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Throughout this paper, R will denote a domain with quotient field 1(. For 

a nonzero fractional ideal I of R, the fractional ideal 1-1 = (R: 1) = 

{xE 1( I xl C;; R} is called the inverse (or dua0 of I. In [HPJ, Huckaba and Papick 

studied the question of when 1-1 is a ring, and this question has received further 

attention in [A], [FHP1], [FHP2], [FHP3J, [FHPR], [HeP], and [HKLMJ. 

It is clear that r 1 is a ring when r 1 = (I: 1) ( = {x E 1( I xl C;; I}), and 

in case I is prime, then r 1 is a ring {} r 1 = (1:1) [HP, Proposition 2.3J. The 

question as to whether 1-1 a ring implies 1-1 = (I: 1) in general was answered in 

the negative by D.F. Anderson [AJ. In this work, we study when 1-1 is a ring-­

and when this forces 1-1 = (I: 1)--when I is an ideal of R[{X,,}], where {X,,} is a 

set of indeterminates over R. Among other things, we completely characterize 

when p-1 is a ring for prime ideals P of R[{X,,}]. 
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For an ideal J of R, we denote by Z(R,J) the set {x E R I xy E J for some 

element y E R \ J}. 

Lemma 1. Let J be a nonzero ideal of R[ {X oJ], and let S denote the complement 

in R of the set Z(R[{X,,}],J) n R. (Thus S is a multiplicatively closed subset of 

R.) If r 1 <; RS[{X,,}], then r 1 = (J :J). 

Proof: Let f E J and 9 E J-1. By hypothesis we may choose s E S with 

sg E R[{X,,}]. Then sfg E J, and since s \f Z(R[{X,,}],J), we have fg E J. It 

follows that J-1 = (J:J). 0 

Theorem 2. Let J be a nonzero ideal of R[{X,,}] lor which Z(R[{X,,}],J) n R = o. 

Then: 

(1) The following statements are equivalent. 

(a) J-1 is a ring. 

(b) r1 = (J:J). 

(c) r 1 <; K[{X,,}]. 

(2) If htJ :::: 2, then the equivalent conditions· of (1) hold. 

Proof: (1) It is clear that (b) =? (a), and the implication (c) =? (b) follows from 

the lemma. Using. * to denote complete integral closure, we have by [A, 

Proposition 2.3] that if J-1 is a ring, then J-1 <; R[{X,,}]* = R*[{X,,}] <; 

K[{X,,}]. Hence (a) =? (c). 

(2) Let S denote the set of nonzero elements of R. We first note that 

r 1 <; r 1R[{X,,}]s <; (JR[{X"}]S)-l = (JJ{[{X,,}])-l. 

suffices to show that (J K[ {X,,} ])-1 = K[ {X,,}]. 

To complete the proof, it 

This is clear if 

J K[ {X,,}] = K[ {X,,}]. On the other hand, if J K[ {X,,}] is a proper ideal of 

K[{XoJ] = R[{X,,}]S' then ht(JK[{X,,}]):::: 2, and since K[{X,,}] is a Krull 

domain, this implies that (JK[{X,,}])-l = K[{X,,}] [G, Corollary 44.8]. 0 
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Remark. 

(1) In the case of one indeterminate X, we have that Z(R[X],J)nR=O # 

J = f K[X] n R[X] for some f E J. In particular, ht J = 1. 

(2) For more than one indeternimate, examples of ideals J which satisfy 

condition (2) and for which J-1 ::> R[{X,,}] are easy to construct. For example, if 
i-

s, t, u are indeterminates over. Q( v'2), then R[X, Y], where 

R=Q+(s,t,u)Q(v'2)[s,t,u], contains a prime ideal J for which JnR=O, 

htJ=2, and J<;M[X,Y], where M is the maximal ideal (s,t,u)Q(v'2)[s,t,u] of 

R. Since M-1 = Q(v'2)[s,t,u], r1;2 Q(v'2)[s,t,u][X,Y] ~ R[X,Y]. 

The following example shows the necessity of the zero divisor assumption 

in Theorem 2. 

Example 3. An example of an ideal J of R[Xl>X2] for which 

(1) JnR= 0, 

(2) Z(R[X1,X2],J) n R f 0, 

(3) htJ:::: 2, 

(4) J-1 <; K[X1,X2], and 

(5) J-1 is not a ring. 

Let k be a field, and let Y and Z be indeterminates over k. Let T = k(Y)[ Z] = 

k(Y) + M, where M = ZT, and let R = k[Y] + M. Let J denote the ideal of 

R[Xl>X2] given by J = YX1k[Y,Xl> X 2] +X1M[Xl>X2] + X 2M[Xl>X2]. It is 

clear that (1) holds. Also, 

Y E Z(R[X1,X2],J), and (2) holds. 

since Y Xl E J and Xl \f J, we have 

Now let P be a minimal prime of J. If 

M[X1,X2] <; P, then, since YX1 E P but YX1 \f M[X1,X2], the containment is 

proper. If M[Xl>X2] ¢ P, then, since X 2M[X1,X2] <; P, we have 

X 2R[X1,X2] <; P;' again, the containment is proper, since YX1 \f X 2R[Xl>X2], 

Thus in both cases, we have htP:::: 2, so (3) holds. For (4), ,note that 
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Xl>X2Z E JT[Xl>X2J. It follows that J-1 ~ (T[Xl>X2J:JT[X1,X2]) ~ 

(T[Xl,X2J:(Xl>X2Z)T[Xl,X2]) '" T[Xl>X2J ~ I<[X1,X2J, where K '" k(Y,Z). 

Finally, it is clear that y-1 E J-l, but since Y-2YX1 = y-1X 1 rf. R[X1,X2J, we 

have y-2 rf. J-1, and J-1 is not a ring. 0 

Before stating the next theorem, we recall a concept. from [HHJ]. Let U be 

an upper to zero in R[XJ; that is, let U = fK[XJ n R[XJ for some irreducible 

polynomial f E K[XJ. Then U is said to be almost principal if there is a nonzero 

element a E R with aU ~ fR[XJ. We generalize this as follows. Let Q denote a 

height 1 prime of R[ {X,,} J for which Q n R = 0. Then we may write 

Q = fK[{X,,}J n R[{X,,}J for some f E R[{X,,}J with f prime in.K[{X,,}J. For a 

proper subset Y of {X,,} with Q n R[YJ = 0, we say that Q is almost Y-principal if 

J1.Q ~ fR[{X,,}J for some nonzero element J1. E R[YJ. Note that if Y is the empty 

set, then "almost Y-principal" is the same thing as "almost principal." In [HHJ, 

Proposition 1.15J it was shown that for an upper to zero Q, Q-l is a ring '* Q is 

not almost principal. This is generalized to the case of arbitrarily many 

indeterminates in (part (3) of) our next result. 

Theorem 4. Let Q be a nonzero prime ideal of R[{X,,}], and let q = Q n R. 

(1) If q i' 0, then Q-l is a ring '* q-l is a ring orQ i' q[{X,,}J. 

(2}If q = ° and htQ 2: 2, then Q-l is a ring. 

(3) If q = ° and htQ = 1, then the following statements are equivalent. 

(a) Q-l is a ring. 

(b) Q is not of the form (g):h = {f E R[{X,,}J I fh E gR[{X,,}J. 

(c) For each proper subset Y of {X,,} for which Q n R[YJ = 0, Q is not almost 

Y -principal. 

(d) For each finite proper subset Y of {X,,} for which Q n R[YJ = 0, Q is not 

almost Y -principal. 
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Proof: (1) If Q'" q[{X,,}J, then (an easy extension of the argument in) [HH, 

Proposition 4.3J shows that Q-l = q-l[{X,,}J, so that Q-l is a ring '* q-l is a 

ring. Thus it suffices to prove that if Q ::J q[ {X,,} J, then Q-l is a ring. For the 
f. 

case of one indeterminate, [BH, Corollary 8J shows that Q is not of the form 

(I) :g, and by [HZ, Lemma 1.2J, this implies that Q-l = (Q:Q) (so that Q-l is a 

ring). Now suppose that {X,,} is the finite set {Xl>""Xn}, Let 

Q' = Q n R[Xl , .. "Xn -1]' If Q ~ Q'[XnJ, then Q-l is a ring by the case of one 

indeterminate. If Q = Q'[XnJ, then Q' ~ q[Xl"",Xn_ 1J, and we may assume by 

induction that Q,-l is a ring. It follows easily that Q-l is also a ring. For the 

general case, choose Xl"",Xr E {X,,} with p",QnR[X1, .. ·,XrJ::Jq[Xl> ... ,Xr J. 
f. 

Then p-l is a ring by the finite case. Note that Q-l ~ K[{X,,}J, since q i' 0. Let 

f E Q and 9 E Q-l; it suffices to show that gf E Q. Choose X r +1"'.xs E {X,,} 

with g,/EK[Xl>""X.], Let p=QnR[Xl" .. ,XsJ, and note that pn 

R[Xl>""XrJ = p. Then gP ~ gQ n K[Xl, ... ,XsJ ~ R[{X,,}J nK[Xl, .. ·,XsJ = 

R[Xl, ... ,XsJ. Thus 9 E p-l. By what has already been proved, p-1 is a ring, so 

that p-1 = (P:P), and gf E P ~ Q, as desired. 

(2) Clearly, Z(R[{X,,}J,Q) = Q. Hence (2) follows easily from Theorem 2. 

(3) (a) '* (b) Write Q = fK[{X,,}J n R[{X",}J with f E Q. Suppose that 

Q=(g):h for g,hER[{X,,}]. Then g-lhEQ-l; if Q-l is a ring, we have 

g-lh E K[{X,,}J by Theorem 2. But then 3 s E R with sg-lh E R[{X,,}J, and 

sE(g):h=Q, contradicting that QnR[{X,,}J=O. Conversely, if Q-l is not a 

ring, then, again by Theorem 2, we may choose g,h E R[{X,,}J with g-lh E 

Q-l \ K[{X,,}J. Then fg-lh E R[{X,,}J, but fg-lh rf. fK[{X,,}J, whence 

fg-lh rf. Q. Let k E (g):h. Then kfg-lh E fR[{X,,}J ~ Q, and so k E Q. Thus 

(g):h ~ Q. The reverse inclusion is easy. 

(a) =? (c) Let Y be a subset of {X,,} for which QnR[YJ=O, and suppose 

J1.Q ~ f R[ {X,,} J with J1. E R[Y]. Then J1.r 1 E Q-l, and by Theorem 2, we have 

J1. = J1.r l f ~ Q-lQ = Q. Hence J1. E Q n R[YJ, so that J1. = 0. Thus Q is not 

almost Y -principal. 

i 

It 
,! 
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(c) * (d) Trivial. 

(d) * (a) Suppose that Q-l is not. a ring. Recall that 

Q = fK[{X",}J n R[{X",}J for some f E Q. Choose a finite subset Z of {X",} for 

which f E R[Z] but f ~R[WJ for each proper subset W of Z. Set P = Q n R[ZJ. 

Then p=jK[ZJnR[ZJ, and Q=PR[{X",}J (since htQ=l). Note that p-I is 

not a ring. Now choose Y <;; Z with IY I = I Z I -1 (possibly, Y is empty), and 

note that P n R[YJ = O. By [HHJ, Proposition 1.15], P is almost principal with 

respect to the ring R[YJ, i.e., there is a nonzero element p E R[YJ with 

pP <;; fR[ZJ. It follows that pQ <;; fR[{X",}J, and Q is almostY-prinCipal. 0 

The following example shows the necessity of the assumption that Q be 

prime in TheoreIp. 4 (1). 

Example 5. An example of a radical ideal J in R[XJ such that M = J n R is a 

prime ideal of R, and M-I is a ring, but J-I is not a ring. 

Let k be a field, and let Y, Z be indeterminates over k. Let T and R be as in 

Example 3, and let J = Y Xk[Y, XJ + M[XJ. Then J n R = M. By [HKLM, 

Theorem 1J, M-1 = (M:M) (=T), so that M- I is a ring. However, J-1 is not a 

ring, since y-I E}-I, but y-2 ~ J-I. 0 

For the remainder of the paper, we need the concepts of v- and t-closure of 

an ideal: For a fractional ideal I of a domain R, the v-closure of I is given by 

Iv = (I-l)-1 and the t-closure by It = U{Av I A is a nonzero finitely generated 

subideal of I}. The v- and t-operations are examples of star-operations, and the 

reader is referred to [GJ for a discussion of their properties. We note the trivial 

fact that I-I = R <* Iv = R. 

Le=a 6. If J is a nonzero ideal of R[ {X",} J for which J n R '" 0, then 

J t = R[{X",}J <* 3 f E J with c(l)-I = R. 
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Proof: Suppose that c(l)-I = R for some f E J. If a is any nonzero element of 

J n R, then (an easy extension of the argument in) [HH, Lemma 4.4J shows that 

(a,f)v = R[{X",}J, from which it follows that J t = R[{X",)]. Conversely, if 

J t = R[ {X",} J, then, since J <;; c( J)R[ {X",} J, we have c(J)t = R, and we may 

choose 91" .. ,9n E J with (C(91) + ... + c(9nllv = R. Let X E {X",}. It is then easy 

to choose exponents "'2"'" "'n for which f = 91 + X"'292 + ... + X"'n9n satisfies 

c(l) = C(91) + ... + C(9n). For this f, we then have c(l)-I = R. 0 

Proposition 7. Let J be a nonzero ideal of R[{X",}J, and let I = J n R. 

(1) If I", 0 and rad(J) contains an element f for which c(l)-I = R, then 

rl = R[{X",}J (= (J:J)). 

(2) If I is either a maximal ideal or a maximal t-ideal of Rand J::J IR[{X",}], ,;, 
then rl = R[{X",}J. 

(3) If Z(R[{X",}J,J)nR '" a prime ideal P oj Rand J-1 <;;Rp [{X",}], then 

r 1 = (J:J). 

Proof: (1) We have r E J for some n, and c(r)-1 = R. By Lemma 6, 

J t = R[{X",}J, whence rl = R[{X",}J as well. 

(2) Pick 9 E J \ IR[{X",}]. Then (I + 9R[{X",}])t = R[{X",}J by [FGH, 

Proposition 2.2J. It follows that J t = R[{X",}J, whence J- I = R[{X",)]. 

(3) This follows easily from Lemma 1. 0 

We conclude with some examples showing that the converses of statements 

(1), (2), and (3) in Proposition 7 do not hold. 

Example 8. An example of a domain R and a prime ideal Q in R[XJsuch that 

(1) Q-I = R[XJ, 

(2) Q contains no polynomial f with c(l)-1 = R, and 

(3) Q n R is neither a maximal ideal nor a maximal i-ideal of R .. 

First let D = k[s,{si2" In:::>: O}J, where k is a field ands,i are indeterminates over 
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k. This D is from unpublished work of J. Arnold; there he observes that a 

monomial iti is in D {? i ~ ¢(j), where ¢(j) is the number of l's in the binary 

expansion of j. Let U'= (X - t)F[XJ n R[XJ, where F is the quotient field of D. 

Then U is an upper to zero in D[XJ. It is shown in [H, P~oposition 1.2J that U is 

not almost principal, and by Theorem 2 (1) or [HHJ, Proposition 1.15J, 

U-1 ~ F[XJ. We show, in fact, that U-1 = D[XJ . . Suppose hE U-
1
. Write 

h = X g + a, where a E F and g E F[ XJ. It is clear that ab E D for each element b 

of D which is the constant term of some element of U. Since 

(sX2" _ st2")/(X _ t) E F[XJ, we have sX2" - st2"E (X - t)F[XJ n D[XJ = U. 

Hence aI ~ D, where I is the ideal of D generated by {st2" I n ~ o}. We claim 

that I-I = D. Granting the claim, we have a E D. Then Xg = h - a E u-1, from 

which it follows that g E U-1• Continuing in this manner, we see that c(h) ~ D, 

whence U-1 = D[XJ. Thus it suffices to show that I-I = D, or, equivalently, that 

J-1 = Dst, where J is the ideal generated by {t2"-11 n ~ o}. It is clear that 

Dst ~ J-1 ~ D, and to complete the proof of the claim, it suffices to show that if 

siti E J-1, then si - l ti -1 E D. Now siti Eo D implies that i ~ ¢(j), a~d siti E J-
1 

implies that i~¢(j+2n-1). For large n we have ¢(j+2
n

-1)=¢(j-1)+1, 

whence i-I ~ ¢(j - 1), and si -'l ti -1 ED, as desired. 

Now let T be a domain of the form F + P, where P is a maximal ideal of 

T, and I~t R = D + P. Set Q =U + P[XJ, so that Q is an upper to P in R[XJ. 

By [H, Lemma 2.2], Q-l = R[XJ. Moreover, by [H, Theorem 2.4], Q is at-prime 

of R[XJ, whence by Lemma 6, Q cannot contain an element f with c(l)-1 = R. 

Finally, it is easy to see that P = Q n R is not a maximal ideal of R, and by 

taking any maximal t-ideal M of D, [FG, Proposition 1.8J ensures that M + P is a 

t-ideal of R, so that P is not a maximal t-ideal. 0 

Example 9. An example of a prime ideal J of R[{XoJJ such that J-
1 

=(J:J), 

(Note that since J is prime, we have 

Z(R[{X",}J,J) = J.) Let k be a field, and let Y and Z be indeterminates over k. 

Duals of Ideals in Polynomial Rings 357 

Let T = k(Y)[[Z]J = keY) + M, where M = ZT, and let R = k + M. Then R is 

quasi-local with maximal ideal M. Let J = M[{X",}J. Then J n R = M, and by 

[HKLM, Theorem 1], M-1=(M:M) (=T). Hence ;-1=M-1[{X",}J= 

T[{X",}J = (M:M)[{X",}J = (J:J), but;-1 ¢ RM[{X",}J = R[{X",}J. 0 
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1. Introduction 

In [9] the authors introduced the notion of SO de-fine dass; a dass of modules is 
said to be sode-fine if for all M and N in this class, M and N are isomorphic if 
and only if sode of M and soele of N are isomorphic. And they proved. that a 
ring A is semi-artinian if and only if the dass of injective modules is so de-fine. 

In [10] we find the next, results: 
1) A ring A is semi-simple if and only if the dass of quasi-injective modules 

is sode-fine, and if and only if the dass of quasi-projective modules is socle-fine. 
2) A ring A is Pseudo-Frobenius if ami only if A is a left cogenerator and the 

dass of projective modules is sode-fine. 
3) A ring A is left noetherian V-ring if and only if the dass of quasi-injective 

modules with large soele is sode-fine . 
. In [12] A. Kaidi, D.M. Barquero and C.M. Conzalez, proved the following 

remarkable results: 
1) A ring A is left artinian if and only if the class of direct sum of injective 

A-modules is Bode-fine. 
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