
?-REDUCTIONS OF IDEALS AND PRÜFER
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ABSTRACT. Let R be a commutative ring and I an ideal of R. An ideal J ⊆ I is a reduction
of I if JIn = In+1 for some positive integer n. The ring R has the (finite) basic ideal property
if (finitely generated) ideals of R do not have proper reductions. Hays characterized (one-
dimensional) Prüfer domains as domains with the finite basic ideal property (basic ideal
property). We extend Hays’ results to Prüfer v-multiplication domains by replacing “basic”
with “w-basic,” where w is a particular star operation. We also investigate relations among
?-basic properties for certain star operations ?.

INTRODUCTION

Throughout, all rings considered are commutative with identity. Let R be a ring and I an
ideal of R. An ideal J ⊆ I is a reduction of I if JIn = In+1 for some positive integer n [15].
An ideal that has no reduction other than itself is called a basic ideal [7]. The notion of re-
duction was introduced by Northcott and Rees, who stated: “First, it defines a relationship
between two ideals which is preserved under homomorphisms and ring extensions; sec-
ondly, what we may term the reduction process gets rid of superfluous elements of an ideal
without disturbing the algebraic multiplicities associated with it” [15]. For both early and
recent developments on reduction theory, we refer the reader to [10, 7, 8, 11, 15, 16, 17, 18].

In [7, 8], Hays investigated reductions of ideals in commutative rings with a particular
focus on Prüfer domains. He studied the notion of basic ideal and examined domains
subject to the basic ideal property (i.e., every ideal is basic). This class is shown to be
strictly contained in the class of Prüfer domains (domains in which every nonzero finitely
generated ideal is invertible); and a new characterization for Prüfer domains is provided;
namely, a domain is Prüfer if and only if it has the finite basic ideal property (i.e., every
finitely generated ideal is basic) [7, Theorem 6.5]. The second main result of these two
papers characterizes domains with the (full) basic ideal property as one-dimensional Prüfer
domains ([7, Theorem 6.1] combined with [8, Theorem 10]). Our primary goal is to extend
Hays’ results to Prüfer v-multiplication domains (PvMDs).

Let R be a domain and I a nonzero fractional ideal of R. The v- and t-closures of I
are defined, respectively, by Iv := (I−1)−1 and It := ∪Jv, where J ranges over the set of
finitely generated subideals of I. Recall that I is a t-ideal if It = I and a t-finite (or v-
finite) ideal if there exists a finitely generated fractional ideal J of R such that I = Jt = Jv;
and R is called a Prüfer v-multiplication domain (PvMD) if the set of its t-finite t-ideals
forms a group under ideal t-multiplication ((I,J) 7→ (IJ)t ). A useful characterization is
that R is a PvMD if and only if each localization at a maximal t-ideal is a valuation domain
[6, Theorem 5]. The class of PvMDs strictly contains the classes of factorial and Prüfer
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domains. The t-operation is nowadays a cornerstone of multiplicative ideal theory and has
been investigated thoroughly by many commutative algebraists since the 1980’s.

For the convenience of the reader, the following figure displays a diagram of impli-
cations summarizing the relations among many well-studied classes of domains, putting
PvMDs in perspective. In the diagram, classes on top become the classes directly under-
neath by means of replacing the definitions with a corresponding t-version. For example, a
GCD-domain is a domain in which It is principal for each nonzero finitely generated ideal
I, and a PvMD is a domain in which each nonzero finitely generated ideal is t-invertible.

?

HHH
HHH

HHH
HHHj

���
���

���
����

?

H
HHHH

HHH
HHHHj ?

�
����

���
�����

H
HHH

HHH
HHHHHj

�
���

���
���

���
HH

HHH
HHH

HHHHj

��
���

���
�����?

qPrincipal

qDedekind qFactorial q Bézout
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q
PvMD

FIGURE 1. PvMDs in perspective

The t- and v-operations are examples of star operations (defined below). We also require
the w-operation: for a nonzero ideal fractional I of a domain R, Iw =

⋃
(I : J), where the

union is taken over all finitely generated ideals J of R that satisfy Jv = R; equivalently,
Iw =

⋂
IRM , where the intersection is taken over the set of maximal t-ideals of R. It follows

that for each I and maximal t-ideal M, we have IwRM = IRM . (This can be done in greater
generality–see [1].) In the diagram above, one can replace “t” by “w” to go from top to
bottom.

In Section 1 we discuss the notion of ?-basic ideals and prove that a domain with the
finite ?-basic ideal property (?-basic ideal property) must be integrally closed (completely
integrally closed). We also observe that a domain has the v-basic ideal property if and only
if it is completely integrally closed. Section 2 is devoted to generalizing Hays’ results; we
show that a domain has the finite w-basic ideal property (w-basic ideal property) if and only
if it is a PvMD (of t-dimension one). In Section 3, we present a diagram of implications
among domains having various ?-basic properties and give examples showing that most of
the implications are not reversible. For example, a domain with the w-basic ideal property
must also have the t-basic ideal property and a v-domain must have the finite v-basic ideal
property, but neither implication is reversible.

Notation is standard, as in [5]. In particluar, for a domain D with quotient field K and
submodules A,B of K, we use (A : B) to denote the D-module {x ∈ K | xB⊆ A}.
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1. ?-BASIC IDEALS

Let R be a domain with quotient field K, and let F (R) denote the set of nonzero frac-
tional ideals of R. A map ? : F (R)→F (R), I 7→ I?, is said to be a star operation on R
if the following conditions hold for every nonzero a ∈ K and I,J ∈F (R): (1) (aI)? = aI?

and R? = R; (2) I ⊆ I? and I ⊆ J implies I? ⊆ J?; and (3) I?? = I?. It is common to denote
the trivial star operation (I 7→ I) by “d.”

Definition 1.1. Let R be an integral domain and ? a star operation on R. Let I be a nonzero
ideal of R.

(1) An ideal J ⊆ I is a ?-reduction of I if (JIn)? = (In+1)? for some integer n≥ 0. The
ideal J is a trivial ?-reduction of I if J? = I?.

(2) I is ?-basic if it has no ?-reduction other than the trivial ?-reduction(s).
(3) R has the ?-basic ideal property if every nonzero ideal (or, equivalently, every

?-ideal) of R is ?-basic.
(4) R has the finite ?-basic ideal property if every nonzero finitely generated ideal (or,

equivalently, every ?-finite ideal) of R is ?-basic.

It is clear that ?-reductions can be extended to fractional ideals; in particular, if R has
the ?-basic ideal property, then every nonzero fractional ideal of R is ?-basic.

It is easy to see that if ?1 ≤ ?2 are star operations on a domain R (meaning that I?1 ⊆ I?2

for each I ∈F (R)), then each ?1 reduction of an ideal is also a ?2-reduction. The converse
is false. In particular, a t-reduction may not be a (d-)reduction. For a very simple example,
let R = k[x,y] be a polynomial ring in two indeterminates over a field k, and let M = (x,y).
Then M is basic, i.e., M has no reductions other than itself [7, Theorem 2.3]. On the other
hand, Mt = R (see, e.g., [13, Exercise 1, p. 102]), from which it follows that any power of
M is a (trivial) t-reduction of M. (We give a “better” example following Proposition 1.4
below.)

Lemma 1.2. In an integral domain R, ?-invertible ideals and ?-idempotent ideals are ?-
basic.

Proof. Let J ⊆ I be a ?-reduction of the ideal I of R, so that (JIn)? = (In+1)? for some
positive integer n. If I is ?-invertible, then multiplication by (I−1)n and taking ?-closures
immediately yields J? = I?. Next, assume that (I2)? = I?. Then I? = (In+1)? = (JIn)? ⊆
J? ⊆ I? so that, again, J? = I?, as desired. �

Lemma 1.3. (cf. [7, Lemma 6.4]) Let ? be a star operation on a domain R. If R has the
finite ?-basic ideal property, then R is integrally closed.

Proof. Let x,y ∈ R be such that x/y is integral over R. As in the proof of [7, Lemma 6.4],
(y) is a reduction of (x,y). We then have x ∈ (x,y)? = (y)? = (y), whence x/y ∈ R. �

Recall that a domain R is said to be completely integrally closed if every nonzero ideal
of R is v-invertible.

Proposition 1.4. Let ? be a star operation on an integral domain R.
(1) If R has the ?-basic ideal property, then R is completely integrally closed.
(2) R has the v-basic ideal property if and only if R is completely integrally closed.

Proof. (1) Assume R has the ?-basic ideal property. Let I be a nonzero ideal of R and set
J := II−1. It is well known that J−1 = (J : J), and hence J−1 is a ring. Now, let 0 6= a ∈ J
and set A := aJ−1 and B := aR. Clearly, A and B are v-ideals of R with B⊆ A and BA = A2.
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That is, B is a reduction (and, a fortiori, a ?-reduction) of A. By the ?-basic hypothesis,
aJ−1 = A? = B? = aR, whence R = J−1. Therefore, (II−1)v = Jv = R, as desired.

(2) The “only if” assertion is a special case of (1), and the converse is handled by
Lemma 1.2. �

Next, we give an example of t-ideals I,J in a Noetherian domain R such that J is a
t-reduction, but not a d-reduction, of I. Since the v- and t-operations coincide in any
Noetherian domain, such an R cannot be (completely) integrally closed by Proposition 1.4.

Example 1.5. Again let k be a field and x,y indeterminants over k. Let T = k[x,y] = k+M,
where M = (x,y)T . Now let R = k+M2. Observe that R is Noetherian (see, e.g., [2]). As
in the discussion preceding Lemma 1.2, as an ideal of T , M has no reductions other than
itself. In particular, M2 is not a reduction of M in T , and it follows easily that M2 is not
a reduction of (the fractional ideal) M in R. However, we claim that M2 is a nontrivial t-
reduction of M. To verify this, proceed as follows. First, we have (T : M) = T (as before).
It follows that M ⊆M−1 (= (R : M)) ⊆ T . On the other hand, if f ∈ T satisfies f M ⊆ R,
then, writing f = a+m with a∈ k and m∈M, we immediately obtain that aM⊆R, whence
a = 0, i.e., f ∈M. Thus M−1 = M, whence also Mt = Mv = M. However, (R : T ) = M2,
whence (M2)−1 = ((R : M) : M) = (M : M) = T and then (M2)t = (M2)v = (R : T ) = M2.
A similar argument yields (Mn)t = M2 for n ≥ 2. Hence M2 = (M3)t = (M2M)t , and
therefore J := M2 is a nontrivial t-reduction of I := M, as claimed. (To obtain an example
involving integral ideals, replace M by xM and M2 by xM2.) �

We recall that a domain R is a v-domain if each nonzero finitely generated ideal of R is
v-invertible. From Lemma 1.2, the following is immediate:

Proposition 1.6. A v-domain has the finite v-basic ideal property. �

Now recall that to any star operation ? on a domain R, we may define an associated
star operation ? f by setting, for each I ∈F (R), I? f =

⋃
J?, the union being taken over all

finitely generated subideals J of I; the star operation ? has finite type if ? = ? f . Note that
v f = t. If ? is a finite-type star operation on a domain R, then minimal primes of ?-ideals
are themselves ?-ideals and each ?-ideal is contained in a maximal ?-ideal.

Lemma 1.7. Let ? be a star operation of finite type on an integral domain R. If I is a
finitely generated ideal of R and J is a ?-reduction of I, then there is a finitely generated
ideal K ⊆ J such that K is a ?-reduction of I.

Proof. Suppose that I is a finitely generated ideal of R and that (JIn)? = (In+1)? for some
ideal J ⊆ I and some positive integer n. Suppose that In+1 is generated by b1, ...,br in R.
Since bi ∈ (JIn)?, there is a finitely generated subideal Ki of J such that bi ∈ (KiIn)?. For
K = ∑

r
i=1 Ki, we then have In+1 ⊆ (KIn)?, as desired. �

Proposition 1.8. If a domain R has the finite ?-basic ideal property, then R also has the
finite ? f -basic ideal property. In particular, if R has the finite v-basic ideal property, then
R also has the finite t-basic ideal property.

Proof. Let R be a domain with the ?-basic ideal property. Let I be a finitely generated
ideal of R, and let J be a ? f -reduction of I. By Lemma 1.7 we may assume that J is finitely
generated. Since J is also a ?-reduction of I, we have J? f = J? = I? = I? f . Hence R has the
? f -basic ideal property. �

Corollary 1.9. A v-domain has the finite t-basic ideal property. �
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2. CHARACTERIZATIONS

We begin with an analogue of Hays’ first result that a domain is a Prüfer domain if
and only if it has the finite basic ideal property. We shall need a result of Kang [12,
Theorem 3.5] that characterizes PvMDs as integrally closed domains in which the t- and
w-operations coincide. We denote the set of maximal t-ideals of a domain R by Maxt(R).

Theorem 2.1. (cf. [7, Theorem 6.5]) A domain R is a PvMD if and only if it has the finite
w-basic ideal property.

Proof. If R is a PvMD, then, as mentioned above, the t- and w-operations coincide, and R
has the finite w-basic ideal property by Corollary 1.9.

Now assume that R has the finite w-basic ideal property. Then R is integrally closed by
Lemma 1.3. Let M ∈Maxt(R), and let a,b ∈ M. Since (a2,b2) is a reduction of (a,b)2,
we have (a2,b2)w = ((a,b)2)w and hence (as mentioned in the introduction) (a2,b2)RM =
(a,b)2RM . Thus RM is a valuation domain [5, Theorem 24.3(4)]. Therefore, R is a PvMD.

�

Hays proved that, in a Prüfer domain, the definition of a reduction can be restricted;
namely, J ⊆ I is a reduction if and only if JI = I2 [8, Proposition 1]. The next lemma
establishes a similar property for t-reductions and also shows that this notion is local in the
class of PvMDs. It is useful to note if J is a t-reduction of an ideal I, then a prime t-ideal of
R contains I if and only if it contains J. We shall also need the fact (which follows easily
from [19, Lemma 4] and is stated explicitly in [12, Lemma 3.4]), that if I is a nonzero ideal
of a domain R and S is a multiplicatively closed subset of R, then (ItRS)tRS

= (IRS)tRS
.

Lemma 2.2. Let R be a PvMD and J ⊆ I nonzero ideals of R. Then, the following asser-
tions are equivalent:

(1) J is a t-reduction of I;
(2) JRMIRM = (IRM)2 for each M ∈Maxt(R);
(3) (JI)t = (I2)t .

Proof. (1) ⇒ (2) Assume that J is a t-reduction of I, so that (JIn)t = (In+1)t for some
positive integer n, and let M ∈Maxt(R). Since RM is a valuation domain, the t-operation
is trivial on RM (tRM = dRM ). Using this and the remarks above, we have

In+1RM = ((In+1)tRM)tRM
= ((JIn)tRM)tRM

= JInRM.

Hence JRM is a t-reduction of IRM in RM , and so JRMIRM = (IRM)2 by [8, Proposition 1].
(2)⇒ (3) By [12, Theorem 3.5], we have

(JI)t =
⋂

M∈Maxt (R)

JIRM =
⋂

M∈Maxt (R)

(I2RM) = (I2)t .

(3)⇒ (1) is trivial. �

Lemma 2.3. (cf. [8, Lemma 9]) Let x be a nonzero element of a PvMD R, let P be a
minimal prime of xR, and let I = xRP∩R. Then

(1) I is a w-ideal of R,
(2) xR+ I2 is a w-reduction of I, and
(3) if I is w-basic, then P ∈Maxt(R).

Proof. (1) - (2) Let M be a maximal t-ideal of R containing P. Then Iw ⊆ IRM ∩ R ⊆
IRP ∩R = I, proving (1). We next claim that IRM = IRP ∩RM . To see this, suppose that
y ∈ IRP∩RM . Then we may write y = a/s = b/t with a ∈ I, b ∈ R, s ∈ R\P and t ∈ R\M.
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We then have b = at/s ∈ IRP ∩R = I, and hence y = b/t ∈ IRM , as desired. Now, for
s ∈ R \P and a ∈ I (using the fact that RM is a valuation domain), it is clear that a/s ∈
IRP ∩RM = IRM . If we also have b ∈ I, then, writing b = x/s′ with s′ ∈ R \P, we obtain
ab = (a/s′)x ∈ xIRM . Thus I2RM = xIRM , and it follows that (xR+ I2)IRM = xIRM =
I2RM . (In particular, I2RM ⊆ xRM; we use this below.) Since I is P-primary, we also have
(xR+ I2)IRN = I2RN for N ∈Maxt(R) with N + P. Therefore, ((xR+ I2)I)w = (I2)w, and
so xR+ I2 is a w-reduction of I.

(3) Assume that I is w-basic; then (xR+ I2)w = Iw by (2). Suppose that M ∈Maxt(R)
properly contains P, and choose y ∈M \P. Then P is minimal over yx, and I = yxRP∩R.
Hence, as above, we have (using the parenthetical “in particular” comment above) xRM ∈
IRM = (yxR+ I2)RM ⊆ yxRM , a contradiction. Therefore, P ∈Maxt(R). �

Theorem 2.4. A domain R has the w-basic ideal property if and only if R is a PvMD of
t-dimension 1.

Proof. Let R be a PvMD with t-dim(R) = 1, and let J ⊆ I be a nonzero ideals of R with
(JI)w = (I2)w. Let M be a maximal t-ideal of R. Then JIRM = I2RM . We wish to show
that JRM = IRM , and for this we may as well assume that I ⊆M and IRM is not invertible.
Since RM is a valuation domain, we then have IRM = IMRM , and since RM is also one-
dimensional, [3, Proposition 2.1] yields IRM(RM : IRM) = MRM . Hence multiplying both
sides of the equation JIRM = I2RM by (RM : IRM) yields JRM ⊇ JMRM = IMRM = IRM .
We then obtain Jw = Iw. Therefore, by Lemma 2.2, R has the w-basic ideal property.

Conversely, suppose that R has the w-basic ideal property. Then R is a PvMD by Theo-
rem 2.1. Let M be a maximal t-ideal of R, let Q be a nonzero prime of R contained in M,
let x be a nonzero element of Q, and shrink Q to a prime P minimal over x. Then, since
I := xRP∩R is w-basic by hypothesis, Lemma 2.3 yields P = Q = M. Therefore, htM = 1,
as desired. �

3. EXAMPLES.

Consider the following diagram of implications involving various ?-basic properties.
Of these implications, (1)-(3) and (9) are well known. Implications (4)-(8) follow from

Proposition 1.6, Proposition 1.8, Lemma 1.3, Theorem 2.4 (and the fact that w = t in a
PvMD), and Proposition 1.4, respectively.

Irreversibility of arrows (1)-(3) and (9) is again well known. We do not know whether
(5) is reversible. The remainder of the paper is devoted to examples for (irreversibility of)
the other implications.

Example 3.1. Arrow (4) is irreversible.

Proof. Let k be a field and X ,Y,Z indeterminates over k. Let T := k((X))+M and R :=
k[[X ]]+M, where M := (Y,Z)k((X))[[Y,Z]]. Let A be an ideal of R. Then A is comparable
to M. Suppose A ⊆M and A is not invertible. If AA−1 ) M, then AA−1 is principal, and
hence A is invertible, contrary to assumption. Hence AA−1 ⊆M. We claim that (AA−1)v =
M. To verify this, first recall that M is divisorial in R. Then, since AA−1 is a trace ideal, that
is, (AA−1)−1 = (AA−1 : AA−1), we have (AA−1)−1 ⊆ (AA−1T : AA−1T ) = T = M−1 (the
first equality holding since T is Noetherian and integrally closed). This forces (AA−1)−1 =
M−1, whence (AA−1)v = Mv = M, as claimed. Now let I be a finitely generated ideal of
R and J a v-reduction of I, so that (JIn)v = (In+1)v for some positive integer n. We shall
show that J−1 = I−1 (and hence that Jv = Iv), and for this we may assume that I is not
invertible. Suppose, by way of contradiction, that IT (T : IT ) = T , i.e., that IT is invertible
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in T . Then, since T is local, IT is principal and, in fact, IT = aT for some a ∈ I. We
then have R ⊆ a−1I ⊆ T . Then k[[X ]]∼= R/M ⊆ a−1I/M ⊆ T/M ∼= k((X)), from which it
follows that a−1I/M must be a cyclic k[[X ]]-module. However, this is easily seen to imply
that a−1I, hence I, is principal, the desired contradiction. We therefore have (T : IT )I ⊆M,
whence

(IM)−1 = (R : IM) = ((R : M) : I) = (T : I) = (M : I)⊆ I−1.

This immediately yields I−1 = (IM)−1.
Now set Q = In(In)−1. From above (setting A = In), we have Qv = M. Therefore,

I−1 ⊆ J−1 ⊆ (JM)−1 = (JQ)−1 = (IQ)−1 = (IM)−1 = I−1,

which yields J−1 = I−1, as desired. Hence R has the finite v-basic property. Finally, again
from above, we have ((y,z)(y,z)−1)v = M, so that R is not a v-domain.

�

Example 3.2. Arrow (6) is irreversible.

Proof. Let k be a field and X ,Y indeterminates over k. Let V = k(X)[[Y ]] and R = k+M,
where M =Y k(X)[[Y ]]. Clearly, R is an integrally closed domain. Of course, M is divisorial
in R. Also, (M2)−1 = ((R : M) : M) = (V : M) =Y−1V , and so (M2)v = (R : Y−1V ) =Y (R :
V ) = Y M = M2, i.e., M2 is also divisorial. We claim that R does not have the finite t-basic
ideal property. Indeed, let W := k +Xk and consider the finitely generated ideal I of R
given by I = Y (W +M). We have (k : W ) = (0); otherwise, we have 0 6= f ∈ (k : W ),
and both f and f X ∈ k, whence X ∈ k, a contradiction. Therefore, I−1 = Y−1M and thus
It = Iv = Y M−1 = M. Now, let J = Y R. Then Jt = Y R ( M = It . However,

(JI)t = (Y I)t = Y It = Y M = M2 = ((It)2)t = (I2)t ,

and so R does not have the finite t-basic ideal property. �



8 E. HOUSTON, S. KABBAJ, AND A. MIMOUNI

Example 3.3. Arrow (7) is irreversible.

Proof. In [9] Heinzer and Ohm give an example of an essential domain that is not a PvMD.
In that example, k is a field, y, z, and {xi}∞

i=1 are indeterminates over k, and D = R∩
(
⋂

∞
i=1 Vi), where R = k({xi})[y,z](y,z)k({xi})[y,z] and Vi is the rank-one discrete valuation ring

on k({x j}∞
j=1,y,z) with xi,y,z all having value 1 and x j having value 0 for j 6= i (using

the “infimum” valuation). As further described in [14, Example 2.1], we have Max(D) =
{M}∪ {Pi}, where M is the contraction of (y,z)R to D and the Pi are the centers of the
maximal ideals of the Vi; moreover, DM = R and Vi = DPi .

It was pointed out in [4, Example 1.7] that each finitely generated ideal of D is contained
in almost all of the Vi. If fact, one can say more. Let a be an element of D. We may
represent a as a quotient f/g with f ,g ∈ T := k[{xi},y,z](y,z)k[{xi},y,z] and g /∈ (y,z)T (and
hence g /∈M). Since f and g involve only finitely many x j and g /∈M, the sequence {vi(a)}
must be eventually constant, where vi is the valuation corresponding to Vi. We denote this
constant value by w(a). A similar statement holds for finitely generated ideals of D.

Let K be a nonzero ideal of D. Then

KtDPi ⊇ KDPi = (KDPi)tDPi
= (KtDPi)tDPi

⊇ KtDPi ,

whence KtDPi = KDPi .
Now suppose that we have nonzero ideals J⊆ I of D with (JIn)t =(In+1)t . Let a∈ I, and

choose a0 ∈ I so that w(a0) is minimal. Then aan
0 ∈ In+1 ⊆ (JIn)t , and so aan

0 ∈ (BAn)v for
finitely generated ideals B⊆ J and A⊆ I. With the observation in the preceding paragraph,
we then have aan

0 ∈ BAnDPi for each i. However, since w(a0) ≤ w(A), it must be the
case that w(a) ≥ w(B); i.e., for some integer k, a ∈ BDPi for all i > k. Since the equality
(JIn)t = (In+1)t yields JDPi = IDPi for each i, we may choose elements b j ∈ J for which
v j(a) = v j(b j), j = 1, . . . ,k. With B′ = (B,b1, . . . ,bk), we then have a ∈ B′DPi for each i.
This yields a(B′)−1 ⊆

⋂
DPi .

Next, we consider extensions to DM . From (JIn)t = (In+1)t , we obtain (JInDM)tDM
=

(In+1DM)tDM
. Since DM is a regular local ring, each nonzero ideal of DM is t-invertible,

and we may cancel to obtain (IDM)tDM
= (JDM)tDM

. There is a finitely generated subideal
B1 of J with B1DM = JDM . We then have

IB−1
1 ⊆ IDMB−1

1 DM = IDM(B1DM)−1 ⊆ (JDM(JDM)−1)tDM
⊆ DM.

Now let B2 = B′+B1. Then a(B2)
−1 ⊆ DM ∩

⋂
DPi = D, whence a ∈ (B2)v ⊆ Jt . It

follows that D has the t-basic property. However, since D is not a PvMD, D cannot have
the (finite) w-basic property. �

Example 3.4. Arrow (8) is irreversible.

Proof. Let D denote the ring of entire functions. It is well known that D is a completely
integrally closed Prüfer domain of infinite Krull dimension. Since D is a Prüfer domain,
each nonzero ideal is a t-ideal. The fact that dimD = ∞ then yields that D does not have
the (t-) basic property by [8, Theorem 10]. �
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