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1. INTRODUCTION

Throughout this work, R denotes a domain with quotient field K. For a
nonzero fractional ideal I of R, the fractional ideal 1™ = (R: 1) ={x €
K|xI C R} is called the inverse (or dual) of I. In [HuP], Huckaba and
Papick studied the question of when I~ ! is a ring, and this question has
received further attention by these authors and by Anderson, Fontana,
Heinzer, and Roitman [A], [FHP1], [FHP2], [FHP3], [HP], and [FHPR].
The authors of the present paper have also studied the question in the
specific contexts of pullbacks [HKLM1] and polynomial rings [HKLMZ2].
Our purpose here is to determine when I~ ! is a ring in much more
general situations.
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In the second section, we show that if 7~! is a ring, then P! is a ring
for each minimal prime ideal of I. It is known [HuUP, Proposition 2.2] that
I"Yisaring e I"' = (1I,:1); thus it is natural to consider connections
with divisoriality. In Proposition 2.5, we characterize when the inverse of a
nonzero intersection of divisorial ideals is a ring.

It is clear that 7~ is a ring when I~ = (I:1), and [A, Proposition 3.3]
shows that the converse is true when [ is a radical ideal. The third section
is devoted to a study of the question for radical ideals. In Theorem 3.1, we
give several characterizations of when ™! is a ring for radical I; as a
corollary we show that if P is prime, then P~ fails to be a ring < P has
the form (aRy: b) and PR, is principal. One of the characterizations in
Theorem 3.1 states that the inverse of a radical ideal I is a ring < for
each valuation overring  of R with IV # I/, we have ™! C Vo, Where Q
is the prime of V' which is minimal over IV. This is the first of our
extensions of two results from [HuP]. There it is proved that if I is an ideal
of a Priifer domain, and if {P,} and {M,} are the set of minimal primes of
I and the set of maximal ideals which do not contain 7, then I™* > (N Rp)
NN RMB) ([HuP, Lemma 3.3])) with equality < I"* is a ring ((HuP,
Theorem 3.2]). We also obtain several results concerning intersections of
radical ideals. We prove, for example, that if 7 and J are radical ideals,
then 17t and J~ ! are rings « (I nJ)™! and (I +J)~ ! are rings (Theo-
rem 3.4); we also show that if I is the irredundant intersection of prime
ideals P,, then ™! is aring < each P, ! is a ring.

Section 4 is devoted to the case of integrally closed R. We give several
characterizations of when -1 is a ring in this case, again extending the
above-mentioned results of [HuP]; and we apply these ideas to obtain
generalizations to Prifer o-multiplication domains of other results given in
[HuP] and [FHPRY] for Priifer domains. We show, for example, that if I is
an ideal in an integrally closed domain R, then I"'isaring = It cV
for each valuation overring IV whose maximal ideal is minimal over 7V. We
also show that if I is an ideal of a Prifer v-multiplication domain, then
I"Visaringe I"'=(:1)=R,N (R, I), where .7 is the complement
in R of the set of zero divisors on R/I and (R, I) is the set of maximal
t-ideals of R which do not contain 1.

Finally, in Section 5, we present examples tending to show that (many
of) the results in Sections 2—-4 are the best possible. For example, in
Example 5.1 we show that it is possible for P~! to be a ring for each
minimal prime of a radical ideal 7 and yet have 1! fail to be a ring, and in
Example 5.2 we show that it is possible to have divisorial ideals I and J
such that 7~ and J~! are rings but such that (I nJ)~* is not a ring.
Many other examples are given.
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Most of our notation is standard as in [G1]. We shall often make use of
the so-called v-operation. This is defined on the set of nonzero fractional
ideals I of a domain R by I, = (I"*)"*. The ideal [ is said to be divisorial
or a v-ideal if I =1,. For properties of the v-operation, the reader is
referred to [G1, Sections 32 and 34].

2. SOME RESULTS IN THE GENERAL CASE

Recall that R denotes a domain with quotient field K. Also recall that if
J is a radical ideal of R, then J ! isaring « J~* = (J:J)[A, Proposition
3.3]. We shall often make use of this fact.

PROPOSITION 2.1. Let I be a nonzero ideal of R for which I is a ring.
Then

@D VI Yisa ring, and (therefore) VI~ = (/I :VI);

(2) P71 is a ring for each minimal prime ideal of I,

Q) I't=(TI:1)=(Q:I) foreach prime Q 2 I;

(4) if Vis a valuation overring of R with IV # V, then I"* C V,,, where
Q is the prime ideal of V which is minimal over 1V

Proof. (1) Let x € (JT)™*. It suffices to show that xV7 c VI. Let a
€ VI.Then a" € I for some positive integer n. Moreover, since (Y1)~ !
It and I"! is a ring, we have x?" € I"!. Hence x%"a" € R, whence
(xa)?" € I. Since xa € R, this implies that xa € VI. It follows that VI ~*

= (/I :VI).

(2 LetJ=+yI.By(1)J 'isaring. Let u € P~ and b € P. Since
J is a radical ideal, JR, = PR,. Hence b € JR,, and we have sb € J for
some s € R\ P. Since u € P~ cJ 1, this yields usb € J c P, whence
ub € P. Hence PP~ c P,and P! is a ring.

(3) Let Q be a prime ideal containing /. Let x € I"*. Then x*> € I 1,
so that x?I C R and x?I? c 1 c Q. Since xI C R, this implies xI € Q.
Thus I cQ, I'*c(Q:I)c(R:I)=1"* and we have I = (Q:1).
Since this is true for each Q, we have II* c VI, from which it follows that
It =(I:D.

(4) Suppose that x € I"'\V,,. Then x~* € QV, = Q. Since Q is
minimal over IV, x " € IV for some n. However, since ™! is a ring,
x" eI ' whence by 3) 1 =x"x"" I IV c VIV c Q, a contradiction.
|

In Section 5, we present an example of an ideal I satisfying all four
conditions of Proposition 2.1 but for which I~ is not a ring. However, for
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radical ideals condition (4) characterizes when 1! is a ring (Theorem 3.1
below), and, if R is integrally closed, condition (4) characterizes when 1
is a ring for general I (Theorem 4.4). (The first three conditions together
do not imply that 7~! is a ring when R is integrally closed—see the
remark following Proposition 4.1.)

Thus the conditions in Proposition 2.1 do not characterize when 7! is a
ring. The following (admittedly unsatisfying) result is the best characteriza-
tion we have been able to obtain.

PROPOSITION 2.2.  Let I be a nonzero ideal of the domain R. The following
conditions are equivalent:

1) I'isaring.
(2) I is not invertible, and (M : 1) is a ring for each maximal ideal
M2

Q@) I'Y=(I:1), and (P: 1) is a ring for each minimal prime P of I.

Proof. Assume (1). Then [ is not invertible by [HuP, Proposition 2.2].
Statement (2) now follows from Proposition 2.1. Conversely, if I is not
invertible, then II"* ¢ M for some maximal ideal, and it follows that
I =(M:1), so that I"! is a ring. Thus (1) and (2) are equivalent.
Assume (3), and let P be a minimal prime of I. Then I™* = (VT : 1)
(P:I)cI?t and I"*=(P:1I) is a ring. The converse follows from
Proposition 2.1.

PrRoPOSITION 2.3. Let S be an overring of R which is also a fractional
ideal of R. Then S, = (S~ :S™1); hence S, is also an overring of R.

Proof. Let I =S"1. Then [ is an integral ideal of R, and [ is the
conductor of the overring S in R. Hence by [B, Proposition 6], I~ = (I: 1),
thatis, S, = (S~ ':S7 . 1

COROLLARY 2.4 ([HUP, Proposition 2.2)). If I is an ideal of R for which
I"Yisaring, then I"* = (I,: 1,).

Proof. Set S = I~' in Proposition 2.3. |

ProrosITION 2.5.  Let {I }, ., be a set of divisorial ideals of R for which
each I;* is a ring and I = (N 1, is nonzero. Let S denote the compositum of
the rings I *. Then the following statements are equivalent:

(1) I'isaring.
@ 1*=u:n.
} Scrt
@ s, =11
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Proof. The equivalence of (1) and (2) follows from [HuP, Proposition
2.2] and the fact that I is divisorial. Suppose that 7! is a ring. Then, since
1.t c It for each «, we must have 11/t -+ It < I~ for each finite
subset {a, ..., a,} of &7 Thus (1) = (3). Now assume (3), and let x € S~ .
Then xI'I;* -+ I.' R for each finite subset {ay,..., @} of & In
particular, xI;' c R for each a. Since each I, is divisorial, this gives
xe€ NI,=1Hence S~ cIand S, 27 ' On the other hand, since 7!
is divisorial, (3) implies that S, c I*, yielding (4). Finally, (4) implies (1)
by Proposition 2.3. |

COROLLARY 2.6. Let I and J be ideals of R for which I™* and J~* are
rings. Then (I, NJ) tisaring s 1" ' c (I, nJ)

Remark. It is possible to have (I, nJ,)"! be a ring even though
(I nJ)™ ! is not—see Example 5.3 below.

3. RADICAL IDEALS

In this section, we consider (intersections of) radical ideals. We begin by
characterizing when the inverse of a radical ideal is a ring.

THEOREM 3.1.  Let I be a radical ideal of R. The following statements are

equivalent:

(1) I'isaring.

(2 I'' € N{R,|P is a minimal prime of I and IR, is principal}.

(3) There does not exist a minimal prime P of I and an element x € K
for which IR is principal and I € (R :zx) C P.

(4)  For each valuation overring V of R with IV + V', we have I * C Vo
where Q is the prime of V which is minimal over IV

(5)  For each minimal prime P of I, there is a valuation overring V of R
centered on P with ™' C V.

6) Foreachxel™! x>l

Proof. (1) = (2). By [A, Proposition 3.3(D)], I"*={:I). If P is a
minimal prime of I with IR, =aR,, a<l, then I'' ={:1I)C
(IR, IR,) = (aR, : aR,) = R,.

(2) = (3). Let P and x be as described in (3). Then (R :zx) C P implies
x & Rp, and I C (R :xx) implies x € I™*. Hence I™* ¢ N{R,|P is mini-
mal over I and IR, is principal}.

(3 = (D). If I"* isnotaring, then II"* ¢ I, whence II"' ¢ P for some
minimal prime P of I. It follows that IR, is principal. Choose x € I !
with xI ¢ P. Of course, I € (R:zx). If a € (R:zx), then ax € R. Thus
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axI c I C P; since xI ¢ P, we have a € P. Thus (R :zx) C P. This shows
that (3) implies (1).

(1) = (4). This is true for general I by Proposition 2.1.

(4) = (5). This is clear.

(5) = (1). Suppose that I~* is not a ring. Then we may choose x € !
and a € I with xa ¢ P for some minimal prime P of I. Let (V, M) be a
valuation overring of R centered on P. Since xa ¢ P, we have xa ¢ M. It
follows that x ¢ V. Hence 1" ¢ V.

(1) = (6). Clear.

(6) = (1). Let x € I"*. It suffices to show that x/ C I. By hypothesis,
x? €I ' Hence x*I C R, and (xI)? C I. Since xI C R and [ is radical, we
have xI c 1. |1

We observe, as a consequence of Theorem 3.1, that if I is a radical ideal
of R and IR, is nonprincipal for each minimal prime P of I, then I"* is a
ring.

COROLLARY 3.2. Let P be a prime ideal of R. The following statements
are equivalent:

(1) P7!isaring.

(2) Either PRy is not principal or P is not of the form (aR :pyb) for
a,b € R.

(3) P! c Vfor each valuation overring V of R whose maximal ideal is
minimal over PV

For convenience, we state (without proof) a straightforward variation of
Theorem 3.1.

THEOREM 3.3.  Let I be a nonzero radical ideal of R, and let {P,}, . ,, be a
set of minimal primes of I for which 1 = N P,. The following statements are
equivalent:

(1) I?'isaring.

2 Itc N{Rp |a €57 and IR, is principal}.

(3)  There does not exist an a € .o/ and an element x € K for which IR
is principal and I € (R :(xx) C P,.

(4)  Foreach a €%/, there is a valuation domain (V,,, M) with R C V,,
M,NR=P,and I * CV,.

THEOREM 3.4. Let I and J be radical ideals of R. Then the following
statements are equivalent:

(1) I"'andJ ! are rings.
2 Un))Yand (I+J)! are rings.
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Moreover, if (either of) these statements hold, then (I +J)™ ! = (({ +
D) (I +)).

Proof. Assume (1). Then(I +J) ' =I"'nJ tYisaring. Letr € (I N
J)YLrednlJ)aeclandbeJ.Sincetab<e R, tacJ = (J:J) and
th €I =(I:1). Hence tar,tbr € (I N J). Thus t%ar,t*br € R, and we
have t2r € It nJ~1. It follows that 272 €I NJ, and since I NJ is a
radical ideal and tr € R,we have tr e I nJ. Hence t € (U NJ):(I N J)).
Therefore, (I NJ)™* =1 NJ):(INJ))is also a ring, and (2) holds.

Now assume (2). It suffices to show that /! is a ring. Let x € "1,
acl,and beJ.Since I’ c(InJ)*and (I nJ) ! isa ring, we have
x2e (I NJ) ' Hence x%ab € R, and so x?a €J 1. Since xa €R, x €
I and 1! isan R-module, we obtain x%?a € I"*. Thus x2a e I’ nJ!
=(I+J)! and, since (1 +J) ! is a ring, we have x*a> eI "' nJ L
Thus x*a® € R and x“a* € I. Since I is a radical ideal of R and xa € R,
this yields xa € I. Hence x € (1:1). It follows that I~! = (I:1), as
desired.

To prove the last statement, note that (/ +J) ' =1"'nJ1=U:1)
N (J:J) (since I and J are radical ideals). It is straightforward to show
that this latter ideal is equal to (I +J): (I +J)). 1

Remarks. (1) Although the implication (1) = (2) can be easily extended
to an intersection of any finite number of radical ideals, we have not been
able to extend it to infinite irredundant intersections. (In Proposition 3.13
we do show that if a nonzero ideal [ is an irredundant intersection of
prime ideals P with each P~! aring, then I~ is also a ring.)

(2) The radical assumptions are necessary. In Example 5.2, we show that
it is possible for (I NJ)~! to fail to be a ring even though I and J are
divisorial ideals with 7~* and J~! both rings; and in Example 5.3, we
exhibit (non-divisorial) ideals 7 and J for which I"* = (I:1),J"* =(J:J)
(so that 7~ and J~* are rings), (1, N J,)~* is a ring, but (I nJ)~* is not
a ring.

(3) The implication (2) = (1) may not hold for an intersection of more
than two radical ideals, as the following example shows.

ExAMPLE 3.5. Let X be an indeterminate over @, and set T = Q[ X]
=Q+X0Q[X]and R=7 + XQ[X]. Consider the ideals I,J, K of R
given by I =27 + XQ[X]=2R, J=3Z+XQ[X]=3R, and L =
XQ[X]. Then I,J, L are prime ideals with ITNnJ N L =L. It is easy to
seethat (I NJNL)*=L"1'=(L:L)=T.Since I and J are comaxi-
mal, I +J+L =R, so that (/ +J+ L) *=R. Hence U NnJNL)*?
and (I +J + L)~ ! are rings, but, since I and J are principal ideals, ™!
and J~! are not rings.
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COROLLARY 3.6. If I and J are ideals of R for which I"* and J™* are
rings, then VT N VI)™* is a ring.

Proof. This follows from Propositions 2.1(1) and 3.4. |

THEOREM 3.7.  Let I and J be ideals of R for which I™* N J~! = R. Then
the following statements are equivalent.

(1) I*andJ ! are rings.
2 UnJ)tisaring.
3 U,nJ) " isaring.

Moreover, if the statements hold, then (INJ) ' =, NJ) ' =) =
(I[}J[})_l'

Proof. ()= @).Let x,ye(UNnJ)' zelInlJ abel andcdE€c
J. Then xac,ybd € R. Hence xa,yb €J ' and xc,yd € I"*. Thus
zxyab, zxyed € R, whence zxya € 1! and zxyc € J 1. Since xa € J 1, xc
e€l! zzeR,and I"! and /™! are R-modules, we have zxya, zxyc € 1
NJ ' =R. It now follows that zxy e I"* N J~! = R, whence xy € (I N
J)~L. Therefore, (I nJ) ! is a ring.

(2) = (1). We show that /"' isaring. Let x,y €I "}, a1l ,and b € J.
Since I'*c(InJ)tand InJ) ! isaring, we have xy e (I N J)™ 1,
whence xyab € R. Thus xya € J 7. Since x € I"*, ya € R, and I! is an
R-module, we also have xya € I"!. Hence xya € R. Therefore, xy € I %,
as desired.

The equivalence of (1) and (3) follows from the equivalence of (1) and
(2) and the fact 47! =(A4,) ! for any ideal 4. To prove the last
statement, we first note that it is clear that (I, nJ) ' c(InJ) ! c
()t Let xeW)tzel, nJ, Then xIJ C R, from which it follows
that xI, cJ *and xJ, cI"*. Hence xz€ "' NJ ' =R. Thus x € (I, N
J,)~h 1t follows that (1, nJ,)"'=UNnJ)"t=J)"* The remaining
equality follows from standard facts about star operations [G1, Proposition
32.2]. 1

The following example shows that Theorem 3.7 cannot be extended to
the case of an arbitrary finite number of ideals.

ExampLE 3.8. Let D be a domain with quotient field k, D # k, and let
X,Y,Z be indeterminates over k. Let T=D[X,Y,Z]=D[X,Y]+ P,
where P = ZT, and let R = D + P. Consider the ideals I, J, L of R given
by I =Z(D[X]+ P),J=Z(D[Y]+ P),and L = aD + P, where a is any
nonzero nonunit of D. We shall show that I"' =J ! =T and that
L '=R. Since IT=P, we have I"* c(T:IT)=(T:P)=2Z"1T. Let
fel*t and write f=h/Z with h € T. Write h = hy, + m, where h, €
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D[X,Y]and m € P.Since ZX € I, we have hy X + mX = hX = fZX € R,
from which it follows that 4, X € D. Hence h, = 0, and we have h € P,
i.e., f€ T.Thus I"* c T. The reverse inclusion follows from the fact that
IT=PCR. Thus I"! =T, and, similarly, J-! = T. Now by [HKLM,
Theorem 1], we have P! = (P:P) =T (P is being considered as an
ideal of R). Since Pc L, we have L ' cP ' =T. Let fe L™ Then
fe T, and we may write f = f, + n with f, € D[X,Y] and n € P. Since
a € L, fa € R,whence f,a € D. Hence f, € D, and f € R. It follows that
L t'=R Thus I'*nJ*NnLt*=R,and I"%, J! and L1 are rings.
However, I NJ N L =1nNJ is the principal ideal ZR, so that (I NJ N
L)~* is not a ring.

CoroLLARY 3.9. Let I and J be ideals of R for which I, and J, are
comaximal. Then the following statements are equivalent.

(1) I*andJ ' are rings.
@ UnDtisaring.
3 U,NnJ)""isaring.
Proof. Wehave I'*nJ t=U)"*nU)t=U,+J) =R 1

CoROLLARY 3.10. Let R be a completely integrally closed domain, and let
I and J be ideals of R. Then the following statements are equivalent:

(1) I"'andJ ! are rings.
@ I1't=J7'=R

) (UnJ)tisaring.
@ (UnJ)y*=R

Proof. The implications (1) = (2) and (3) = (4) follow from [A, Corol-
lary 2.4], and the implication (2) = (3) follows from Theorem 3.7. It is
straightforward to show that (4) (= (2)) = (1. 1

PROPOSITION 3.11.  Let I be a radical ideal of R such that I™* is a ring. If
I = A N B forideals A and B, then (I :x A) is a radical ideal, (I :(x.A)" ' is a
ring, and [ = (I .3 A) N A.

Proof. Set B =(I:zA), and let re B NA. ThenrAcl and re 4
together imply r2 € I; since I is a radical ideal, we have r € I. Hence
I=B nNnA.Nowletu € (B)™L. Then,since (B)"! cI~! we have ul CI.
Thusif y € B', then y4 c I, and uy4 c I; that is, uy € (I ;. A) = B'. Thus
(B')"! =(B':B). Finally, to see that B’ is a radical ideal, observe that
z" € B' implies z"4 c I, whence (zA4)" = z"4" c I. Since [ is a radical
ideal, this yields z4 c I, and z € B". 1

CoROLLARY 3.12. Let I be a radical ideal of R such that I = A N B for
ideals A and B. Then I is a ring < there are radical ideals A, D> A and
B, D B of R such that I = A, N B, and (A;)~* and (B,)™" are rings.
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Proof. Suppose that I~ is a ring, and set B, = (I:,A). Then B, D B,
and by Proposition 3.11, we have I = A N B, with B, a radical ideal and
(B! aring. Now set A, = (I:;B,), and apply Proposition 3.11 again.
The converse follows from Theorem 3.4. 1

Remark. In the notation of Corollary 3.12, it need not be the case that
A~Yis aring. A counterexample is presented in Example 5.7 below.

ProrosiTION 3.13. Let {P,}, .., be a set of prime ideals in R, and let
I = N,c. P, be anonzero irredundant intersection. The following statements
are equivalent:

1) I %isaring.
(2) P.*' isaring for each a €.
(® (Ngey Py) " is aring for each subset B of .

Proof. (1) = (2). This follows from Proposition 2.1, in view of the fact
that irredundancy forces each P, to be minimal over I.

(2)=(@). Put J=Ngzcy P and let zeJ ' Fix BEF, let &=
Z\{B}, and choose b € (N, ., P\ P;. Then bP, CJ. Hence zbP; C R
and zb € P;'. Since P; ' is a ring, we have zbP, C P;. Thus zbJ C Py;
since zJ C R and b & P,, we have zJ C P,. Since this is true for each g,
zZlcJ,and J°1 = (J:J)is aring.

@) = (). Clear. 1

ProrosITION 3.14. Let I be a radical ideal of R, and let {P,}, . ,, be a
set of minimal primes of I with I = N,., P, Then I"' is a ring &
(Nges PB)’1 is a ring for each proper subset F of .

Proof. (=) Set J = (Ngzc 4 Py). Applying Theorem 3.3 we have J~* C
I"* ¢ N{Rp |la €& and IR, is principal} C N{Rp|B €% and JR, is
principal}, the last inequality following from the fact that IRPB = JRPﬂ =
PBR,,B for each B. Invoking Theorem 3.3 again, we have that J~* is a ring.

(=) Pick @ €, and set & =\{a} and J = Nz 4 P;. By hypothe-
sis, P;* and J~* are rings, and since P, and J are radical ideals, Theorem
3.4 assures that It = (P, nJ) tisaring. |

Remarks. (1) In spite of the preceding two results, we present in
Section 5 an example of a radical ideal I for which 17! is not a ring while
P! is a ring for each minimal prime P of I (Example 5.1). We show in
Proposition 3.15 below, however, that divisoriality of the P, does force 7!
to be a ring.

(2) From Proposition 3.14, one might suspect that if I is a radical ideal
for which 17! is a ring, and if J is a radical ideal trapped between I and
some minimal prime of I, then J~! should also be a ring. Example 5.7
below, however, shows that this is not necessarily the case.
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(3) The simplest way to ensure that each P, ! be a ring in Propositions
3.13 and 3.14 is to have each P;* = R. However, even though for an ideal
I equal to the irredundant intersection of such P, we must have that 7!
is a ring, it need not be the case that /' = R. For such an I, see Example
5.4 below.

ProposITION 3.15. Let I be a nonzero ideal of R, and suppose that
I = N1, where each I, is a divisorial radical ideal with I;* a ring. Then I"*
is a ring.

Proof. Let {I,,...,1,} be a finite subset of {/,}. By Theorem 3.4
(I, N+ N1I,)"" is a ring. By Proposition 2.5, this implies that I, -
Iajl c(,, NN Ia[)’l c I™Y Another application of Proposition 2.5
shows that 7~ isaring. 1

4. THE INTEGRALLY CLOSED CASE

In this section, we characterize when 1! is a ring when [ is an ideal in
an integrally closed domain R (Theorem 4.4); we then study the situation
in Prufer v-multiplication domains. We begin with a result in the seminor-
mal case.

ProposiITION 4.1.  If I is a nonzero ideal of the seminormal domain R for
which I™' is a ring, then I"* C N{Rp|P is minimal over I and PR, is
principal}.

Proof. Let P be minimal over I with PR, principal. Then by [FHPR,
Corollary 3.4(1)], we have I™* = (VT :VI) c VIR, :VIR,) = (PR, : PR})
=R,. 1

Remark. The converse of Proposition 4.1 is false. For an example, let I/
be a valuation domain of the form V= K + M, where M is the maximal
ideal of IV and K is a field; we further assume that M is nonprincipal in I/
and that M is branched (so that M is minimal over a principal ideal of ).
Let F be a subfield of K which is algebraically closed in K, and set
R =F + M. Then R is integrally closed. Choose a € M with M minimal
over Va, and let I = Ma. Then I is a divisorial ideal of R (but is not
divisorial in V). Note that I™* = M~ 'a~! = Va~!, whence I~ ! is not a
ring. Now MR,, is not principal, so that N{R,|P is minimal over I and
PR, is principal} is the quotient field of R. Thus I"* € N{R,IP is
minimal over I and PR, is principal}, but /~* is not a ring. Also note that
I''I=Va Ma=M; thus I"*=(M:1)= ([T :1I). Since M =+I and
M~ =V is a ring, we see that the first three conditions of Proposition 2.1
are satisfied.
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In [FHPR, Lemma 3.5], the following result is proved: if R is seminor-
mal, I is an ideal of R for which 7! is a ring, and J is an ideal of R with
IcJcVI,then J7* =1 (so that J~* is also a ring). We observe that
the seminormal hypothesis cannot be removed. To see this, let F be
a field, let X be an indeterminate over F, and let R = F[ X3 X*].
Let 7=(X% X7, X% and J=(X% X% X", X®). Then IcJcVI=
(X3 X%. It is easy to check that 7! = F[X], so that 1" is a ring.
However, X € J7 !, but X2 ¢ J L.

We next turn our attention to some results in the integrally closed case.
Recall that for an ideal I of an integrally closed domain R, the completion
of I is the ideal I'* = NIV, where the intersection is taken over all
valuation overrings V' of R. (For a discussion of completion, see [G1, Sect.
24])

For convenience, we state without proof several (probably well-known)
easily verified facts about completions.

LEMMA 4.2.  Let I be an ideal of the integrally closed domain R. Then

1) (U*:I*) = NV :1IV), where the intersection is taken over all
valuation overrings V of R,

@ U:DcU*: 1%

(3) if Iis a radical ideal, then I is complete; and

@) (I :VD) =D :GT)*)= NIV VIV).

For an ideal I of a domain R, set 7°(I) = {(V, M)V, M) is a valuation
overring of R whose maximal ideal M is minimal over IV} and 7(I) =
{W|W is a valuation overring of R with IW = W}. Observe that I c W
for each W € 7(I). When no confusion is likely, we will write 7~ for
7°(I) and 7 for 7(1).

LEmMMA 4.3. If I is an ideal of the integrally closed domain R, then
I'" 2Ny V)N (Ny ey W)

Proof. Let x be an element of the given intersection, and let a € I. Let
U be any valuation overring of R. If U € 7/, then x € U, whence xa € U.
If U&7, then IU # U. Let Q be the prime of U minimal over IU. Then
Uy € 7, whence x € Uy. It follows that xa € QU, = Q c U. Thus xa is
in every valuation overring of R; since R is integrally closed, this implies
that xa € R. Thus x € I"1, as desired. |

THEOREM 4.4. Let I be an ideal of the integrally closed domain R. Then
the following statements are equivalent.

() I'isaring.
2 I'*cUIr*Vv:1I V) for each valuation overring V of R.
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3 I'' cUV:LV) foreach valuation overring V of R.

(4) 3 an ideal J of R for which J 21 and I"* c (JV :JV) for each
valuation overring V of R.

6 I''cNy,. V.
® I''=(Nycr V)N Ny W)

Moreover, if I"* is a ring, then I"* =J~* for each ideal J O I such that
I < (JV:JV) for each valuation overring V of R.

Proof. By [HUP, Proposition 2.2], (1) implies (2) and (3), and it is clear
that both (2) and (3) imply (4). Let J be an ideal as given in (4). By Lemma
4.2, we have (J*:J*) = NV :JV). Hence I"* c(J*:J*) c(J*) C
J-tcrI ' Thus I"! is a ring, and we have I"! =J! for each such J.
Thus (4) = (1). Therefore, statements (1)—(4) are equivalent, and the
“moreover” statement has been proved. The equivalence of (5) and (6)
follows easily from Lemma 4.3, and it is obvious that (6) = (1). Hence it
suffices to show that (4) = (5). Again, let J be as given in (4). Let
Ve If W=V, then I"* c(JV:JV)=V.If JV =V, then, since
the maximal ideal of V' is minimal over IV, it is also minimal over JV.
Hence J~! C IV by Proposition 2.1. As shown above, 1~ = J~!, and hence
Icv. 1

Remark. Lemma 4.3 may be regarded as an extension of [HuP, Lemma
3.3] to the integrally closed case; similarly, the equivalences (1), (5), and (6)
represent an extension of [HuP, Theorem 3.2].

In Example 5.6 below, we use an example of Heinzer and Papick to
show the necessity of the v’s in statement (3) of Theorem 4.4; that is, we
show that 7~ a ring does not imply I~ ¢ (JV: IV') for every valuation
overring V.

We now wish to generalize the above-mentioned results of [HuP] to
Prufer v-multiplication domains. We first recall the z-operation: for a
nonzero fractional ideal I of a domain R, set I, = U{J,|J is a nonzero
finitely generated subideal of I}; I is called a t-ideal if I = I,. Of course,
the r-operation is an example of a star-operation (see [10] or [13]). Of
particular importance are the well-known facts that every t-ideal is con-
tained in a maximal ¢-ideal, that maximal ¢-ideals are prime, and that any
prime minimal over a f-ideal is a prime -ideal (#-prime). Recall that a
domain R is a Priifer v-multiplication domain (PVMD) < R,, is a valua-
tion domain for each (maximal) ¢-prime M of R [Gr, Theorem 5].

THEOREM 4.5.  Let I be an ideal of the PVMD R. Let {P,} denote the set
of minimal primes of I, {QB} the set of minimal primes of 1,, and {My} the set
of maximal t-ideals of R which do not contain 1. The following statements are
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equivalent:

(1) I'isaring.
@ I =(NRp)N(NRy).
(B I"'=(NRy) N(NRy).

Proof.  We first observe that Q, € {P,} for each B. To see this, note
that O, 2 O for some prime QO minimal over 1. As a minimal prime of a
t-ideal, Qg is a #-prime. Hence Ry, is a valuation domain. It follows that
R, is also a valuation domain, and it is well known that this implies that Q
is itself a #-prime. Thus Q 2 I,, and we have that Q Q is minimal over
I. Now suppose that I~ is a rmg, and let x e ! We wish to show that
x € R, for each a. If (P,), = R, then there is a finitely generated ideal
A cC P, with A, = R. Since P, is minimal over I, there is an element
s € R\ P, and a positive integer n for which s4” C I. Hence xsA" C R.
Since (A4"), = R, this gives xs € R, whence x € R, . If (P,), # R, then as
in the argument given above for Q, we have that R, is a valuation
domain. By Theorem 4.4, I"* C R, in this case as well. It follows that
It c(NRp) N(NRy ) S (NRy, )N (N R, ) Now let y e(nRQ )
NN RM) and a € 1. To show that ya € R it suffices to show that
ya € Ry, "for each maximal t-ideal M of R. This is clear if M = M, for
some y. If I <M, then M > Q, for some B. Since y € R, g We have
ya € IRQB c QBRQ Qg Ry, (usmg the fact that Q = QVQ for each
prime ideal Q in a valuatlon domain V). Thus ya € R,,. It follows that (1)
implies (2) and (3). Of course, it is clear that either (2) or (3) implies (1). 1

Remark 4.6. (1) In Theorem 4.5, although each minimal prime of 7, is
in fact minimal over I, a minimal prime of I need not contain I,, even
when I~! is a ring properly containing R. Example 5.8 below is an
example of a PVMD R containing an ideal I and a minimal prime M of [
such that 7~! is a ring but M, = R.

(2) For a general integrally closed domain R and t-ideal I of R, 1!
need not be contained in N Rp, where the intersection is taken over the
minimal (necessarily ¢-) primes P of I. For an example, let F c K be
fields with F algebraically closed in K, let (V, M) be a valuation domain of
the form K + M, and let R = F + M. Then M is divisorial (and therefore
a t-ideal), but M~ =V ¢ R,, = R.

(3) For any ideal I of a domain R, if P is minimal over I with ! # R
but I-' ¢ R,, we have P, + R. To see this, suppose that A is a finitely
generated ideal contained in P with 4~* = R. As in the proof of Theo-
rem 4.5, we have s4" c I for some s & P. Then s4"I"! C R, and since
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(A™), = R, this implies that I"* c s 'R C R,, a contradiction. Hence
A'#R.Thus P, # R.

We continue to study when I~ is a ring, where I is a nonzero ideal of a
PVMD R. In particular, we wish to generalize a theorem of Fontana—
Huckaba—Papick—Roitman [FHPR, Theorem 4.11]. We shall use the fol-
lowing notation and notions from [FHPRY]:

Z (R, I) = the set of zero divisors on the R-module R/I,
Z(R, 1) ={P € Spec(R)II c P cZ(R, I},

MR, I) =R\ Z(R, D),

Z(R, ) = N{R,,IM is a maximal -ideal of R with I ¢ M}.

We say that I has no embedded primes if each element of Z(R, 1) is
minimal over I. Finally, we note that .#"=#(R, I) is a multiplicatively
closed subset of R, and we let M(#) denote the set of maximal elements in
the set of ideals which have empty intersection with .7.

THEOREM 4.7 (cf. [FHPR, Theorem 4.11]). Let R be a PVMD, and let I
be an ideal of R with no embedded primes. Then

D (I:D=WI:NVI)=R,Nn&(R,I) and
2 I'‘isaringe I '=:1).

Proof. (1) By [FHPR, Theorem 3.1], (I:1) € (YT :VI). Now let y €
(VI :VI), let MeZ(R, 1), and let b e VI\M. Then yb e VI CR,
whence y € R,,. Thus (VT :VI) c (R, I). By [G1, Corollary 4.6], R, =
N{R,I0 € M)}, Let Q € M(N). By [FHPR, Lemma 4.6], I € Q, and,
since Q is prime, we have Q € Z(R, I). Since I has no embedded primes,
Q is minimal over I. Since Q is minimal over I, we have \/TRQ = OR,,
Thus y € (VT :V1) C VTR, :VIR,) = (QR,: QR,). If Q = Q,, then R,
is a valuation ring, and (QR,:0OR,) =R,, and we have y € R,. If
Q # Q,, then, since maximal primes of r-ideals are f-primes, we have
I ¢ Q.Since VI VI)c (WD) tcrt=U) yed) L If sel\Q,
then sy € R, whence, again, y € R,. Thus (/T :VI) CR,, and we have
VI :VI)cR,Nn&(R,I).Nowlet z € R, N Z(R,I)and a € I. We claim
that za € R. For this it suffices to show that za € R,, for each maximal
t-ideal M of R [Gr, Theorem 5]. Let M be a maximal t-ideal. If I ¢ M,
then za € €(R, 1) C R,,. Suppose I € M and that za & R,,. Then, since
R,, is a valuation ring, z"'a~* € R,,. Since z € R, 3t € N with 1z € R.
Hence tza € I C IR,,, and we have ¢t = (za) 'tza € IR,,. This produces
u € R\M with ut € I. But then, since t € N, we have u €I C M, a
contradiction. Hence za € R,,. Thus za € R, as claimed. Since tza € I
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and r € N, we have za € I. Hence z € (I: I), and we have R, N €,(R, I)
Cc (I:1). This gives (1).

(2) If I"* is a ring, then by Theorem 4.5, I™* = (N R, ) N Z(R, ),
where {P,} is the set of minimal primes of I. Recall that for 0 € M(N), O
is minimal over I, whence /' c R,. Thus I~ c R,, and by (1) we have
I'YCR,NER,D=U:D. 1

CoROLLARY 4.8 (cf. [HuP, Corollary 3.4]). If M is a maximal ideal of a
PVMD R, then either M is invertible or M~ = R.

Proof. Suppose that M is not invertible, so that M~* = (M : M). By
Theorem 4.5 or 4.7, this gives M~ ' = R,, N Z(R, M). If M is a t-ideal
this yields M~! = R [Gr, Theorem 5]. Of course, if M is not a t-ideal, then
M, > M, =R, and again we have M~* = R. |

In Example 4.9 below, we show that it is not enough to assume in
Corollary 4.8 that M is a maximal z-ideal.

Corollary 3.2 asserts that P is a prime ideal of a domain R such that
PR, is not principal, then P~ is a ring. The following two examples show
that it is possible to have PR, principal with P~ a ring or not, where P is
a maximal #-ideal of a PVMD.

ExampLE 4.9. An example of a PVMD R containing a maximal ¢-ideal
P such that P is not invertible, PR, is principal, and P~ = R.

Let R be an almost Dedekind domain which is not a Dedekind domain.
Then R is a PVMD (since it is a Prifer domain). Since R is not a
Dedekind domain, there is a maximal ideal P of R which is not invertible.
Since P is maximal and has height 1, P is a maximal #-ideal. Of course,
PR, is principal by definition. Finally, P~* = R by Corollary 4.8.

ExampLE 4.10. An example of a PVMD R containing a maximal
t-ideal P such that P is not invertible, PR, is principal, and P~ is not a
ring.

Let T=Q[Y]=Q + M, where M =YQ[Y], and let S =7 + M. By
[CMZ, Theorem 4.43], S is a PVMD. Hence R = S[X] is also a PVMD.
Let f=YX+ (1/2)YER, and let P=fQY)NX]INR. Then P is an
upper to zero, and by [Q, Lemma 1], P = f(Y,(1/2)Y) 'R. It is easy to
see that (Y,(1/2)Y) ' =M ' =T, so that (Y,(1/2)Y) (Y,(1/2)Y) C
MMt =M, and (Y,(1/2)Y)"! is not invertible in S. Hence P is not
invertible in R. By [HMM, Proposition 2.6] and [HZ, Theorem 1.4], P is a
maximal ¢-ideal and (PP~1), = R. Thus PP~ ¢ P, and P! is not a ring.
Finally, that PR, is principal follows from the well-known fact that R, is a
DVR.
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5. EXAMPLES

In this section, we give several examples tending to show that (many of)
the results in Sections 2—4 are the best possible. In what follows, we use F
to denote a field and (possibly subscripted) capital letters X, Y, Z, and W
to denote indeterminates over F.

ExampLE 5.1.  An example of a domain R containing a radical ideal 1
for which 77! is not a ring but P! is a ring for each minimal prime of I.
Let R denote the semigroup ring Q[Q,] = Q{X“|a € Qy}]. (Here, Q,
denotes the set of non-negative rational numbers.) Set I = (X — 1)R.
Since I is principal, I™! is not a ring. However, we shall show that I is a
radical ideal and that P~! = R for each minimal prime P of R. By [G2,
Theorem 13.5], R is a Bézout domain. For n > 1, set R, = Q[ X*/"]. Then
R,=R;isaPID,and R = UR,. Let I, = (X — DR,. The fact that I,
does not ramify in R, implies that I, is a radical ideal of R,. (That I,
does not ramify in R, means that each irreducible factor of X — 1in R,
occurs to the first power. After an application of the isomorphism X*/" —
X from R, to R,, this means that each irreducible factor of X" — 1
occurs to the first power in R,. Of course, this follows from the well-known
fact that the factors of X" — 1 are just the cyclotomic polynomials g, for
d|n.) 1t follows easily that 7 = U I, is a radical ideal of R. Now let P be a
prime ideal of R containing I. By [G2, Theorems 17.1 and 21.4], R is one
dimensional. Hence P is maximal, and to show that P~ is a ring, we need
only show that P is not invertible. Thus, since R is Bézout, we need only
show that P is not principal. Granting that P! is a ring, we have
P! =(PP')"! =R, since a one-dimensional Bézout domain is com-
pletely integrally closed. We proceed to show that P is not principal.
Suppose, on the contrary, that P = fR. Then f is a principal prime of R,
for each m for which f € R,,. Write X — 1 = fg. Choose n with f,g € R,,,
and set P, =PNR,. Then P, =fR,, and f is one of the irreducible
factors of X — 1in R,. Via the isomorphism X'/ — X from R, to R,,
we get an equation X" — 1 = f(X")h for some h € R,. Thus f(X")is an
irreducible factor of X" — 1 in R, so that f(X") is a cyclotomic polyno-
mial. Let p > n be a prime number. We have X"? — 1 = f(X"P)h(X?).
Therefore, f(X"?) is irreducible in R,, so that it must also be a cyclotomic
polynomial. Thus deg(f(X"?)) = ¢(r) for some positive integer r|np. If
p tr then rin,and ¢(r) <r <n < p < deg(f(X"?)), a contradiction. If
p|r, then r = ps for some s|n. In this case ¢(r) = ¢(p)p(s), contradict-
ing that deg(f(X"?)) is divisible by p. Hence f(X"?) is not irreducible in
R,, whence f is not irreducible in R, , a contradiction. Therefore, P is
not principal, as claimed.

np!
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ExampLE 5.2. An example of a domain R containing divisorial ideals
and J, such that 7' and J~! are rings but (1 N J)~! is not a ring (cf.
Theorem 3.4). Let R = F[{X"Z,Y"Z|n > 0}], and let I and J denote the
ideals generated by the sets {X"Z} and {Y"Z}, respectively. We make the
following claims:

1D I''=F[X,Z{Y"ZIn = 0}] =R[X].
(2 J'=F[Y,Z{X"Z|n = 0}] = R[Y].
(3) I and J are divisorial.

4 Un))t=I11t+J1t=R[X]+R[Y] In particular, X,Y € (I
NI L but XYe(InJ)™L

Proof. (1) It is clear that I"* D F[X,Z {Y"Z|n > 0}]. Let feI L
Since Z € I, we may write f = g/Z for some g € R, and we may assume
that g is a monomial, say g = X"Y™Z*. We wish to show that f =
Xrymzk=l e FIX,ZAY"Z|n = 0}]. If k> 1, then clearly f€ F[X, Z,
{Y"Z|n = 0}] = RIX]. From fXZ = gX € R, we infer that £ > 1 and that
if k=1, then m = 0. Again, we have f € F[X, Z,{Y"ZIn = 0}] = R[X].

(2) This is similar to ().

(3) It suffices to show that if # € R and hF[X,Z {Y"Z|n > 0}] C R,
then h € 1. We may assume that 7 = X"Y*Z". It is clear that h I if
s =0.If s # 0, then, since hX = X" "Y*Z' € R, we have ¢ > 2, whence
again h € I. This shows that I = I,. Similarly, J =J,.

(4) It suffices to show that (/ NJ) ™ =R[X]+ R[Y]. Since (I" +
JHt=I,nJ,=InJ, we have RIX]+R[Y]=I"'+J1'cUn
J)"L. Nowlet f=g/Z e (INJ)? where g = X'Y/Z* is a monomial in
R. Clearly, k > 1. If i =0, then f=Y/Z*"! € R[Y]. Similarly, if j =0,
then fe R[X]. Finally, if i,j > 1, then g € R implies k > 2, and so, in
this case, we have f € R[X] N R[Y]. It follows that (I NnJ) ! c R[X] +
R[Y], and the proof is complete. |

Remark. In Theorem 3.1, we showed that to determine whether the
inverse of a radical ideal A of a domain R is a ring, it suffices to check
that 4! is closed under squares. We can use (a slight modification of)
Example 5.2 to show that this is not true for general (non-radical) A4. First,
however, we observe that if A4 is an ideal of a domain R in which 2 is a
unit, then A~ * is aring < A~ is closed under squares. This follows from
the equation 2xy = (x + y)*> — x? — y2, in view of the fact that A~ ! is a
fractional ideal of R.

Now suppose that R is the ring of Example 5.2 and that the characteris-
ticof Fis2. Let A =INJ.Since A~ = R[X]+ R[Y], A~* contains the
square of each of its monomial elements. For an arbitrary element f € 471,
let f=f, + - +f, be the representation of f as a sum of monomials.
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Then, since char(R) =2, f2=f2+ - +f2 €A% Thus A~ ! is closed
under squares but is not a ring.

ExampLE 5.3.  An example of a domain R with ideals I and J such that
I'Y'=U:D,J'=0U:0),U,nJ) isaring, but (INJ)™* is not a
ring.

Let R = F[X,Y, WXY, W2XY, (W X?2Y, WrXY?|lk > 0}], I = (Y?,
WXY, (W X2Y, WrXY 2|k > 0}), and J = (X2 WXY {W:X2Y WrXY?|k
> 0}).

We claim that

LD I'*=U:D=FIXY{WXk=0},

@ J =) =FIX Y {WYlk = 0},

3 InJ=WXY (WX2Yy, W XY?k > 0)),

@) I,=(Y? XY, WXY,W?XY, {(WX?Y, WrXY?|k > 0})

B) J, = (X% XY, WXY,W?XY (W X?Y, W5XY 2|k > 0}),

®) I,nJ, = (XY, WXY,W2XY {WrEX2Y, WrXY 2%k = 0}),

7" rutcUni)t

Proof.

(1) Easy calculations show that F[X,Y,{W*X|k > 0}] c (I:1). Let
felt Since fY2 fXYe RCF[X,Y,W], we have fY € F[X,Y, W]
Write f=g/Y with g € F[X,Y,W]. We may assume that g is a mono-
mial, say g = X'Y/W*. Since XYW = X'*'Y/W**' € R, we have j > 1,
sothat f=X'Y/"'Wk e F[X,Y,W]. Suppose k > 1. Then since fY? € R,

we must have i > 1. It follows that I~' c F[X,Y,{W*X|k > 0}]. Hence
I'*=:D=FIXY,{WXlk > 0}

(2) Similar to (2).

(3) Clear.

(4) 1t is easy to see that XY,W?XY €1,. Hence I' = (Y?, XY,
WXY,W2XY {WrX2Y, WEXY?lk = 0) C1,. Let g=X"Y*W'el,. If r
=t =0, then g"®X € R implies s > 2, and we have g € I'. If t = 0 and
r> 0, then gWX € R implies s > 1, and again g I'. If ¢+ > 0, then
gX, gY € R together imply g € I'. It follows that I’ = I, as desired.

(5) Similar to (4).

(6) Clear.

(7) Straightforward.

Now by () and 2), I'* =(I:Dand J7t =(J:J). That(I, N J,) isa
ring follows from (7), in view of Corollary 2.6. Finally, from (3) it is easy to

seethat We (INJ) ! butthat W2 & (InJ)? sothat (I nJ) ! is not
aring. 1
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ExampLE 5.4. An example of a domain R containing a radical ideal I
and a set {P,} of minimal primes of I with I the irredundant intersection
of the P,,P;* =R (so that P, is a ring) for each o, I"* a ring, but
I + R. (See the third remark following Proposition 3.14.) Denote by S
the set of all double sequences (k; m,) of non-negative integers with
k;>m; > 0and k; > 1 for infinitely many i; and for s € S, denote by W,
the formal infinite product II7_,X)Y™. Let R = F[{X, X,Yli > 1},
{(Z'"W)n >0,s €8}, I =({Z"W,]n =0, s = (k;, m;) with k; > 1 for each
i}, and P. = (X, X;Y)). Then

(1) for each i, P, is prime and P! = R;

(2) each P, is minimal over 1, and I is the irredundant intersection
of the P;

(3 I*=R[Z]
@ I,={Z"W,]n >0, s €S}, which is a prime ideal.

Proof. (1) It is easy to see that P, is prime. Suppose that f € P!, and
write f = g/X; for some g € R. Since gY; € R, each monomial in g must
contain XY;" with k > m; it follows that f € R.

(2) If h € P, then each infinite product in each monomial of 4 must
contain a positive power of X;. Hence each infinite product in a monomial
contained in N P; must contain positive powers of each X;. It follows that
I =NP.Since Il ;X; € N;.; P\ I, the intersection is irredundant (from
which it follows that each P; is minimal over I).

(3) Note that 7! is a ring by Proposition 3.13. We show, in fact, that
I"*=R[Z]. It is clear that I"* D R[Z]. Let feI ', as usual we
may assume that f is a monomial. Write f=g/IlX; for some mon-
omial g€ R. Since II7_, XY, €I, we have glI7_,Y, € R. Thus g =
ZMI7_ X}fym, with k;,>m,; >0 and n > 0. It follows that f=
Z"M5_ X}ty € R[Z]. Hence I"* = R[Z].

(4 That I, = (Z"W,|n = 0, s € S}) follows from the fact that no finite
product of the X,Y; is multiplied into R by Z, but every infinite product
is. It is easy to check that this ideal is prime. Note that it is not minimal
over I. |1

ExampLE 5.5. An example of a domain R containing an ideal I which
satisfies the four conditions of Proposition 2.1 but for which 7! is not a
ring. Let R =F[X, XY, Y3 Y*Y®], I=(X,Y®, and M = (X, XY,Y?,
Y4 Y®. It is easy to see that M = VI. The integral closure of R is
R = F[X,Y] Thus R is a two-dimensional Noetherian ring, and ht(M) =
2. It follows that I cannot be invertible. Since M is the only prime
containing I, we have II"' ¢ M, and condition (3) of Proposition 2.1 is
satisfied. Since I-! C R/, condition (4) is automatically satisfied. For
conditions (1) and (2), we need only show that M~! is a ring, and this
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follows from Corollary 3.2. On the other hand, ™! is not a ring, since (as
is easily checked) Y e I™! but Y2 ¢ [ 1.

ExamMpLE 5.6. An example of a (Priifer) domain R containing ideals
and J for which (1) I"! is a ring, but I-* ¢ (JV: IV') for some valuation
overring IV of R, and (2) J ™! is also a ring, but (1 N J) is principal (so that
(I nJ) 1is not a ring).

Let R be the domain of [HP, Example 2.6]. Thus R is a two-dimensional
Prufer domain with two maximal ideals M, and M,, both of height two,
and a (unique) prime ideal P contained in M, N M, with R, a DVR. By
localizing, if necessary, we may assume that M, and M, are the only
maximal ideals of R. Let x € P be such that PR, = xR, and let I = xR,
and J = xR, . Since P c M; " M,, PR, = PR, = PR, . It follows that
P = RP,, that P! = R, and that I,J gP, so that / and J are ideals of
R. We shall show that It =J~* =P~ =R,. Now I"* = (RzxR),) =

x"M(R:gRy) and (R :zxR,) —x‘l(R RxRM) Since R, and R, are
valuation rings and R is seminormal, we have by [DF, Lemma 2. 10] that
(R:gxR)) and (R:xR, ) are nonzero prime ideals of R. We claim that
(Rpg: RM)CM1 If not, pick a € M,\M,, so that a~' €R,,; then
a M, CR,and M, C aR C M,, a contradiction. It follows that (R "Ry
=P =(R:xR,,). Hence I"* =x"'P =x"'xR, = Rp, and similarly, J~*
=R,. Hence 1™ ¢ (IV:1V) for V=R, and statement (1) follows.
Finally, it is easy to see that I N J = xR; this gives statement (2).

ExampLE 5.7. An example of a Prufer domain D containing radical
ideals I and J such that [ is the intersection of radical ideals 4 and B,
I7' is a ring, but 4~ ! is not a ring (see Proposition 3.11 and Corollary
3.12) and such that J is a radical ideal between I and a minimal prime of
I, but J~! is not a ring (see the second remark following Proposition 3.14).
Let D be a Prifer domain with exactly two maximal ideals M, and M,
with M, principal, ht(M,) = 2, M, not invertible, and ht(M,) = 1; and let
Q denote the (unique) height one prime ideal contained in M,. Since Q is
not maximal, it cannot be invertible, and by [Hu, Theorem 3.8], 0! and
M;* are both rings. Clearly, M;* is not a ring. If I =M, N Q, then
Theorem 3.4 shows that 7! is a ring. However, if we set 4 = M, N M,
and B=Q,then I=A4 N B, and A~! is not a ring by Proposition 3.13.
Finally, if J =M, n M,, then J is trapped between I and the minimal
prime M, of I, but J~! is not a ring, again by Proposition 3.13.

ExampLE 5.8. An example of a PVYMD R containing an ideal 7 and a
minimal prime M of I for which ™! is a ring properly containing R but
M, = R. Let D denote the Prifer domain of Example 5.7, and let M,, M,,
and Q be as defined there. By [HuP, Theorem 3.2] 0! = Dy, N Dy. Thus
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if be M,\(M,UQ), then b-* € 0% Now let R =D[X]. It is well
known that R isa PVMD. Let P = Q[ X],and let M = M, + XR. Then M
is not a ¢-prime. As an ideal of a Prufer domain, Q is a z-prime; thus P is
a t-prime of R. Moreover, P! = Q" Y[X], and P~! is a ring which
properly contains R. Let I = M N P. Since M is not a ¢-prime and M is
maximal in R, we have M, = R. By Theorem 3.4, I"* is a ring. From above
bleQtcO YX]=PtcI ! and I"? properly contains R.
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