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INTRODUCTION 

Let R be a domain with quotient field IC For a nonzero fractional ideal I of R, 

the fractional ideal r 1 = (R: I) = {x E J( I xl ~ R} is called the inverse (or dual) 

of I. In [HuP]' Huckaba and Papick studied the question of when I-I is a ring, 

and this question has received further attention in [AI], [FHPI], [FHP2], [HeP], 

and [FHPR]. Of cour~e, it is clear that 1-1 is a ring when I = (I: I), and in case 

I is prime, 1-1 is a ring '* I-I = (I:I) [HuP, Proposition 2.3]. The question as 

to whether I-I a ring implies I-I = (I: I) in general was left open in [HuP]. This 

question was answered in the negative by D.F. Anderson [AI]. Anderson gave 
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two counterexamples, one of which [AI, Example 3.2J involved the classical 

D + M construction (see below for the description of this construction). The 

purpose of this paper is to study the question of when I~ 1 is a ring in pullback 

constructions, paying particular attention to the classical D + M construction. 

We begin by fixing some notation. Let T be a domain, let M be an ideal 

of T (which is not necessarily maximal), let D be a domain which is a subring of 

TIM, let ¢: T -+ TIM denote the canonical epimorphism, and let R be the 

pullback of the following diagram. 

R -+ D 

T L TIM. 

Thus R = ¢-I(D). We explicitly assume that R c T. We shall refer to this as 
. # 

the generic pullback diagram. It is important to note that M is a prime ideal of 

R (since D 0= RIM is a domain). 

We shall often be interested in the case where T is a valuation domain 

with maximal ideal M. Although it is possible to formulate resuits in this 

generality, in order to simplify notation and take advantage of readily available 

resuits, we shall assume (in this case) that T = V is a valuation domain of the 

form k + M, where k is a field and M is the maximal ideal of V, and that 

R = D + M. We shall refer to this as the classical D + M construction. Our 

Inain refe~'ence for this construction is [BG). 

In what follows, we shall often use the so-called v-operation on R. For a 

nonzero fractional ideal I of R, Iv is defined by Iv = (I-I)-I: It will often be the 

case that an ideal is not only an ideal of the "base" ring R but is also an ideal of a 

larger ring (say) T. In this case, it is understood that inverses and v's are taken 

with respect to the base ring R. For properties of the v-operation, the reader is 

referred to [G, sections 32 and 34J and (especially with respect to the classical 

D + M construction) to [BGJ. Notation is standard as in [GJ. 
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Theorem 1. In the generic pullback diagram, let k denote the quotient field of D. 

Suppose that either one of the following conditions holds: 

(1) k C;; TIM, or 

(2) kC (TIM)S' whe!'e S=D \ {OJ (equivalently, RMcTR\M)' 
# # 

Then M- 1 = (M: M). 

Proof: Assume (1). Let x EM-I, aE M. If xa ~ M, then ¢(xa) ED, and' 

¢(xa) ¥ O. Hence by hypothesis, ¢(xa) is a unit of TIM, and :3 tl E T with 

¢(tl)¢(xa) = 1 E TIM. Let t E T \ R. Then atlt E M, so that xatlt E R, and we 

have ¢(t) = ¢(t)¢(tl)¢(xa) = ¢(xatlt) E D. However, this implies that t E R, a 

contradiction. This completes the proof of (1). 

If we localize the given diagram, we obtain the following pullback diagram. 

aE M, then xaE MRMnR=M, as desired. 0 

The following example shows that the converse of Theorem 1 is false. 

Example 2. Let X and Y denote indeterminates over the field Q of rational 

numbers. Let T = Q[Y][X2, X 3J, D = Z[YJ, M = (X2, X3)T, R = D + M, and 

S=D \ {O}. Then TIMo=Q[YJ and (TIM)So=Q(Y), the quotient field of D. 

Thus we see that neither condition (1) nor condition (2) is satisfied. However, we 

shall show that M-I = (M: M). 

Let TI=Q(Y)[XJ, M I =X2T j , DI=Q(Y), and Rj=DI+Mj . This 

yields the following pullback diagram. 



266 Houston et al. 

By Theorem 1 (1), MIl = (Ml :Ml ) = T l . Note that Rl = RS and Ml = MRS; 

that is, (RS:MRS) = (MRS: MRS)' Thus MM-lr;M(RS:MRS)r;MRS' 

Therefore, MM- l r; MRSn R = M, aud we have M- l = M: M, as desired. 0 

In the most commonly used pullback construction, one has that M is a. 

maximal ideal of T. In this case, condition (1) of Theorem 1 is automatically 

satisfied. This yields the following corollary. 

Corollary 3. In the generic pullback diagram, assume that M is a maximal ideal 

ofT. Then M-l = (M: M). 0 

One cannot omit the maximality assumption III Corollary 3, as the 

following example shows. 

Example 4. Let k be any field, and let T = k[X, Y], D = k[X2, X 3], M = YT, 

and R = D + M. Then (M: M) = T. On the other hand, it is easy to see that 

X 2jYEM-l \1'.D 

For convenience, we record the following result as a corollary of Corollary 

3. We hasten to add that the result is well known and follows easily from the fact 

that (in the situation considered) M is the conductor of T [F, Theorem I.4J. 

Corollary 5. In the generic pullback diagram, assume that M is a maximal ideal 

of T. Then M is a divisorial ideal of R. 

Proof: By Corollary 3, M-l = (M:M). Thus M- l IS a ring, and by [HuP, 
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Proposition 2.2]' M- l = (Mv: Mv)' Thus T r; (Mv: Mv), and Mv is an ideal of T. 

Since M is maximal in T, we have M = Mv' 0 

We shall need the following result, which follows easily from [FG, 

Propositions 1.6 (a) and 1.8 (a)J. 

Proposition 6. In the generic pullback diagram, let k denote the quotient field of 

D, let J be a nonzero ideal of D, and let 1= ¢-l(J). If k r; TIM, then I is an 

ideal of R such that 

(1) rl = rl(J-I), and 

(2) (I: 1) = rl(J: J). 

Theorem 7. In-the generic pullback ,diagram, assume that M is a maximal ideal 

of T, and let I be a nonzero ideal of R with I r; M. Consider the following 

statements. 

(1) (T: IT) is a ring. 

(2) rl is a ring. 

(3) rl = (R:IT) and (R:IT) is a ring. 

Then (1) implies (2), and (2) implies (3). Moreover, if T is quasi-local with 

maximal ideal M and I v C M, then the three statements are equivalent. 
oF 

Proof: (1) o? (2): It suffices to show that 1-1 2 (T:IT). Let x E (T:IT). Then 

xl ~ xIT ~ T. If xl ¢ M, then, since M is maximal in T, we can write 

1 = tax + m for some t E T, a E I, and mE M. Then ax = ta2x2 + max. Since 

a~ET, maxEM, and.since (T:IT) is a ring, tax2 ET, and ta2x2 EITr;M. It 

follows that axEM, a contradiction. Hence xIr;Mr;R, and I-1 2{T:IT), as 

desired. 

(2) o? (3): Since rl is a ring, we have rl = (II-LII-I) = (II-l)-l by [Hul?, 

Proposition 2.2J and [FHP3, Remark 2.3J. Since I r; M, we have T r; M- l r; rl, 

whence Ir;ITr;Irl, and (II-l)-1r;(R:IT)r;I-1 It follows that (R:IT) is 
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a ring and that rl = (R: IT). 

(3) =} (1) (assuming that T is quasi-local with maximal ideal M and Iv eM): It 
. # 
IS clear that (R: IT)';; (T: IT). For the reverse inclusion, it suffices to show that 

(T: IT)IT';; M, and for this it suffices to show that IT is not principal in T. 

Suppose, on the contrary, that IT = aT for some a E IT. Since (R: IT) is a ring, 

we have by [HuP, Proposition 2.2) that (R:IT) = ((IT)v:(IT)v) = 

((aT)v:(aT)v) = (Tv:Tv). Since M=T-1 and M- I is a ring (Corollary 3), this 

yields (R:IT) = (M-LM- I ) = M-l Th M- I I-I dIM M us =, an v = v = 

(Corollary 5), a contradiction. Therefore, IT is not principal. 0 

Example 8. This example shows the necessity of the assumption I-I = (R: IT) in 

Theorem 7 (3). Let k be a field, and let X and Y be indeterminates over k. Set 

T = k(X)[[y2, y3)), M = (y2, y3)T = y2k(X)[[Y)), D = k[X2, X3), and 

R = D +M; and let Ibe the ideal of R given by I = y2(k[X) + M). It is easy to 

see that X21Y2 E rl On the other hand, (X2Iy2)y3 = X2y ric R, so that 

2 2 I X IY ric M-. It follows that Iv i M. Note that IT = y 2T, so that (T:IT) is 

not a ring. (Thus by Theorem 7, I-I is not a ring either.) Finally, (R:IT) = 

(R:y2T) = y-2(R:T) = y-2M = y-2y2k(X)[[Y)) = k(X)[[Y)), and (R:IT) is a 

ring. 0 

Theorem 9. In the generic pullback diagram, assume that M is a maximal ideal 

orT and that M-:-I= T. Let I be a'nonzero ideal of R such that I eM and I-I 
v# 

is a ring. Then (T:IT) is nota ring {'; M is invertible in T and Iv = QnM for 

some ideal Q of T with Q ¢ M. 

Proof: Since I-I is a ring, 1-11" = h [BuP, Proposition 2.2). Hence IvT = 

IvM- I ,;; lvI-I = lv, and Iv is.an ideal of T. Next, we show that (T:lv) = 

(T:IT). Let XE(T:IT). Then xI';;T=M- I, and xIM';;R. It follows that 

xlvM';;R, whence xlv,;;M-I=T. Thus XE(T:lv), and we have (T:1T)';; 

(T: Iv)' The reverse inclusion is trivial. 
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Now suppose that (T:IT) is not a ring. Let Q = Iv(T:1v)' Since (T:IT) 

is not a ring (and I-I is a ring), we have (T: IT) ~ rl Hence (T: IT)IT ¢ M. 
# 

Thus Q¢M. Since Q+M=T, QnM=QM. Now 1v =IvI-I';;Q, and 

Iv';;QnM. On the other hand, rIQM=rIIv(T:1v)M=Iv(T:lv)M= 

QM';;R, and QM';;Iv' Hence 1v =QnM. If M is not invertible in T, then 

M(T:M)=M';;R, and we have (T:M)';;M-1=T, whence (T:M)=T. 

Hence (T: IT) = (T: Iv) = (T: QM) = ((T: M): Q) = (T: Q). However, by [FHP3, 

Remark 2.3), (T: Q) is a ring, which yields a contradiction. Thus M is invertible 

in T. 

For the converse, note that I v = Q n M = QM. Hence I v(T: I v) = 

QM(T:QM) 2QM(T:M) =Q (since M is invertible in T). On the other hand, 

Iv(R:I) = Iv C Q. Thus (T:IT) = (T:lv) of (R:I) = (R:1T). By the proof of 
# 

(1) =} (2) in Theorem 7, (T: IT) is not a ring. 0 . 

Example 10. This example shows that the situation described in Theorem 9 can 

actually occur. It follows that condition (3) does not imply condition (1) i.n 

Theorem 7. Let k be a freId, and let X and Y be indeterminates over k. Set 

T = k[Y) + Xk(Y) [X), M = (X + I)T, and Q = Xk(Y)[X). Then M is a maximal 

ideal of T by [CMZ, Theorem 4.21). Let 1= Q n M = QM. Since I/(X + 1) E 

(T:I) but I/(X+l)2¢(T:I), (T:IT)=(T:I) is not a ring. Note that 

TI M "" k(Y). Now let R be the pullback of the following diagram. 

R ----+ k 

1 1 
T L TIM. 

Here, we have identified k with the isomorphic copy of k contained in TIM. Of 

course, I is an ideal of R. Since M is a nonprincipal maximal ideal of R and a 

principal ideal of T, (R:M)=(M:M)=T, and (R:I)=(R:MQ)= 

((R:M):Q) =(T:Q) =k(Y)[X). Thus (R:I) is a ring. Also, ((R:(R:I)) = 

(R:k(Y)[X))';; (T:k(Y)[X)) = Q. Thus Iv';; Q. HenceIv ';; QnM = liM. 0 
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For the remainder of the paper, we shall consider the case where T is 

quasi-local with maximal ideal M. In this case, it is well known that each ideal of 

R compares with M. It is clear from Proposition 6 (using the notation of that 

result) that if I::J M the questions about whether I-I is a ring and whether 
l' 

I-I = (I: 1) boil down to the corresponding questions about J in the ring D. Of 

course, for M itself, we have M-1 = (M: M) by Corollary 3. Hence we shall 

concentrate on the case I eM. 
l' 

Corollary 11. In the classical D + M construction, if I is a nonzero ideal of R 

with Iv c M, then the following statements are equivalent. 
l' . 

(1) rl is a ring. 

(2) I is a nonzero prime ideal of R. 

(3) rl = (I:1). 

Proof: (1) =} (2): We have IV c; IvV c; MV = M c; R, so that V c; rl Since 

I-I is a ring, I-I = (Iv: Iv) [HuP, Proposition 2.2J. Hence Iv is an ideal of V. 

By Theorem 7, (V: IV) is a ring, whence IV is a nonprincipal prime ideal of V 

[HuP, Proposition 3.5J. Since IV is not principal, I = Iv by [BG, Theorem 4.3 

(I)J. It follows that I = IV is an ideal of V and therefore a prime ideal of R. 

(2) =} (3): Of course, I is also a nonmaximal prime ideal of V. Hence (V: IV) = 

(V: 1) = (I: 1) [HuP, Theorem 3.8J. Thus (V: IV) is a ring, and by (the proof of) 

Theorem 7,. rl = (V:IV) = (1:1). 

(3) =} (1): This is clear. 0 

Example 12. This example shows that it is not enough to assume that T is quasi­

local with maximal ideal M in Corollary 11. Let k be a field, and let X be an 

indeterminate over k. Set T = k[[X3, X 5, X 7J] and M = (X3, X 5, X7)T. Let D 

be any proper subring of k, set R = D + M, and let I be the ideal of R given by 

1= (X5, X 6)T. It is straightforward to show that rl = k[[XJI. On the other 

hand, XX6 = X7 ~ I; hence X ~ (I: 1), and rl::J (I: 1). 
l' 

Finally) since 
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XX3 = X4 ~ T, we have X ~ M-1 Hence I-II M-l, from which it follows that 

Iv C M. 0 
l' 

Theorem 13. In the generic pullback diagram, assume that T is quasi-local with 

maximal ideal M, and let I be a nonzero ideal of R with I v = M. Then 

rl = M- I = (M:M) = (R:IT). If, in addition, M is not principal in (M:M), 

then rl = (T: IT). 

Proof: We have I-I = M-1 = (M : M) = (R : IT) by Theorem 7 and Corollary 3. 

Hence (IT)v = M v = M by Corollary 5. Suppose that M is not principal in 

(.M: M). We shall show that IT is not principal in T. If IT = aT is principal, 

then (R: IT) = (R: aT) = a-I M, and we have M = a(M: M), a contradiction. 

Hence IT is not principal. It follows (as in the proof of (3) =} (1) in Theorem 7) 

that I-I = (R: IT) = (T: IT). (For the case of the classical D + M construction, 

this last equality appears in [A2, Lemma 5].) 0 

Example 14. This example shows the necessity of the assumption in Theorem 13 

thatM be nonprincipal in (M: M). Let k be a field, and let X and. Y be 

indeterminates over k. Set T = k(X) [[YJI and M = YT. Let D be any proper 

subringof k, let R = D + M; and let I be the ideal of R given by 

1= Y(D[X] + M). By Proposition 18 below, Iv = M. However) since 

IT = YT = M is a principal ideal of T, (T: IT) is not a ring. 0 

Proposition 15. In the classical D + M construction, assume that I is a nonzero 

ideal of R with IcM and Iv=M. Then rl=M-I=(M:M)=V, and 
l' 

IV = M = cV for some c E I; moreover, I-II (I: 1). 

Proof: By Theorem 13, we have 1-1 = M-1 = (M:M), and M-1 = V by [HuP, 

Corollary 3.4J. If IV is not principal, then by [BG, Theorem 4.3 (1)], we have 

I = Iv = M, contrary to hypothesis. Thus IV = cV, and we may take eEl. 

Now IV is an ideal of R, and since I c; IV c; M, we must have (IV)v = M. 
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Hence M = (cV)v = (eM-I)" = eM-I = cV. Finally, we show that I-I of (I:I). 

Since (I: I) <:;: I-I = V, this amounts to showing that I is not an ideal of V. 

However, this follows from the fact that any ideal J of V is automatically 

divisorial as an ideal of R. That this is true follows from [BG, Theorem 4.3 (1)) if 

J is not principal in V; and if J '" aV is principal, then J = aM-I, which is 

clearly divisorial. 0 

From Corollary 11 and Proposition 15, we have 

Corollary 16. In the classical D + M construction, assume that M is nonprincipal 

in V. If I is a nonzero ideal of R with 1<:;: M, then the following statements are 

equivalent. 

(1) rl is a ring. 

(2) I is prime. 

(3) rl = (I:I). 0 

Example 17. This example shows that it is not enough to assume that T is quasi­

local with maximal ideal M in Proposition 15. Let k be a field, and let X and Y 

be indeterminates over k. Set T = k[[X, Y)); then T is a two-dilnensional regular 

local ring with maximal ideal M = (X, Y)T. Let D be any proper subring of k, 

set R = D + M, and let I be the ideal of R given by 1= M2. Then I C M. Note 
# 

that rl <:;:(T:I) =T<:;:(I:I) <:;:rl; hence I-I = (I:I) =T. Similarly, we have 

M-I=T. ThusIv= Mv=M. 0 

We wish to examine in greater detail the situation described in Proposition 

15. Recall that in [HuP) Huckaba and Papick asked whether 1'-1 a ring implies 

I-I = (I: I) and that D.F. Anderson gave a classical D + M counterexample [AI, 

Example 3.2). Among other things, our next result shows that Anderson's 

construction was essentially the only one possible. 
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Proposition 18. Let I be an ideal in the classical D + M construction, and assume 

that M = cV is principal in V. Then I is as in Proposition 15 (I C M and 
# 

Iv = M) {} 1= cW + eM, where W is a D·submodule of k such that D <:;: W ~ k 

and such that W is not a fractional ideal of D. 

Proof: (=» From [BG, Theorem 4.3 (2)), such an ideal I must have the form 

I = cW + eM for some D-submodule W of k with D <:;: W ~ k; moreover, if W is a 

fractional ideal of D, then Iv = cW v + eM.- However, since W v must be a proper 

subset of k this gives I C cV = M, a contradiction. Hence for such an I, we 
, "# 

must have that W is a D-module which is not a fractional idea!. 

(-<=) By [BG, Theorem 4.3 (2)), I ~ Iv = cV = M, as desired. 0 

It is perhaps not surprising that one can have I-I be a ring with 

I-I of (I: I), since I-I is divisorial, whereas (I: I) need not be divisoria!' As the 

following example shows, however, it is possible for I-I to be a ring with 

Example 19. Let F be a field, and let k = F( t), where t is an indeterminate over 

F. Let V = k + M be a valuation domain with maximal ideal M = cV, and let 

R = F + M. Finally, let W = F + Ft, and set 1= cW + eM. Then, since W is 

an F-submodule of k which is not a fractional ideal of F, Proposition 18 implies 

that Ie M, and I-I = M- I = V. However, (I: I) = (W: kW) + M = R, whence 
# 

(I: I)v = R C 1-1 0 
# 

In [DF) Dobbs and Fedder call a domain R with quotient field J( 

conducive if each overring T of J( of R satisfies (R:T) of O. This provides a 

convenient framework for our last result. 
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Proposition 20. In the classical D + M construction, R does not admit ideals of 

the type described in Proposition 15 if and only if 

(1) M is a not a principal ideal of V; or 

(2) M is a principal ideal of V, and D is of one of the following types: 

(a) Dis a conducive domain with quotient field k. 

(b) D is a fleld and k is an algebraic extension of D of degree 2. 

Proof: ("') If M is not principal in V, then ideals of the type described in 

Proposition 15 cannot exist. Suppose that M is principal in V. If D is as 

described in (a), then by [BG, Theorem 4.5J or [DFJ, each D-submodule W of k 

such that D c:; W ~ k is a fractional ideal of D; hence by Proposition 18, there can 

be no ideals of the type described in Proposition 15. If D is as described in (b), 

then any such W is a D-vector space between D and k, whence W = D or W = k. 

If W = D, we have I = eW + eM = eR, so that Iv = eR C M; and if W = k, we 
I-

have I = cW + eM = eV = M. Either way, there are no ideals of the type 

described in Proposition 15. 

(=;0) We assume that M = eV is principal in V. Suppose that D is not as 

described in (a) or (b). If D is a field, then we may choose u E k \ D with 

W = D + Du C k. It is cleat that W is not a fractional ideal of D. Set 
l-

I = cW + eM. It is easy to see that IV = cV = M, and by [BG, Theorem 4.3 

(2)], I C Iv = eV. If D is not a field but there exists a field F properly between D 
I-

and k, then we may take I = eF + eM; again I is of the type described in 

Proposition 15. Finally, if D is a nonconducive domain with quotient field k, then 

by [BG, Theorem 4.5J or [DFJ there is aD-module W with DeW c k such that - I-
W is not a fractional ideal of D. As before, set I = eW + eM. Then I is of the 

type described in Proposition 15. 0 

Remark 21. We note that it is not enough in Proposition 20 to assume that V is 

quasi-local with maximal ideal M; this follows from Examples 14 and 17. 
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21 Cancellation and Prime Spectra 

Jon L. Johnson Elmhurst College, Elmhurst, Illinois 

1. BACKGROUND AND DEFINITIONS 

Two commutative rings with identity A and B are said to be stably equivalent if there is 
an integer n such that the polynomial rings A[x" ... ,xJ and B[y" ... ,yJ are isomorphic 
as rings. A natural question was asked by Coleman and Enochs (1971): 

Can we cancel the indeterminates? 

or 

Does A and B stably equivalent imply that A and B are isomorphic? 

Much of the fundamental work in this area was done in the 1970s and 1980s. In a series 
of articles beginning in 1972, Eakin and Heinzer (1972), Abhyankar, Eakin and Heinzer 
(1972), Brewer and Rutter (1972), and later others, examined this cancellation problem 
and obtained significant steps toward a positive solution. Hochster (1972) and Asanuma 
(1982) independently gave examples of stably equivalent rings which are not isomorphic. 
We outline Hochster's example to show how non-cancellation in one venue is 
transformed to non-cancellation in another. Hochster's example is based on generating 
non-isomorphic R-moduies M and Nand a free module F so that MEBF "" NEBF. Stably 
equivalent rings are generated by the symmetric algebras: 

S(M)[x" .•. ,XJ = S(MEBF) "" S(NEBF) = S(N)[y" ... ,yJ. 

Hochster realized that. If the modules M and N are not isomorphic, then the 
corresponding symmetric algebras S(M) and S(N) are not isomorphic. Thus the inability 
to "cancel" the free modules in the module problem led to the inability to cancel the 
indeterminates in the ring problem. 
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