. H. Park, Krull dimension of power series rings over a globalized pseudo-valuation domain, J.

Pure Appl. Algebra 214 (6) (2010) 862–866. 3

Department of Mathematics and Statistics, King Fahd University of Petroleum & Minerals,
Dhahran 31261, KSA

E-mail address: kabbaj@kfupm.edu.sa

Department of Mathematics and Statistics, King Fahd University of Petroleum & Minerals,
Dhahran 31261, KSA

E-mail address: g201004080@kfupm.edu.sa

Department of Mathematics and Statistics, King Fahd University of Petroleum & Minerals,
Dhahran 31261, KSA

E-mail address: amimouni@kfupm.edu.sa


	1. Introduction
	2. t-Reductions in pseudo-valuation domains
	3. Equivalence of the finite t- and v-basic ideal properties
	4. Transfer of the finite t-basic ideal property to pullbacks
	References



