
PRÜFER CONDITIONS IN THE NAGATA RING
AND THE SERRE’S CONJECTURE RING

M. JARRAR AND S. KABBAJ (⋆)

Abstract. The Nagata ring R(X) and the Serre’s conjecture ring R⟨X⟩ are two
localizations of the polynomial ring R[X] at the polynomials of unit content and at
the monic polynomials, respectively. In this paper, we contribute to the study of
Prüfer conditions in R(X) and R⟨X⟩. In particular, we solve the four open questions
posed by Glaz and Schwarz in Section 8 of their survey paper [38] related to the
transfer of Prüfer conditions to these two constructions.

1. Introduction

Throughout, R will denote a commutative ring with identity and X an indeter-
minate over R. The Nagata ring R(X) and the Serre’s conjecture ring R⟨X⟩ are
localizations of the polynomial ring R[X] at the polynomials of unit content and at
the monic polynomials, respectively; that is,

R(X) := S−1R[X], with S :=
{

f ∈ R[X] | c( f ) = R
}

R⟨X⟩ :=U−1R[X], with U :=
{

f ∈ R[X] | f is monic
}

where c( f ) denotes the content of the polynomial f (i.e., the ideal of R generated by
the coefficients of f ) and S is a multiplicatively closed set by the Dedekind-Mertens
lemma [42]. We have R[X] ⊂ R⟨X⟩ ⊂ R(X). Further, R(X) is a localization of R⟨X⟩
and both constructions are faithfully flat over the base ring R, and hence share
many ideal and ring-theoretic properties with R.

The construction R(X) appeared in Krull’s 1942 paper [48] and then was studied
by Nagata [54, 55] using the notation R(X). Later, it was investigated by Arnold
[9], Gilmer & Mott [32], Gilmer [31], Daniel Anderson [3, 4], Ratliff [59], and
then was named after Nagata by Querré in [57]. During the last three decades,
numerous works appeared in the literature dealing with various aspects of Nagata
rings; see for instance [2, 5, 6, 7, 8, 9, 11, 12, 16, 27, 28, 31, 34, 35, 38, 41, 45].
Note that the construction of Nagata ring is distinct from Grothendieck’s Nagata
rings (also called universally Japanese rings [40] or pseudo-geometric rings [55]).
The construction R⟨X⟩ appeared in Quillen-Suslin’s solution to Serre’s Conjecture
[60] proving that every finitely projective R[X1, ...,Xn]-module is free, when R is
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a principal ideal domain [58]. In 1978, Brewer and Costa extended this result to
one-dimensional Bézout domains [20]. In 1980, Querré devoted Section 4 of his
paper [57] to the study of divisorial ideals in rings of fractions of R[X] and proved,
among other results, that R and R⟨X⟩ have the same Picard group (resp., divisor
class group) when R is an integrally closed (resp. Krull) domain. Later in the same
year, le Riche [49] published a paper entirely devoted to the investigation of the
descent and ascent of ring-theoretic properties from and to R⟨X⟩ and R. In 1997, the
construction R⟨X⟩was named in [23] Serre’s conjecture ring. During the last three
decades, several papers appeared in the literature dealing with various aspects of
Serre’s conjecture rings; see for instance [5, 6, 21, 34, 35, 38, 52, 56, 63, 64].

Recall that R is semihereditary if every finitely generated ideal is projective [24];
R is arithmetical if every finitely generated ideal is locally principal [30, 44]; R is
Gaussian if c( f g) = c( f )c(g) ∀ f , g ∈ R[X] [62]; R is Prüfer if every finitely generated
regular ideal is projective [22, 39]; R is an fqp-ring if every finitely generated ideal
is quasi-projective [1, 26]; R is locally Prüfer if Rp is Prüfer for every prime ideal p
of R [18]; R is strongly Prüfer if every finitely generated ideal I of R with (0 : I) = 0
is locally principal [5, 51]. The following diagram of implications summarizes the
relations between the Prüfer conditions involved in this study:

R is semihereditary
⇓

w.dim(R) ≤ 1
⇓

R is arithmetical
⇓

R is an fqp-ring
⇓

R is Gaussian
w u

R is locally Prüfer R is strongly Prüfer
u w

R is Prüfer

Recall that all these notions collapse to the concept of Prüfer domain if R is
an integral domain. Also, notice that the above implications are irreversible, in
general, as shown by examples provided in [1, 13, 14, 15, 17, 18, 25, 36, 37, 38, 43, 50].
Further, as mentioned by Glaz and Schwarz in [38], the question of how the locally
Prüfer and strongly Prüfer conditions relate to each other is still open. Next,
we collect, in chronological order, some of the main known contributions on the
transfer of Prüfer conditions to Nagata and Serre’s conjecture rings in the literature.

In 1969, Arnold related the ideal theory of R to that of the Kronecker function ring
and the Nagata ring. One of his main results asserts that, in the class of integrally
closed domains, R(X) is a Prüfer domain if and only if so is R [9, Theorem 4]. In
1978, Brewer and Costa extended Quillen-Suslin’s result (cited above) to Bézout
domains with Krull dimension 1. They obtained this extension as a corollary of



PRÜFER CONDITIONS IN NAGATA AND SERRE’S CONJECTURE RINGS 3

their main result that, given an integral domain R which is not a field, R⟨X⟩ is
Prüfer (resp., Bézout) if and only if so is R and dim(R) = 1 [20, Theorem 1].

In 1980, le Riche published a paper entirely devoted to the study of the ascent and
descent of various ring-theoretic conditions between R and the Serre’s conjecture
ring. One section of this paper dealt with Prüfer domains and related rings. One
of the main results states that R⟨X⟩ is a semihereditary ring if and only if R is a
semihereditary ring with dim(R) ≤ 1 [49, Theorem 3.7].

In 1985, the Andersons and Markanda published a long paper on Nagata rings
and Serre’s conjecture rings, with one section dedicated to the transfer of the
arithmetical and Prüfer properties. They proved that R(X) is an arithmetical ring if
and only if so is R; and R⟨X⟩ is an arithmetical ring if and only if R is an arithmetical
ring with dim(R) ≤ 1[5, Theorem 3.1]. As for the Prüfer notion, they showed that
R(X) is a Prüfer ring if and only if R is a strongly Prüfer ring; and R⟨X⟩ is a Prüfer
ring if and only if R is a strongly Prüfer ring with dim(R) ≤ 1 and Rp is a field
whenever p $ q are prime ideals of R [5, Theorem 3.2].

In 1989, Glaz in [34] studied necessary and sufficient conditions for Nagata rings
and Serre’s conjecture rings to inherit coherence, and derived exact relations be-
tween the weak dimension of R and that of R(X) and R⟨X⟩when R a stably coherent
ring of finite weak dimension [34, Theorem 2]. As a consequence, she established
a transfer result for the semihereditary property to Nagata rings; namely, R(X) is a
semihereditary ring if and only if so is R [34, Corollary 3]. Recall that R is stably
coherent if R and R[X1, ...,Xn] are coherent for every n ≥ 1.

In 2011, Glaz and Schwarz published a comprehensive survey [38] on the study
of Prüfer conditions in various settings of commutative rings. Section 8 of this
survey was dedicated to Nagata rings and Serre’s conjecture rings; and featured
several open questions on the remaining conditions: Gaussian ring, locally Prüfer
ring, and ring with weak global dimension ≤ 1.

The objective of this paper is to contribute to the study of the ascent and descent
of Prüfer conditions to and from R to the Nagata ring R(X) and the Serre’s conjecture
ring R⟨X⟩. Our main objective is to address some open questions posed by Glaz
and Schwarz in Section 8 of their survey paper [38] related to the transfer of various
Prüfer conditions to these two constructions. As we have seen above, the transfer
of some Prüfer conditions is already known in the literature. Accordingly, we will
focus on the remaining notions of fqp-ring, Gaussian ring [38, Open Question 10],
locally Prüfer ring [38, Open Question 12], and ring with weak global dimension
≤ 1 [38, Open Question 9]. We will also address Open Question 11 of [38] about
the relationship between the locally Prüfer and strongly Prüfer conditions.

Throughout, for a ring R, w.dim(R) will denote the weak global dimension of R
and Z(R) and Nil(R) will denote, respectively, the set of zero divisors and nilradical
of R. For an ideal I of R, Ann(I) will denote the annihilator of I.
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2. Results

We first recall known results on the transfer of the Prüfer conditions to polynomial
rings. In 1973, McCarthy proved that a polynomial ring (with one indeterminate)
over a von Neumann regular ring is semihereditary [53, Theorem]. In 1974, Gilmer
and Parker [33] extended this result, in the more general context of semigroup
rings, to Bézout rings (i.e., every finitely generated ideal is principal). Namely, let
R be a ring and Γ a torsion-free cancellative Abelian semigroup with zero. They
proved that the semigroup ring R[Γ] is Prüfer if and only if R[Γ] is Bézout if and
only if R is von Neumann regular and (up to isomorphism) either Γ is a subgroup
of Q containing Z or Γ = G∩Qo where G is a subgroup of Q containing Z and Qo

denote the additive semigroup of nonnegative rationals (see also [3, Theorem 6]
and [19, Theorem 15]). Consequently, in the particular case of Γ =N, we obtain:

Remark 2.1. The following assertions are equivalent:

(1) R is von Neumann regular;
(2) R[X] is semihereditary;
(3) w.dim(R[X]) ≤ 1;
(4) R[X] is arithmetical;
(5) R[X] is fqp;
(6) R[X] is Gaussian;
(7) R[X] is Prüfer.

The first main result solves [38, Open Question 10] by establishing the transfer
of the Gaussian property to Nagata and Serre’s conjecture rings. Recall that a ring
R is Gaussian if c( f g) = c( f )c(g) for any two polynomials f and g in R[X]. Also,
from [15, Theorem 2.2], a local ring is Gaussian if and only if, for any two elements
a,b in the ring, the following two properties hold:

(G1) (a,b)2 = (a2) or (b2), and
(G2) if (a,b)2 = (a2) and ab = 0, then b2 = 0.

Note, at this point, that in the proof of the Prüfer case for Serre’s conjecture rings
[5, Theorem 3.2(2)], the authors wrote at the end of the proof “It now follows as in
(2) of Theorem 3.1 that RPo is a field. This shows that both dim(R) ≤ 1 and RP is a field
if P $ Q are prime ideals of R.” But in the proof of Theorem 3.1, they used the fact
“dim(R) ≤ 1” to prove that RP is a field. So, in the next result, we cannot conclude
from [5, Theorem 3.2(2)(⇒)] that Rp is a field for every non-maximal prime ideal p
of R if R⟨X⟩ is Gaussian (hence Prüfer).

Theorem 2.2. Let R be a ring. Then:

(1) R(X) is Gaussian if and only if R is Gaussian.
(2) R⟨X⟩ is Gaussian if and only if R is Gaussian and Rp is a field for every non-

maximal prime ideal p of R.
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Proof. (1) Recall first that the Gaussian property is local and there is a one-to-one
correspondence between the maximal ideals of R and the maximal ideals of R(X)
given by m←→ mR(X). Further, for any prime ideal p of R, we have the natural
isomorphisms:

Rp(X) = R[X]p[X] = R(X)pR(X).

Therefore, we can reduce to the case where R (or, equiv., R(X)) is local. Assume
R(X) is Gaussian and let I := (a,b)R. Hence, by [5, Theorem 2.2(1)], we have

I2 = I2R(X)∩R
=
(
(a2)R(X) or (b2)R(X)

)
∩R

= (a2) or (b2).

Whence (G1) holds, and so does (G2) since R ⊂ R(X); that is, R is Gaussian.
Conversely, assume R is Gaussian and let f , g ∈ R[X] with f = anXn+ ...+ a0 and

g = bmXm+ ...+b0. The fact that R satisfies (G1) yields

aia j ∈ (a2
i ,a

2
j ) ⊆ (a2

1, ...,a
2
n)

for all 1 ≤ i ≤ j ≤ n; and hence
(
c( f )
)2
= (a2

k) for some k ∈ {1, ...,n}. Similarly, we get(
c(g)
)2
= (b2

l ) for some l ∈ {1, ...,m}. It follows that

f 2 = a2
kh and g2 = b2

l h′

where h and h′ are units in R(X). Moreover, for any i := 1, ...,n and j := 1, ...,m, we
have

aib j ∈ (a2
i ,b

2
j ) ⊆ (a2

k ,b
2
l ) ⊆ (ak,bl)2 = (a2

k) or (b2
l ).

Consequently, we obtain

( f , g)2R(X) = ( f 2) or (g2)

and so (G1) holds for R(X). Now, assume f g = 0. Therefore c( f )c(g) = c( f g) = 0
which yields akbl = 0. This forces a2

k = 0 or b2
l = 0; that is, f 2 = 0 or g2 = 0. Thus R(X)

satisfies (G2), as desired.
(2) (⇐) In this direction, the proof makes use of localization similarly to the

arithmetical case [5, Theorem 3.1(2)]. Indeed, let M be a maximal ideal of R⟨X⟩.
Then, either M =m⟨X⟩ :=mR⟨X⟩ for some maximal ideal m of R or M = PR⟨X⟩ for
some prime ideal P of R[X] which is an upper to a non-maximal prime ideal p of
R. In the first case, the ring

R⟨X⟩M � R[X]m[X] � Rm(X)

is Gaussian by (1). In the second case, the ring

R⟨X⟩M � R[X]P � Rp[X]PRp

is Gaussian (in fact, principal) since Rp is a field.
(⇒) Assume that R⟨X⟩ is Gaussian. Then, R(X), being a localization of R⟨X⟩,

is Gaussian and so is R by (1). Now, let po be a minimal prime of R such that
dim(R) = dim( R

po
). Then, the ring R

po
⟨X⟩, being isomorphic to R⟨X⟩

po⟨X⟩ , is a Gaussian
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domain (i.e., Prüfer domain) since the Gaussian property is stable under factor
rings. It follows, via [20, Theorem 1], that dim(R) = dim( R

po
) ≤ 1.

Next, let p $m be a pair of prime ideals of R. Then, dim(Rp) = 0. We prove that
Rp is a domain (and, a fortiori, a field). For this purpose, recall that Rm⟨X⟩ is a
localization of R⟨X⟩ [5, Lemma 2.5] and Rp � (Rm)pRm . Therefore, without loss of
generality, we may assume that (R,m) is a one-dimensional local Gaussian ring.
In this setting, the prime ideals of R are totally ordered by inclusion and hence
p =Nil(R) is its unique minimal prime ideal; that is, R

p is a valuation domain [15,

p. 183]. Let a ∈ m\p. Then aX+ 1̄ is an irreducible element of R
p [X]. Since R

p [X]

is a GCD domain, aX+ 1̄ is prime in R
p [X] [10]. It follows that Q = (p[X],aX+ 1)

is a prime ideal of R[X]. Moreover, R[X]Q, being a localization of R⟨X⟩, is a local
Gaussian ring. Therefore, its prime ideals are totally ordered by inclusion and,
necessarily, we have

P[X]Q ⊆ (aX+1)Q.

At this point, we conclude that Rp is a domain via the same arguments used at the
end of the proof of the arithmetical case [5, Theorem 3.1(2)]. �

Remark 2.3. Observe that if Rp is a field for every non-maximal prime ideal p of
R, then necessarily dim(R) ≤ 1; and the two conditions coincide trivially in the
domain case. So, Theorem 2.2 extends the classic results on Prüfer domains.

As a consequence of Theorem 2.2, the next result solves [38, Open Question 9]
by establishing conditions on R to force the weak global dimension of R(X) (resp.,
R⟨X⟩) to be at most 1.

Corollary 2.4. Let R be a ring. Then:

(1) w.dim(R(X)) ≤ 1 if and only if w.dim(R) ≤ 1.
(2) w.dim(R⟨X⟩) ≤ 1 if and only if w.dim(R) ≤ 1 and Rp is a field for every non-

maximal prime ideal p of R.

Proof. Recall first Glaz’s well-known result that w.dim(R) ≤ 1 if and only if R is
a Gaussian reduced ring [36, Theorem 2.2]. Further, since Nil(R(X)) = Nil(R)(X)
and Nil(R⟨X⟩) = Nil(R)⟨X⟩, then R(X) (resp., R⟨X⟩) is reduced if and only if so is
R. Thus, this fact combined with Theorem 2.2 leads to the conclusion via Glaz’s
aforementioned result. �

The second main result establishes the transfer of the fqp property to Nagata and
Serre’s conjecture rings. For this purpose, recall that an ideal is quasi-projective if it
is projective modulo its annihilator; and R is an fqp-ring if every finitely generated
ideal of R is quasi-projective [1]. The fqp condition is stable under formation of
rings of fractions [1, Lemma 3.6]. However, very recently, Couchot proved that it
is not a local property [26, Example 4.6]; and called R an fqf-ring if every finitely
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generated ideal of R is flat modulo its annihilator (or, equiv., if R is locally an
fqp-ring) [26]. Accordingly, we have

fqp-ring⇒ fqf-ring⇒ Gaussian

and the fqp and fqf conditions coincide in the class of coherent rings [26, Proposition
4.4] or [1, Corollary 3.15]. Recall that R is called a chained ring if R is local and
arithmetical (i.e., its ideals are linearly ordered with respect to inclusion).

Theorem 2.5.

(1) Let R be a local ring. Then:
(a) R(X) is an fqp-ring if and only if so is R.
(b) R⟨X⟩ is an fqp-ring if and only if so is R and Rp is a field for every non-maximal

prime ideal p of R.
(2) Let R be a ring. Then:

(a) R(X) is an fqf-ring if and only if so is R.
(b) R⟨X⟩ is an fqf-ring if and only if so is R and Rp is a field for every non-maximal

prime ideal p of R.

The proof of this theorem involves the next two lemmas which are of indepen-
dent interest. The first lemma combines and completes [1, Lemma 4.5] and [61,
Theorem 2].

Lemma 2.6. Let R be a local ring which is not a chained ring. Then, the following
assertions are equivalent:

(1) R is an fqp-ring;
(2) R is a Prüfer ring with Z(R) =Nil(R) and (Z(R))2 = 0.

Proof. (1)⇒ (2) This is handled by [1, Lemma 4.5] and [61, Theorem 2]. Note that
the latter result is listed as Lemma 3.12 in [1].

(2)⇒ (1) Let I := (a1, ...,an) be a finitely generated ideal of R. We need to prove
that I is quasi-projective. Suppose that there exists i ∈ {1, ...,n} such that ai is regular
in R. Then, I is projective since R is Prüfer. Next, suppose that ai ∈ Z(R) for all
i ∈ {1, ...,n}. One can check that, for each i ∈ {1, ...,n}, the combination of the two
assumptions Z(R) =Nil(R) and (Nil(R))2 = 0 yields

Ann(ai) =Nil(R).

It follows that

I �
n⊕

i=1

R
Ann(ai)

=

n⊕
i=1

R
Nil(R)

.

However,
R

Nil(R)
, being a cyclic R-module, is an R-quasi-projective module [47]

(or [1, Lemma 3.4]). Consequently, by [29, Corollary 1.2] (or [1, Lemma 3.5]), I is
quasi-projective. �
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Remark 2.7. (1) It is worthwhile observing that in the proof of (2)⇒ (1) we do not
need the fact that R is local. Precisely, if R is a Prüfer ring with Z(R) =Nil(R) and
(Nil(R))2 = 0, then R is an fqp-ring.

(2) Assume R is a total ring of quotients. Then, R is an fqp-ring if and only if R is
a chained ring or (Z(R))2 = 0. The “if” assertion is handled by [1, Theorem 3.2] and
[1, Lemma 4.6].

Lemma 2.8. Let R be a ring. Then, the following assertions are equivalent:

(1) Z(R) =Nil(R);
(2) Z(R[X]) =Nil(R[X]);
(3) Z(R(X)) =Nil(R(X));
(4) Z(R⟨X⟩) =Nil(R⟨X⟩).

Proof. (1)⇒ (2)⇒ (3)⇒ (1) Suppose that Z(R) =Nil(R). Then, we have

Z(R[X]) ⊆ Z(R)[X]

= Nil(R)[X]

= Nil(R[X])

⊆ Z(R[X]).

Therefore, Z(R[X]) =Nil(R[X]) and hence, for S :=
{

f ∈ R[X] | c( f ) = R
}
, we get

S−1 Z(R[X]) = S−1 Nil(R[X])

= Nil(R(X))

⊆ Z(R(X))

⊆ S−1 Z(R[X]).

That is, Z(R(X)) =Nil(R(X)). Now, suppose that Z(R(X)) =Nil(R(X)). Then, by the
fact R ⊆ R(X) and [5, Theorem 2.2(1)], we obtain

Z(R) ⊆ R∩Z(R(X))

= R∩Nil(R(X))

= R∩Nil(R)(X)

= Nil(R)

⊆ Z(R).

That is, Z(R) =Nil(R).
(2) ⇒ (4) ⇒ (1) Conclude using the above arguments applied to the Serre’s

conjecture ring with S :=
{

f ∈ R[X] | f is monic
}
. �

Proof of Theorem 2.5. (1)(a) In view of [5, Theorem 3.1(1)] and the one-to-one
correspondence between the maximal ideals of R and those of R(X), R is a chained
ring if and only if so is R(X). Hence, it remains to prove the theorem for non-
chained local rings. For this purpose, note that if R (resp., R(X)) is an fqp-ring, then
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by Theorem 2.2 R(X) (resp., R) is Gaussian and, a fortiori, Prüfer. Further, notice
that the fact Nil(R(X)) =Nil(R)(X) and [5, Theorem 2.2(1)] yield (Nil(R))2 = 0 if and

only if
(
Nil(R(X))

)2
= 0. Consequently, a combination of Lemmas 2.6 and 2.8 lead

to the conclusion, completing the proof of (1).
(b) Notice that, similarly to Nagata rings, the fact Nil(R⟨X⟩) =Nil(R)⟨X⟩ and [5,

Theorem 2.2(1)] yield (Nil(R))2 = 0 if and only if
(
Nil(R⟨X⟩)

)2
= 0. Next, assume

that R is an fqp-ring. If R is a chained ring, we appeal to [5, Theorem 3.1.(2)]. If
R is not a chained ring, as above, we conclude via a combination of Theorem 2.2,
Remark 2.7, and Lemma 2.8. Note that the use of Remark 2.7 is incumbent here
since R⟨X⟩ is not necessarily local. Conversely, assume that R⟨X⟩ is an fqp-ring.
Then, R(X), being a localization of R⟨X⟩, is an fqp-ring [1, Lemma 3.6] and so is R
by (1). By Theorem 2.2(2), Rp is a field for every non-maximal prime ideal p of R.

(2) This is a global version of (1) which is readily obtained via the correspondence
between the maximal ideals of R(X) (resp., R⟨X⟩) and the maximal ideals of R (resp.,
the maximal ideals and non-maximal prime ideals of R, as exhibited in the proof
of (⇐) of Theorem 2.2(2)). �

Next, we address [38, Open Question 12] about the transfer of the locally Prüfer
condition to Nagata and Serre’s conjecture rings. In this vein, observe that this
notion transfers readily from R(X) or R⟨X⟩ to R, as shown below.

Remark 2.9. Let R be a ring. If R(X) (resp., R⟨X⟩) is locally Prüfer, then so is R.
Indeed, for any prime ideal p of R, R(X)p(X) (resp., R⟨X⟩p⟨X⟩) is isomorphic to Rp(X);
and then conclude, via [5, Theorem 3.2(1)], that Rp is strongly Prüfer and hence
Prüfer; that is, R is locally Prüfer. The converse is not true, in general. Indeed, let k
be a field, X1,X2 two indeterminates over k, A := k[X1,X2], and B := ⊕(A/p), where
p ranges over the set of height-one prime ideals of A. Let R := AnB be the trivial
ring extension of A by B. Then, R is the ring of Example 27.19 of [43], where it
was shown that it is Prüfer but not strongly Prüfer. Moreover, R is also the ring of
Example 13 of [46], where it was shown that, in fact, it is locally Prüfer. However,
R(X) and, a fortiori, R⟨X⟩ are not locally Prüfer by [5, Theorem 3.2(1)].

We close this paper by discussing the second part of [38, Open Question 11]
about how the locally Prüfer condition and strongly Prüfer condition relate to each
other. (The first part of this open question asks about the possible transfer of the
strongly Prüfer condition to pullbacks which is not the object of this paper.) We,
now, know for sure that the class of locally Prüfer rings and the class of strongly
Prüfer rings are distinct. Indeed, on one hand, as seen above, [46, Example 13]
features a ring which is locally Prüfer but not strongly Prüfer. On the other hand,
one can build numerous examples of strongly Prüfer rings which are not locally
Prüfer via trivial ring extensions of local rings by vector spaces over their residue
fields, as shown below.
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Example 2.10. Let (A,m) be a local ring and E a nonzero A
m

-vector space. Let
R := AnE be the trivial ring extension of A by E. Then R is always a local strongly
Prüfer ring since the annihilator of its maximal ideal mnE contains 0nE (so that
there is no faithful ideal in R). If, in addition, A is supposed to be Prüfer, then
R is locally Prüfer if and only if so is A: Indeed, let p $ m be a prime ideal of A.
Necessarily, Ep = 0. By [26, Lemma 1.3], RpnE =ApnEp =Apn0 �Ap, leading to the
conclusion. Now, let k be a field and X1,X2,X3,X4 indeterminates over k. Let

B :=
k[X1,X2,X3,X4]

(X2
1,X1X2,X1X3,X1X4)

and m := (x1,x2,x3,x4), where xi := Xi for i := 1, ...,4. Then A := Bm is a local Prüfer
ring that is not locally Prüfer [18, Example 2.4] (see also [38, Example 3.16]).
Consequently, for any nonzero A

m
-vector space E, R := AnE is a local strongly

Prüfer ring that is not locally Prüfer. Notice that A itself is strongly Prüfer (since
its maximal ideal has nonzero annihilator).
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