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0. Introduction

Let A be an integral domain with quotient field K. The ring of mteger-ralued
polymomials over A, denoted by Int{A), is the subring of the ring of polynomials KX
defined as {f(X) € K[X] : f{A) € A). A crucial problem concerning Inti 4] is to
describe i (prime) spectrum and to evaluate its Krull dimension. In this regard.
several satisfactory results were obtained for Dedekind domains [Chl and Ch]. for
Noetherian domains [Ch2], for valuation and pseudo-valuation domains [CH]. and
recently for pseudo-valuation demains of type n [T]. However, the problem of finding
an upper bound, depending on dim(A). for the Krull dimension of Int( A is still open
in general. We recall that Seidenberg [S1] proved that dim(A|X]) < 2dim(4) + 1: this
inequality is essentially related to the fact that the fiber in A[X) of any prime ideal of
A has dimension 1. A major difference between the ring of integer-valued polynomials.
Int(4), sod the polynomial ring case, ALX], is that the fiber in Int{A) of & mazimal
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ideal of 4 may have any dimension {cf. [C3, Example 4.5) or Example 1,14 (1:] below ),
Meverthless, we do not know examples of domains A not satisfving the inequality

(0.1) dim(Int(A)) < dim{A[X]).

This fact leads us to consider the question whether the inequality (0.1) holds for an
arbitrary integral domain A

The purpose of this paper is to review and pursue the stody of the prime spectrum of
Int( A} and to establish bounds for its Krull dimension for relevant classes of domnins

Let 4 © B be an extension of integral domains and let [(B, A) = {fi X} & B[X}:
f{A) C A} the ring of the A-valued B-polynomials introduced in [AAZL. Note that
I(K, A) = Int{4), and A[X]| C I(B, A) C A+ XB[X]. The inequality

10.2) dim(I( B, A)) £ dira{ A[X])

does not bold in general. As a matter of fact, in Example 1.14 {a). we ronstruet
explicitly an integral domain A and an overring B of A such that

dim(Int{4)) < dim{ A[X]) < dim{I{E, A)).

However, our motivation for deepening the study of rings [{B, A) is related to the
following considerations: let A" = A\{0}, since K’ = Lm{Ala™'] : a € A"} (ie. &
is the direct limit of the inductive family of the quotient rings Ala™'], considered as
& direct system by setting a < b in A® if alb). It can be easily seen that Int( 4] =
lim{[(Afa™"],4) :a € A"} and hence

dim{Int{4)) = sup{dim( i 4[a~"], 4)) :a & 4°}

[DFK, Lemma 2.1]. Thus, in order to prove the inequality (0.1), it would be enough
to show that, for ench overring Afa™"] of 4, where o & 4%,

(0.3) dim(7(Afa~"], A)) < dim({ A[X]).

Now using the inclusions AlX] € J(dla™'],4) € 4 + XAle™', X] and she in-
equalities sup{dim(A[a~", X]),dim{4) + 1} £ dim{4 + X Ale™" X]) £ dim( A[X]}. in
conjunction with the fact dim,{A[X]) < dim.{4 + XAla™!, X]} (¢f. [FK. Proposition
3.1]), we deduce dimy(I{Ala="],4)} = dim.(A4) +1 = dim,(Int(4)). Thus we are
tempted to prove an inequality of the following type:

(0.4) dim(A + XAla™", X]) 2 dim{J{A[a™"], 4)}.
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Unfortunately there is & countrexample. Take A = K + ZK(Y)[Z] z;. where
K is an infinite field and X, ¥, 2 are indeterminates over K. For a = Z we get
Ala=?] = A[Z™'] = K[Z2-' + ZK(Y)|Zkn[27"] = K(Y.Z) = qiiA). Hence
I(Ale=1), 4) = I{g.L(A), A) = Int(4). Moreover, since A/M is infinite, Int( A} = A]X]
[CC, Corollaires, p. 303]. It follows that dim{Int{A)) = dim{A[X]) =2+ dim(d) =3
[HH, Theorem 2.5]. On the other hand, applying [FK, Proposition 3.1] we ob-
tain dim(A + XAle~' X]) = 1 + dim{A) = 2 and hence dim{Ad 4+ XAja™'. X]) <
dim(I{Ala="), 4)) = dim{ A|X]). Therefore (0.3} hoids but (0.4) fails.

The first section begins with a generalization of [AAZ, Proposition 7.3). This result
shows that, without loss of genevality, we can suppose B to be an overring of A.
whenever A is not n finite field. Further we show that the inclusion J{ B, 4) € Int{4)
always holds, even when B is not an overring of A. We also compute the valuative
dirnension of J{H,A) and Int(A) and establish necessary and sufficient conditions for
the transfer of the Jaffard property to the ring I{B, A) (hence, in particular, to Int(A)).
As n consequence, we show that the inequality (0.2) holds for all extensions of domains
A C B such that the polynomial domain A[X] is a Jaffard domain. In Theorem 1.10
we establish lower and upper bounds for dim{J{ B, A)) in the spirit of [C3. Corollaire
1.2 and Proposition 1.4]. Moreover we generalize [C3, Théoreme 4.2 and Proposition
2.2) by showing that dim{I(B, 4)) = dim(B[X]), when A is obtained from B by s
pullback of & special type. This allows us to construct a pair of domains A C B such
that dim(J( B, 4)) > dim( A[X]) and hesce to exibit failure of (0.2) in general. Finally.
we study J(B, A) when A C B iz a residually algehraic extension of domains.

In the second section, we deal with Int{ D) where D is & pullback of & special type: -
a major example is when D = R + [, where [ is a nonsero ideal of a given domain T
and R is an infinite subring of T with g £.(R) C T/I. We show that, in this case, the
spectrum of lnt( D) can be described in terms of the spectrum of lnt| R) and the prime
ideals incomparable with J = ID;[X]Nint{ D). This permits, in the present situation.
to maintain control over dim(Int(D)). In particular we ean apply the results of this
section to the “classical case”™ where T is & valuation domain and [ the maamal ideal
of T,

In Section 3 we prove an analogue for Int(D) of n well-known theorem proved by
Seidenberg, concerning the Krull dimension of the ring of polynomials; let n = 1,
for ench h, withn 4+ 1 £ h < 2n <+ 1, there exists an integral domain D such that
dim{.D) = n, dim(lot(D)) = h and Int{D)  D[X].

In the fourth section we are concerned with integer-valued polynomials over sub-
sets. Let E be a fractional subset of D. We show that D is a Jaffard domain if
and oaly if Int(E,D) is a Jaffard domain and dim(Ist(E, D)) = 1 + dim({D). This
establishes & cooverse to [C3, Corollsire 1.3]. In Example 4.4 we show that the -
equality dim{D{X]) =1 < dim{Int{ E, 1)) does not hold in general when E # D (for
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the case E = D, cf. [C3, Proposition 1.4]). The main result of this section deals with
dim{Int{ E, D)), where D is a special subring of a Bézout domain: in particular. in
the local case, we have the following application: if D is a pseudo-valuation domadn
with infinite residue feld, for each D-submodule E of the field of quotients of D.
dim{Int(E, D)) < dim{ D{X]).

L. The A-valued B-polynomials

In this section we suppose that A © B is an extension of integral domains. such
that A is not a finite field, nnd we denote by K the quotient Seld of 4,

The ring I{B, A) := {f(X) € B[X] : f(A) € A) of the A-valued B-polynomials
was introduced in [AAZ|, but not so much explored. It is evident that /(8. 4) =
Megald + (X = a)B[X]) and, therefore, [{B, A) C A + XB[X].

HA={ay,-,anx) ia a Boite Geld then [{B A) = I"Iil[d-l-[.x = o 1B[X]) s a
finite intersection of domains obtained from pullbacks of the following type:

A+(X = a)BIX] = ¢~} (A) — A
! |
BLX] —Z . (BIX|/(X - 0)B|X]) = B.

Therefore this case can be reduced to the study of pullback constructions of a special
type [FIK1], [FTK2], and [FIK3].

In this section, we collect more information on this kind of rings especially in order
to enfighten their relationship with the integral domains A[X], B[X] and Int(4). A
special result is that the inequality (0.2) does not hold in general (cf. Example 1.14 (a)).
On the other hand, it is well known that for any polynomial f{X) € Int(Z)(= [1Q.Z))
of degree n, nlf(X) € Z|X]. Proposition 7.3 of [AAZ] establishes a similar result for
Int{ D), where D is an integral domain. Mimicking the proof of the above-mentionsd
result, we generalize it to the domain I[{ B, A}, then we point out a kind of independence
of I{B, A) from B. In fact, we show that I(B, ) is always a subring of Int(A) even if
B i3 not an overring of A.

Lemma 1.1. Given an extenmion A € B as above, for each n = 0, there exists
0 % ta € A such that ta f(X) € A[X] for all f(X) € I{B, A) with deg{f{X)) < n.

Proof. Tum:id.ﬂu!r‘rﬁllunﬂ:lnl;mnzl. From the hypothesis that
A s oot & fnite field, we deduce that there exists r € A such that (r™ = ') # 0 for
i=0,1...,n—1 Now, et

FX) = as +a X+ + . X" € I{ B, A)
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be a polynomial of degree n. It is clear that:
gy +ray X + o+ r"a X" = f(rX) € I(B, A)
and
rhag +ria X + o rta X" = e f(X) € I(B, A),
henee the polynomikl:

[r" = L)ag + (F® = r)ag X 4 oo (P —p""V)g, _, X"=1 =

=r"f(X) = flrX) =: g(X) € I(B, A)

has degres at most n =1,

By induction, we can find ty.; # 0, ty-; € A with £,.,0(X) € A[X], that is t,-(r" -
r'da; € Afor 0 <1 €n~1and, moreover, ag +a; + -+ +a, = f(1) € A,

Set ty 1=ty [Limg mea (" = #') € A. It is clear that: tha, € Afor 0€i<n-1
Furthermore totg +tady 4 +tpay = £, f(1) € A} hence loo, € A and thust. fIX) €
AX]. O

Proposition 1.2. Given an extension A C B as above, then we have the following
inelusions:

f AlX] S I(B,A) C Int(A) C A+ XKIX] C H‘[X].J

Proof. Let f(X) € I(B,A) be » polynomial of degree n, 30 there exists 0 g, € 4 ~
such that ¢, f(X) € ALX]| (Lemma 1.1). It follows that f(X) € (1/t.)AlX] € K|X].
Sinee f{A) C A, then f{X) € Int(A). The remaining inclusions are obvious. [

The conclusion of Proposition 1.2 does not hold if A is & finite Seld (see Example
1.18).

Th:winumuhunthulhnhmh-dpunﬁtyhrmﬁmsh
an overning of A.

Notice that J{B, A) coincides with Int{ A) in several situations. For instance. when-
ever Int{A) C B|X] (in particular when A € B isa “bon couple” in the sense of Cahen
[C3]) thes, obviously, (B, A) = Int{A). Moreaver,

Corollary 1.3. (a) Let A C B be an extension of integral domains such that 4
contains an infinite field Ky. Then I(B, A) = lat{A) = A[X].

(b) H A C B is a fiat overring of A with Bg|X| = Int{Bg), for each Q € Speci B).
then I{B, A) = Int{A).

Proof. (a] Let M be a maximal ideal of A, then Ky N M = (0) and thus K} can be
canonically embedded in A/M. 1t follows that A/M is infinite for each maximal ideal
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of A, therefore Int{ A) = A[X] [CC, Corollaires, p. 303] and, from the previous result,
the thesis follows.

(b) Since B is a flat overring of A, then for each prime ideal @ of B, Agna = Bg
[R, Theorem 2]. Therefore, Int(4) C Ngespecmlnt{ Agna) = NgespecimInt{Bg) =
angthJI{BQ[X}:I = B[XI and hence I{B,A) =Int{4). O

By Proposition 1.2 we lmow in particular that 4{X] C I{B, 4) C K[X]. hence
by [AAZ, §2], the values of elements of I{5, 4) at X = 0 split this ring into two
remarkable parts:

Mo:={f(X) e [[B,A): fl0)=0}

which is a prime ideal of (5, A), and:
So:= {f(X) € I(B,A): f(0)#0}

which is a multiplicative subset of I{.B, A).

More precisely, from [AAZ, §2], it follows that A = {fi0) : f(X) e [{B. 4)} =
I8, A)fM; and I[B, A) = 4 4+ M.

With the previous notation we have:

Proposition 1.4. Given the extension 4 C B of the type described at the beginning
of this section, then:

(a) 53 I(B, A) = I{B, A)m, = K[X]x)-

(b) My is a height ome prime ideal of I{ B, 4).

{c) My is maximal if and only if 4 is a feld. In this case {8, 4) = 4[X].

Proof. (a} By Propesition 1.2, A[X] € I{B,4) C K[X]. On the other hand, it 1s
easily seen that My = XK[X]NI(B, A}, and 5y = N8, A) \ My =({A\(0)) + My C
K[X]\ XK[X]. Therefore,

5. (B, A) = I{B, A)m, € K[X]ix)-

Now, let H(X) = (f(X)/g(X])) € K[X]x), with f(X}, (X} € A[X] and ¢(0) £ 0.
It follows that f{X) and g(X) belong to I{B, A) and g{X) € My. Hence H(X) £
I{B, A)m, and then K|X|ix) € I(B, Alag, .

{b) We notice that § = A" (0) is a multiplicative subset of both 4 and J| B, 4)
such that

STlAX]=K[X] € S'JI{B, A} € K[X].

Sinece MyNS=0,301<htypg 4 (M) < dim(K[X]} = L.

{c) The first part follows easily from the fact that [{ B, 4)/M; = A. For the second

part, by hypothesis, if 4 is & field, it i5 infinite so, from Cerollary 1.3 [a), it follows
that [{B A) = A[X]. O
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Remark 1.5. For each a € A, we can consider
M, = {f{X)ellB.A): fla) =0}, S,:=I{B A\M,

then it is easy to see that M, = (X — a)K[X] N J(B, A) is » prime ideal of I{B. 4},
A= [(B,A)/M, and I(B,A) = A+ M, and, mutatis mutendis, Proposition 1.4 holds
if we replace M, and S, by My and 5.

Thnm{liihwciﬁml.ﬂuhunumﬂlymimuupumh:hlﬁw
of I{B, A) under localization. The next lemma gives an answer to this problem.

Lemma 1.6. Let A C B be an extension of integral domains with the same quotient
field K and 5 a multiplieative subset of 4. Then:
(a) SI(B,A) C I{§='B, 51 A), with the equality occuring when A is Noetherian.
(b) Let p be a prime ideal of A with A/p infinite. Then I(B, A,) = A, X (=
Int(4,)).

Proof. 1t is enough to obeserve that I(B, A) = Int{A4) 1 B[X], and both statements
above hold for lat(4) [CC, Corollaires, p. 303]. O

Remark 1.7. (a) As mentioned above, for each o € A, [(B.A) = A + M, We
d.u:lu:llhll-&mﬂdf{ﬂ.&}mmiﬂhd’ﬁm;+ﬂ..
where p is a prime ideal of A. Foreach p € Spec(d)snd o€ A, weset p, = [fiX) &
I{B.A) : fla) € p}. It is ensy to see that p, is & prime ideal of [[B. A) and. i
P C q is an inclusion of prime ideals of A, then p, C g,. Therefore. in particular.
1 +dim{A) < dim([(B, A)).

i.'b]'..iinu.i-.I\[ﬂ}iltmlﬁpﬁuﬁumbutufﬂﬂ.aﬂ.ith.uil;rm:I:.u
for each irreducible polynomial f(X) € K[X], then P := (AIXIK[X)) A B.A) is
u height 1 prime ideal in J{B, A), and I(B,A}p = K[X]iyx)) is a one dimensional
Noetherinn wluation domain.

We recall that the valuative dimension of an integral domain A in defined as follows:
dimy(A) i= sup{dim(V) : V is a valuation overring of A).

A Jeffard domain is a domain A such that dim,(A) = dim{A) < se. Finite &-
mensional Noetherian domains or Priifer domains are examples of Jaffard domains
|ABDFK].

hhnmrwknmﬂ:nhuﬁudimﬂdﬂﬂ.&“mdm.inm—
ﬁcuhr.ﬂhﬂd}]mdmmnﬂhbmmﬂnﬁdmtmﬁﬁm:fwlhuu:ﬁr
of the Jaffard property to either Int{4) or (B, 4).
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Proposition 1.8. Given an extension A C B as described at the beginning of this
section, then:
(a) dim, ([ B, A)) = dim,(Int{A)) = 1 + dim,(A).
(b) The following conditions are equivalent:
(i) 4 it a Jaffard domain;
(5) Int{A) is a Jaffard domain and dim(Iot{A)) = 1+ dim{A);
(iii) I(B, A) is & Jaffard domain and dim(I(B, A)) = 1 + dim(A).

Proof. (a) From Propesition 1.2 we have the following inclusions:
AX] € I(B,A) G Int(A) € A + XK[X] € K[X],
where K = q.f.{A). Therefore
1+ dimy(A) = dimy(A + XK[X]) £ dim.(Int(4)) <

< dim,(I(8, A)) € dim,(A[X]) = 1 + dim.(A).
(b) (i) & (iii) We always have the following inequalities (Remark 1.7 (s))

1 +dim{A) < dim{[(B, A)) < dim,(I(B, 4)) = L + dim,(A).

Therefore, if A is a Jaffard domain, I(B, A) is & Jafard domain and dim([i 8. 4)) =
L4 dimi4).
{i) & (ii) Mutatus mutandis the proof is the same ss for (i) & (ii). O

As an immediate application of the previous proposition, the next result shows thas
the inequality (0.2) holds for the integral domains A (possibly non Jaffard) whose
polynomial extension A[X] is a Jafard domain.

For instance, if k is any Anite feld and X, ¥ and Z are indeterminates aver &, then
it is well known that A = k + Zk(¥)[Z] is & 1-dimensional non Jaffard domain. since
dim,(4) = 2. It is not diffcult to see that A[X] is a 3-dimensional Jaffard domain
[HH, Theorem 2.5].

Corollary 1.9. Let A € P be an extension of integral domains such that either
A[X] is a Jaffard domain or A/M is infinite for each maximal ideal M of A. Then
dim{I(B, A)) < dim( A[X])
Proof. I A[X]isa Jaffard domain, then dim( A[X]) = dim,(A[X]) = 1 +dim (A} =
dim, (][5, A)) > dim(I{B, A)). H A/M is infinite for each maximal ideal Af of A, then,
by [CC, Section 4], Int{A) = A[X] and thus A[X] = I(B, A) (Proposition 1.2). O
The following theorem establishes some bounds for dim{I{ 8, A)) in the spisit of
[C3, Corollaire 1.2 and Proposition 1.4].
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Theorem 1.10, Given an extension A C B of integral domains where A is not a
finite field, then
sup{l + dim(A); dim{A[X])~ 1} < dim{I{B, A)) €1 + dim,{A).
Proof. To avoid the trivial case, we consider the finite dimensional setting.
It is clear that 1 + dim{A) < dim{I{B, A)) < dimy([{B,A)) = 1 + dim,|A) (Remark
1.7 (a) and Propositjon 1.8 (a)).
For the remaining inequality, by the “special chain Theorem” [J, Theorem 3. p. 35].
let
(0)=QC-CQunzCQumi=mX]C Qs

be & chain that realizes dim{ A[X]), where m € Max(A).
It is easily seen that p = Qa-2 N A is not maximal, o A/p is infinite and then
Btax)(plX]) = n = 2 Qu-y = p[X], or n = 3 if not. On the other hand, Int(4, ) =
Ay|X] |CC, Corollaire 2, p. 303). Hence, there exists P € Spec(Int(A)) such that
PN AX] = plX] and ht(P) > n - 3. However, from Lemmn 1.6, there exists P £
Spec(i{B, A]), with P n A[X] = p[X], and bt(P) > n = 3. Now, m iz maximal
and contains p. Therefore, from Remark 1.7 and the sbove considerations. there
exists & chain of prime ideals of 1(B, 4) of length at least n = 1 and of the form
{ﬂ]t“-CPC!'!-H;CII--{-.I(,.itﬁ:ih:ﬁithlldhl{ﬂlI]]-lEdiﬂIlB.A!l. D

Io the Example 1.19 below we will show that, if A is & Bnite field, it is not true. in
general, that dimi(J(B, A)) < 1+ dm{A).
Corollary 1.11. [C3, Corollaire 1.2 and Proposition 1.4).

Let A be an integral domain with quotient field K. Then

sup{l + dim(A); dim{A[X] - 1)} £ dim{Int(4)) € 1 + dim,(4). O

As we mentioned in the introduction, the problem of computing the Krull dimension
of Iat(A) is still open. Up to now, there are no examples of domains A such that the
inequality dim(Int(A)) > dim{A[LX]) holds. However, we shall give an example of an
extension of domains A C B such that dim(I(B, A)) > dim(A[X]). First we pesd to
generalize soue results proved in [C3], in the case of Int(A).
Proposition 1.12. Let A C B be an extension of integral domains, and let J be a
common nongero idea) of A and B with 4/ finite. Then:

() every chain of prime ideals in I{B, A) lifts in B[X].

(b) dim(I(B, A)) = dim(B[X]).

(c) For each prime ideal m of A with m 2 J, then dim(I(B, A)/mI(B.A)) =
dim(( B/mB)X]).

The proof of this result is partially based on the following lemma, which can be
proved by adapting the arguments used in [C3, Proposition 2.3].

-




442 Marco Fontana, Lahoucine [zelgue, Salah-Eddine Kabbay, Francesca Tartarone

Lemma 1.13. Givén an extension of integral domaina 4 C B, let J be & nonzero
ideal of A such that AfJ is finste. If M is & prime ideal of [[B, A) which contains
Jri={fe B A): flA) C 7}, then:

ia) M lies over a mazimal ideal m of A that contains J.

(b) M contains the ideal m* := {f € I(B, A) : f{A) € m}.

(e} M is mazimal.

{d}) I{B, A)/M = Afm. O

Proof of Proposition 1.12. Mutatis mutandis, after remarking that J* s a common
ideal of I{ B, A) and BiX|, we can use the proof of [C3, Théoréme 4.2 and Corollaire
4.4] replacing Int(A) and [C3, Proposition 2.2] with [{B, 4) and Lemma 1.13. respec-
tively, O

Examples 1.14. (a) Let & be a finite field, let Z1, 24, Z3 be indeterminates aver £,
K=k{Z,, %) and M := 23K Z1);2,;. Consider the following domains:

V=R + M= K[Z]iz; Bi=k&)+M and  A:=k<+ QS
Then we have the following pullback diagrams:

A —— A/M=Ek

l !

B —— B/M =kZ)

l !

V—— V/M=K

where V' is a rank one discrete valuation domain, A is a cne dimensicnal pseudo-
valuation domain of maximal ideal M and residue field & (a finite field). More-
over, since t.d.e(K) > 0, dim{A[X]) = 2 + dim{A) = 3 [HH] and dim(B[X]) =
dimi{k[Z;, X])+dim(V )+1 = 4 [ABDFK, Corollary 2.8], dim({Int(A)) = 1=dim{4) = 2
[T, Corollary 1.4] and by Propesition 1.12, dimi{I[B. A)) = dim(B{X]] = 4. It follows
that F
dim(Int{ A)) < dim{ A[X]) < dim{[{ 5. 4)).

We note that [{B, A) is & Jaffard domaidt sinee dim,(I{B, 4) = dim,(4)+ 1 =
J4l=4

(b) (Cahen [C3]). Let k be a finite field, k¥ C K & field extension, X7, X, - . Xouy
a finite famnily of indeterminates over K, n > 1.
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Set B = K[X;, X3, -+ ,Xns1] and let § be a prime ideal of height 2 in B, eg
@ = (Xa, Xns1)B, and ¢ : B — B/Q the natural projection. We can consider the
following pullback of canenical homomorphisms:

A=l k) — k
¢ i l
B e qugﬁrgxhxh"'rxn—]}
In this situation, @ = Q N A becomes a maximal ideal in 4; however, dim{ 4| =
dim(B) = n + 1 since every chain of distinet prime ideals of B
=@ CQuna

with §; 2 @ contracts into a chain of distinet prime ideals of 4.

Furthermore, since htg{@) = 2 and B is a Krull domain, then A C B is a “bon
couple” in the sense of Cehen [C3, Proposition 3.2, Definition 4.1], hence Int{4) C
B|X) (and thus I{B, A) = Int{4), Section 1) and

dim{I{ B, A)) = dim(Int{A)) = dim{B[X]) = n + 2 = dim{4) + 1

{Proposition 1.12 or [C3, Thécréme 4.2]). However if we consider the fiber of the
maximal idesl Q of A in F(B, A) = Ink{A), then by Proposition 1.12 (3) we have:

dim(I(B, 4)/QI(B, A)) = dim(Int(4)/QInt(A)) = dim( BIX]/QBIX]) = n-1+1 =n.

The following result compares the Krull dimension of B[X], [{5, A} and 4+ X B[X]
for residually algebraic extensions of domains. We recall that 4 C B is rendually
algebraic if for each prime ideal § of B, B/ is algebraic over A/(Q N A).

Theorem 1.15. Given a residually algebraic extension of integral domains 4 C B,
then

dim(B[X]) < dim({4 + X B|X]) < dim(I(B, A)).
Proof. We already noticed that

AlX] € I(B.A) € A+ XE|X] ¢ B[X].
Now, let be given 2 chain of prime ideals in A + X B|X] of the following type:

(0)=PiC---C P, CP,C P,y =pass + XB[X] C -+ C P, = po + XB|X].
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where X @ P} for 0 < r < k, and where p; is & prime ideal of A, for k+1<:<n,
The chain

(1) M=FKRc--ch,Ch
lifts to & unigue chain of B[X] of the same length
(2) =P c.--cP_,SF

[FIK1, Lemma 1.1 (b)]. Sinee A — B is residually algebraic, A[X] — B[X] is in-
comparable ([FIK2, Lemma 1.6 (b)] and [DF1, Theorem 2]}, whenee the chain (1} or,
equivalently, the chain (2) contracts in I(B, A) to a chain of the same length.

On the other hand P/ = p; + X B[X] contracts to the ideal p, + M, of I B, 4). for
1t > k. Thus P/ nI{B,A) C P,,NI[B,A). From the previous argument it follows
that ench chain of prime ideals of A + X B[X| contracts itself to a chain of the same
length in I(B, A). Then the second inequality follows. For the first inequality see
[PIK1, Theorem 2.1 {a)]. O

In particular, since the natural injection A — §~'A, where § s & multiplicative
subset of A, is residually algebraic, then, from the previous theorem we have

Corollary 1.16. Let A be any integral domain and 5§ & multiplicative subset of A,
Then

dim( S A[X]) € dim(A + X5 A[X]) < dim({[(S~'4,4)). O
We notice that for § = A\{0}, from the previous result, we rechtain that

1+ dim(4) < dim(Int(4)).

Naote that, in general, the second inequality of Theorem 1.15 doss not hold. In facs,
the following example (which is a slight modifieation of Example 1.14 (&)) shows that
it may happen dim(I(B, A)) < dim{B[X]) < dim(A + X B[X]).

Example 1.17 Let K be an infinite fieid, £, Z; and Z; indeterminates over K.
Set V im K(Z1, Z2)[Zs2,) = K(21,Z2) + M where M .= Z,K(2,, 23)[ 23}, 2,), B =
K[Z)4+ M and A = K + M. Then, as in Example 1.14 (a), dim{4]X]) = 3 and
dim(B[X]) = 4. In this ense, since K is infinite, by Corollary 1.3 we have I[{B. 4) =
A[X], thus dim([(B,4)) = 3 < dim(B[X]) = 4 < dim(4 + XB[X]) < 5 [FIKL
Theorem 2.1 (a)]. Since dim,(I(B,A)) = dim,(A) + 1= 4, in this case [{B. 4) is
oot a Jafard domain. Moreover, since A + X B{X]| is an overring of I{B. 4). then
necessarily dim{4 + X B|X]) =4

All over this section, we assumed A to be infinite. If 4 is a finite field, the inclusion
I{B,A) C Int{ A) of Propoaition 1.2 does not hold.
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Example 1.18. Let A = Fy 1= Z/27 and B = F, & Fy[X]/(X? + X + 1), ie,
Fi = Fyju], where o + w1 =0

Now, et f(X) = wX? + wX + 1, clearly f(X) € F|X]\ F3|X]. Moreover, f(0) =
leFRad fll) =l +w+e®=0€F,. Thatis, f(X) € I(Fi,Fa) \F3[X]. On
the other hand, Int(Fy) = FalX], hence Int(F;) C I(Fy.Fy). In this example, the
composite cover, in the sense of [AAZ], of I(F,.Fy) is Fy + XF[X] because there is
0o integral domain petween F; and F,. Therefore it follows that dim,(/(Fy,F2)) =
dim., (F3+ XF|X]) = 1, thus J(F,F;) & a 1-dimensional Jafard domain with quotient
Beld F, (X))

Example 1.18. Let A =F;, T and X two indeterminates over A and set 5 = A[T].
In this situation, J(B, A) = (Fy + XFy [T, X])N(F2 + (X =1)F|T, X]) = (A+ XB{X])n
(A4 (X =1)B|X]). Let J := X(X - 1)B[X]. We have that I[B A)/J 2= Ax A J
is & common ideal of the rings A + J C I(B,A) C B[X]. Now, dim,(A+J) =
2 2 dim,(I(B, A)) [FIK3, Theorem 2.1]. Since each chain of prime ideals of B|.X] not
containing J |s preserved by contraction to J( B, A), then dim(J{ 8, A)) = 2. Therefore,
2= dim{I(B, A)) = dim,(I(B, A)) > dim (4} + 1= L

2. Ioteger-valued polynomials and pullbacks

The description of the prime spactrum of the ring of the integer-valued polynomiais
B & crucial problem, and it has been setzled for just a few classes of domains. The
purpose of this section is to evaluate the Krull dimension of Int(D) and to describe

Spec(lnt(D)) for domains D arising from & particular type of pullback constructions. -

In this section, we assume that

(*) T is any iotegral domais, | & & oonsero ideal of T, R is an infinite integral
domain such that q.L(R) = K € T/l, & : T — T/l is the canopical projection,

and we consider the following pullback:
D= _I{H} —_—

l l

S=p l(K) — K
T —= T
1n the setting (»), the following inequality for the Krull dimension of the polynomial
rings bolds (¢f for instance [C1, Théorémme | et Corollaire 1]):

(2.1) dim(D{X]) € dim(T(X]) + dim(R{X]).
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The first aim of this section is to prove that an analogous inequality holds if we
take the integer-valued polynomial ring,

Reeall that, given an integral domain D, a divided prime ideel P of D is a prime
ideal such that PDp = P, If we denote by k{ P) the residue field of D in P, it i well
known that k(P) is canomeally isomorphic to the quotient field of D/P. Therefore it
is is easy to see that P is divided in D if and only if the following diagram of canonical
hemomorphisms is a pullback:

D — DJP
| l
Dp k(P

A divided domain is an integral domain such that each prime ideal is divided, Next
we recall & result proved by Tartarone [T, Corollary 2.2], that will be used several
times in the sequel.

Lemma 2.1. Let P be a divided prime of an integral domain D). Then
dim(Int( D)) = dim({ Dp[X]) = 1 + dim(Int(D/F)). O

The previous result may be generalized in several ways as will show Proposition 2.3
and its coroilaries.

Let H be & nonzero ideal of an integral domain Randlet Sy =5:={r e R:r +
H is a nonzero divisor of R/H]}. We notice thai the total ring of factions of R/H,
Tot{ R/H), is canonically isomorphic to ST R/5™'H and §7'H N R = H. Consider
the overring B H) of R defined by the following diagram of canonical homomorphisms:

R(H) = o~ (R/H) — R/
(22) | l
5-'R — . §'R/5'H = Tot(R/H)

1t is obvious that if H = P is a prime ideal of R, then R{P) coincides with R if and
only if P is a divided prime.

Proposition 2.3. Let R, H and R(H) be as above. Then there exists a canonical
isomorphism

I{S7'R, R(H)) = §7'RIX| xraqryayx [(Tot(R/H), R/H).

Proof. By passing to polynomial extensions in (2.2}, we obtain the pullback:
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KMJA] —— 84

l l

I(S™'R,R(H)) —— I(Tot(R/H),R/F)

l I

\ STRX] ——  TouR/H)X]
where & is the canonical homomorphism nssociated to .
It is straightforward that @ |5s-1 g ainy TIS™'R, R(H)) — I{Tot{R/H),R/H). this
fact implies @~ (J(Tot(R/H), R/H)) = I{§-'R.R(H)). O
Corollary 2.4. With the potation of Proposition 2.3, assume that, for each prime
ideal P of R such that PN § = 8, R/P is infinite, we have the following canonical
i i

Int(R(H)) & 57 RIX] seou myanpx) [ Tot( R/ H), R/ H).
In particular, if H = P is a prime nonmaximal ideal of R, then we have the following
canonical isamorphism
Int(R(P)) % Rp[X| xypy %) lnt( R/ P).

Proof. lo order to apply Corollary 1.3 (b), we notice that S~ R(H) = §~1R, because
R(H) C 57'R, bence 5~' Ris a fiat overring of R{H). Moreover, Int(Rp) = Rp|X| for
each P such that R/ P is infinite [CC, Corollaires, p. 303]. Therefore I{S~'R. RIH)) =

Int(R{H)), hence the first statement follows from Proposition 2.3. O - )

Corollary 2.5. With the notation and hypotbeses of Corollary 2.4, we have:
(a) dim(Int{ R(H'))) € dim{5~*R|X]) + dim(J{ Tot(R/H). R/H));
(b) dim(Int(R(P))) = dim({Rp|X]) + dim(Int{R/P)) = 1.

Proof. (a) is & consequence of [C1, Corollaire 1, p. 509).
(b) From the second statement of Corollary 2.4, we deduce that Int(R/P) =
In{R(P)/PRp) = Ist(R/P)/PRp|X]. Since Spec(Int(R(P))) is homeomorphic to

then

dim(lat{R(P))) = max{dim{ Rp[X]),bt{ PRp|X]) + dim(Int(R/P))} =
= max{dim(Rp[X]), dim(Rp[X]) - 1 + dim(Int(R/P))) =
= dim({Rp[X]) - 1 + dim(lat{ R/ P))
since dim(lnit( R/P)) 2 1, because P is nonmaximal prime by assumption. O
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Proposition 2.8. [In the selting (= described above, assume, in addition, that T is
local. Then:

(2.6.1) dim(lne( D)) < dim(T|X]) + dim(Int(R)),
and moresver,
(2.6.2) Iot{D) = D[X] < Int(R) = R[X].

Proof. To avoid the trivial case, we can assume R # K. Let E := R\{0} and
£ := p~YE). It is easy to see that the multiplicative subset £ of D coincides with
DM\I, where I is a prime ideal of D and D/ is isomorphic to R.

Claim. Let T be as in (») (thus, T is pot necessarily local) and suppose that
QnDC I for each @ € Spec(T), then T satisfes (2.6.1) and (2.6.2).

Under the previous hypothesis, 5 is local with maximal ideal / and hence 5 =
w Y {K)=E"'D= Dy, whence [ is a divided prime ideal of [} and k(f) = K.
By applying Lemma 2.1 we obtain

(2.3} dim({Int(D)) = dim(D[X]} — 1 + dim({Int(D/I}).
Since the following diagram is also a pullback:
Dy|X] —— (Dy/1D;)[X] = k(I)|X]

! l

x| — (T/1)X]
it follows that dim(D;[X]) < dim(T[X]) + 1 [C1, Théoréme 1]. Therefore,
dim(Int(D)) < dim(TTX]) + 1 = 1 + dim{Int{R)) = dim(T[X]) + dim(Int(R}).

Moreover | is a prime nonmaximal divided ideal in D, so I[X| = ID;[X]| and
Int(D) € £-at(D) € Int(Dy) = DpX].
We claim that the following diagram of canonical maps:

DIX] —  (D/D)|X|= RIX]

! .

Int(D) —s Int{D)/I[X] % Int(R)

! |

Dy[X] —— (Di/ID1)X] % k(1)|X]
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is a pullback. In fact, if f(X) € Int(R)  k(I){X], then for ench F(X) € ¢~} (fIX)) €
Dy X] and for each d € D, we have p(F(d)) = f(¢(d)) € R. Thus F(d) € D. We
conclude that FUX) € Int(D). It is straightforward that ker{y : Int(D) — In(R)) =
11X], and bence Int(D) = D{X] if and ooly if Int(R) = RIX]. O

Next goal is to study the case in which T is not necessarily local.
Theorem 2.7. Inthe setting (+) described above, Jet J := ID;|X] N Int(D) Then:
{a) we have the following canonical homeomorphisms of topological spaces:
(i) Spec(Int(R)) — {P € Spec(lat(D)): P2 J}, @ = ¢~ '(Q):
(ii) Spec{Ds[X]/IDs[X]) = (P € ng(lmw!l (PCJ), Q= @Q@nimiD).
\/ (b) Let T := {q € Spec(T) : gis incomparable with I). Assume that T/qg is infinite
for each g € T'. Then we have the following homeamorphism:

UgerSpec(T,[X]) = {P € Spec(lnt(D)) : P is incomparable with J},
Q= @nlat(D).

Proof. To avoid the trivial case we can nssume D # K .F.:lnhuu.lﬂtfrtﬂﬂ
and set § = £-15 T = £-'T, and [ :m £'1. Since [ is an ideal both in § and
T, and it is maximal in S, then every element of ¥ becomes a unit in 5/J [and hence
also in T/I). Consequently, [ is also an ideal of T, 5§/ = S/J. and T/J = T/IL
Let ¢ : T — T/F 2= T/I be the natural projection associated canonically to 2. We
consider the following disgram: =

L l l

§ — [ — S/Iz=K

l l l

T + 2.tixT
In this situation, the argument used in the proof of Proposition 2.6 can be applied. In
fact each prime ideal of T contracts 10 a prime ideal of D) contained in [. and f s a
divided prime ideal of . Moreover D; = [ = §. Thus
Int(D) € £~'1at(D) S Int(Dy) = Dy|X] = D X] = 5{X],

and we have the following diagram of eanonieal homomorphisms:
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whers

dim{ Dy X]) £ sup{dim(T{X]); sup{bt(g|X]) + 1 + inf{1,t.d.x(T/g) : ¢ € A}}.

Proof. (a) By Theorem 2.7 (&), we deduce easily that

¥ Btyas oy (J) + dim(Int(R)) < dim(Int(D)).

On the other hand £-'J = ID;[X), und since D/I & R is infinite, £-'Int{D) C
nt(E-1D) = Dy[X] [CC, Corollaire 4, p.303].
Therefore btig(p)(J) = btp,x)(I1D[X]) = dim(Ds[X]) = 1. The second inequality
follows from [C1, Théoréme 1).

(b) The stated relations follow easily from Theorem 2.7 (b) and [C2, Lemme 4)].
recalling that Dy|X] = Dy[X), F = 1T and T/ T/I. O

Corollary 2.9. In the situation (+) deseribed above, assume, in addition, that T is
loeal and [ = M is the maximal ideal of T. Lot d := t.d.x(T/M). We have:

(a) dim(Int(D)) = dim(Int(R)} + dim{Dp[X]) ~ 1.
(b) Ifd = 0, then

dim(lat(D)) = dim(Int(R)) + dim(T{X]) - 1.

(c) Hd 21, then P
dim{Int{R)) 4+ dim(T') + inf{1, 4} < dim(Int{D)) < dim(Int{R)) + dim(T[X]).

Proof. (a) It follows from Corollary 2.8 (b).

(b) Since d = 0, it is well known that T is an integral extension of § = Dy
therefore dim( Dy X]) = dim(T1X]).

{c) From [ABDFK, Proposition 2.7], we have

dim(T) + inf{1,d} + 1 < dim({Dy[X]).

Hence the first inequality is o consequence of (). The second inequality follows from
(a) and [C2, Proposition 3 (a)]. O

We notice that the previous corollary implies that if T is a local Jaffard domain and
I = M is the maximal ideal of T\ then dim(Int( D)) = dim{Int(R)) + dim(T{X]) - 1 if
d =0, and dim(Int{ D)) = dim(Int(R)) + dim(T{X]) if ¢ > 1.
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Corollary 2.10. In the situation (*) described above, assume that T = V" js a
valuation domain and cady{l) = M is the maximal ideal of V. Then

dim(Iot(D)) = dim(V) + inf{1, t.d.x(V/M)] + dim({Int{R)).

Proof. From [C2, Proposition 3] or [ABDFK Corollary 2.8) we can deduce that
dim( D[ X]) = dim(V') + 1 +inf(1, t.d.x(V/ M)},

and the eonclusion follows fom Corollary 2.0 (a). O

It is of special interest the case in which K is a subring of T and, ¢ fortion, K is
naturally embedded in T'/J. Under this assumption,

Proposition 2.11. Let T be an integral domain, [ an ideal of T, and R an infinite
integral domain such that K =q.f(R)CT. Let K — T /I be the natural embedding
and i : T = T /I the canonical projection. Set S = " (K)=K+I[, D= Y R =
E+1I, and J := ID{[X] N Int{ D). Then

Int(D) = Int(R) + J.
Proof. Simce D = A4 Jand § = K+ [, KI C [, then it is easily seen that
Int(R) € Int{D) € D;[X] We already noticed, in a more general setting, that » :

Int{ D) — Int( R) defines a canonical surjective homomorphism having kernel equal to
J {cf. Proof of Theorem 2.7). We conclude immediately that Int{ D) = Int{R)+J. O

Next result generalizes Corollary 2.10 under the assumptions of Propesition 2.11.

Corollary 2.12. With the same notation and hypotheses of Propesition 2,11, assume
in addition that T = V' is & valuation domain, Set P := rady (7). Then

dim(Int( D)) = dim(Vp) + inf{1, t.d. x(V/P}} + dim(Int{ F}).

Proof. From [FIK3, Théoréme 1.13] we know that
dim{D;[X]} = dien(Vp) +inf{1, t.d. 4 (V/P}} + dim(K[X]).

The conclusion follows from Corollary 2.8 (b). O
The following Example shows that the inequality in Corollary 2.8 (a) may be strict.
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Example 2.13. Let T be a semilocal Priifer domain with two maximal ideals M of
beight 1 and N of height 4. Assume that T/M and T/N bave charactenistic zero. In
the situation (+) of the beginning of this section, Jet [ .= M, R:=Z, K := Q and
# : T - T/M the natural projection. Since ( is canonically embedded in T/M, we
can consider D = ¢~'(Z). It is ensy to check that dim({D) = 4 and hip(M) = 1
so that dim(Dw(X]) < 3. Since dim(Int(Z)) = 2, dim(Dy[X]) + dim(Int(Z)) -
1£3+2-1=4 [t follows that Int(T) = T[X| [CC, Corollaire 2, p.303] and
dim{T|X]) = dim{Tw[X]) = § Therefore, dim({Int(D)) = dim(T].X]) {Corollary 2.8
(b)) and dim{ D [X]) + dim{Int(Z)) = 1 < dim(T[X]) = dim{Tw[X]) = 5.

3. An analogue of the Seidenberg Theorem

A celebrated result by Seidenberg [S2] ensures that: every integer h, with n =1 <
h < 2n+1, is equal to the Krull dimension of & polynomial ring with coefficients in a
suitable n-dimensional ring. The aim of this section is to show explicitly that a smilar
result holids for the integer-valued polynomial ring,

We start by recalling the definition of 8 P*V D. Given a valuation demain {V. M. ¢
V = V/M = k) and & subfield ky of the residue field k of V', & paeudo-valuation domamn
D or, for short, & PVD is an integral domain defined by a pullback of canonical
homomorphisms of the following type:

D = ¢~l(kg) —— ko

1 ;

w

v —_—
Given r 2 0, by induction we define & P'VD in the following way: if r = 0. a
PVDisa PVD, and if r 2 1, a P'VD is an integral domain D obtained from a
pullback dingram of the following type:

D= (Rosy) = Reey

(3.2) | [

T — ey
where (Tr—y Mm@ i Tecy = Ty My s kg )isa P'WDand R, isa PVD
with ky—; as its quotient field.
It is easy to see that & PV D is u loeal domain D with the same maximal ideal M
of V; moreover dim{ D) = dim({V'), and the valuation overring V = (D: M) = (M: M)
is called the valustion domain associated to D (ef. [AD), [HH], [F2]).
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To each pseudo-valuation domain D), we can associate & pair of parameters [a:8).
where a = dim{ V') and § := t.d.y, (k).

By induction to each P*V D we can sssociate a family of parameters (ay. - 8.
by.-- b ), where (ag, - -+ @i fo,7 7 o brm1 ) (respectively, (ar; §r)) are the parame-
ters assocated to the P VD T, {respectively, to the PV D Re;). We recall that
if D is a FV D with parameten (a; §), then

(3.3} dim(D) = a, dimy(D)}=a+4,
(3.4) dim{ D[X]) = & + L +inf{1, £},
(3.5) dim(lnt({D)) =ma +1, if ky iz & finite field;

(cf. [HH] and [ABDFK], or [DF2| for (3.3) and (3.4); [CH] or [T] for (3.5)]. Reeall
that Int{ D) = D|X], whea ks is infinite [CH].

Lemma 3.1. Let D be ¢ P'VD wih perameiers (ag, - .00 by, b}, ¢ 2 0.
Then:

(a) dim{D) = ¥"]_ o,

(b} dim, (D) =T _ 0 +§

(e) dim(D|X]) = Tl g + 1 + L, inf{L.5]

(d) dim(Int(D)) = Tiog04+ 1+ TS inf(1,4), if Int{D) # DX,
where, obvioualy, T 1o, inf{1,6)} =0 if r = 0.

Proof. (a), (b) and (¢) were proved in [DF2| by using (3.3) and (3.4) and general
properties of pullbacks (ef. [F1] and [ABDFK]).

(d) Since Int{ D) # D[X], the residue field of D is finite. We proceed by induction
onr, Hr =0 the result bolds by (3.5). Let r > 1. Since a P'VD domain is
a divided domain [F3|, f P r=ker{e 1 Troy == ki), then we have the following
pullback diagram:

D — DP=R_,

! L

Dp =Ty —'—"i'nl =qi{R-;)
Thus, by Lemma 2.1,

dim(lat{ D)) = dim(T,-; [ X]) + dim(In( R, -, }) - 1.
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By (), we know that:
r—1 r=1
dim(T X)) = Y o+ 14 Y inf(L,4]).
=i =i

Since the residue feld of D is paturally isomorphic to the residue field of R._y, we can
apply (3.5) to R.—; and we obtain dim(Int{R,—,)) = a, + 1. The conclusion is now
struightiorward. O

Proposition 3.2. Let n, m two positive integers with n < m. For each integer t.
1<t < inf{n,m —n+1} there exists an integral domain D with Int(D) # D|X). and:
(a) dim(D) = n;
(b) dim,(D) = m;
() diea(Int(D)) = n +t;
{d) dim{D[X]) = n +1*;
where f* € {t,t+ 1}, fl<t<m-n+1,#" =4 ift=m-n+1(hencet #1) and
PP=t4], =],

Proof. We can assume n > 2 (for the case n = 1 an appropriate 1-dimensional
PVD will satisfy the statements). In this case, an appropriate P*~'V.D will satisfy
the claim. Let D be a P*='VD with parameters [ag, - .@u=1; So."** . &n-1]. with

a;m1for 0 €i<n=1 Assume that D has finite residue Seld. Clearly, dim(D) = n

and Int( D) # D|X] [CH, Lemme 1.1}.

In order to verify the other conditions, we only need to solve the following system:
m=n+Toy b P
n+t=n+1+Y0 7 nf{1,4]),
n+t" =n+l+ D00 inf{1,4).

If t = 1, then the given system has & solution for &, = 0, when 0 €71 £ n -2, &nd

fy-y=m=n.

Assume that 2 €t = m —=n+1 < n. In this case, we fix a subset {i;, 15, 5=} of

{0,-++ ;n=2} and we see that the given system has a solution for §;, = .- =4 _ =1,

Ef-ﬂﬂhﬂii{'ﬂ.-“,nv-l}‘t{il,t':,*--,i:q}.

Let 1 <t < inf{n,m — n + 1}, also in this case, we fix a subset {1},13, - .5j—1 ]} of

{0, ,n =2}, The given system will have a solution for {* = t (respectively, for

t*=t+1)bytaking §;, =---=§,_, =1 6§_,=m=n=(1=2), § =0 when

1€ {0, on= 1)\ {sni0aa v de1} (respectively, &, =---= & _, = 1, § = 0 when

i€ {0,:-- ,n=2W\{iniiz, - s} ad Suy =m=n=(t=1)) O

The goal of the remaining part of this section is to show that, as for the polynomal
case, for each n > 1 and for each h where n+ 1 < & € 2n + 1, there exists an integral
domain D such that dim{ D) = n, dim{lnt{ D)) = A, and Int(D) # D[X|
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We start proving this result for m = 1. I h = 2, one may apply Proposition 3.2
with m = 2 and ¢ = 1. The following example establishes the case h = 3.

Example 3.3: Example of 1-dimensional domain [ such that dim(In:{ D)) = 3 and
Int( D) # D[X].

Let k be & finite field. We denote an algebraic closure of k by K. Let U, V' be two
indeterminates over K. In the principal ideal domain 4 ;= K{I)[V] we consider two
maximal ideals My = (V), My := (V' = 1) and the multiplicatively closed set 5 :=
K(U)[V]\(M; UM;). The maximal ideals of the principal ideal domain T := 5~ 4 are
M =5"1M, and M" := §7IM;. Let J(T):=M'NM"andlet ¢ : T = T/J[T) =
K(U) % KE(U) be the canonical projection. We can consider the following pullback
diagram of cancnical homomorphisms

D=¢ Y kx K) — kx K
| l
T — . () x K(U).

By general properties of pullbacks, [ is a 1-dimensional semilocal domain with two

maximal ideals N' 1= M'ND and N" := M"ND, such that D/N' = kand D/N" = [,

Moreover, Dy (respectively, Dyw ) is a PV D with associated valuation domain Ty
{respectively, Tagw ). Therefore
dim,( D] = sup{dimy( Dy ), dim(Dye )} =
= sup{dim(Ta) + t.do{ K(U)); dim(Tap ) + td g (KUY} = 2.

Hence, dim(Int{ D)) £ dim,(Int{D)) < dim. (D) +1=13

Moreover, since D/N" = K is infinite and t.d.x{K{U'}) > 0, we have Dy« [X] C
Int(D)yw € Int{Dye) = Qu=[X| and dim([Dy«[X]) = 3. From the previous consid-
erations, we deduce that dim{Int{D}) = 3. In order to prove that Int(D)) & D{X], we
consider the ideal J{T') which is a common ideal of I and T which is principal in T
Let y & T such that J{T) = yT. Fix a set of elements {ug = 0,--- ,u,} inside D such
that their canonical images describe the finite field k. Pick an element = € N\ V' then
£2/y ¢ D. U we consider f(X):= (22 /y)(X{X -u1) -+ (X —uy))? then F(X) ¢ D[X].
Moreover, for each d € D, there exdsts 7,0 < 7 < ¢ such that (d —u;) € N'. Therefore
Fld) € (22 /y)N'? C (N"IN'?)fy = J(TP [y = J(T) C D, hence f(X) € Int( D).

We are now ready to prove the main result of this section.

Theorem 3.4. ILetn > 1 Foreach h, withn<+1 < & £ 2n + 1, there exists an
integral domain D such that dim(D) = n, dim(Int{D)) = A, and Int(D) # DIX].

Proof. IfA =n+1,then a PVD with parameters {a; 6} = (n;0) and finite residue
field proves the statement. Let n+1 < h < 2n Hwetakem 2 h—landt=sh=n
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in Proposition 3.2, we can find a local (P~ 'V D) domain satisfying the statement. It
remains to prove the case h = 2n 4+ 1.
ﬁhﬂwhuﬂmtﬁ]-@ﬂmﬂwﬂd&uﬁﬂmﬁrﬂhw
3.3. Set F:= K (U, V) the quotient Sield of B. It is not difSeult to construet o P*~3V D
T, with dim(T) = n = | (and dim_(T) > 2r - 2), such that dim(T]X]) = 2An-1)+1
and the residue field of T in its maximal ides] M is isomorphic to F. Let p: T = F
be the canonical prejection and set D = ¢~!(R). By comstruction, it is easy to
lﬂ&“ﬂhlﬂiﬂ“ﬁﬂ.ﬂg-]’.uﬂﬂfﬂ.ﬂ. Therefore Lemma
2.1 yields dim(Int(D)) = dim(T[X]) — 1 + dim(Int(R)) with Int(D) # D[X] (since
Int(R) # R|X]). The conclusion follows immediately since dim(T'[X]) = 2n — 1 and
dim(Int(R)) = 3. We note also that dim, (D) = dimy(T) +dime(R) 2 2n-2+2 = 2n;
this is & necessary condition for having dim(lnt(D)) = 2n+1. O

4. Integer-valued polynomials on a subset

Let I} be nny integral domain with quotient field K and E & nonempty subset
of K. Following [C4), we define the ring of integer-valued polynomials over E to be
Int(E, D) := {#(X) € K|X]: f{E) C D). We recall that lnt(E, D) may be equal to
D in several cases. For instance, if the integral closure of D is finitely generated over
D, thez D = Int(E, D) if and ouly if E is not a fractional subset of D [Mc, Lemma
2.0] (where E is said fractional of D if £ is & subset of X and dE C D for some
nontero d € D). Caben has established in [C4) some properties of the prime ideals
of Int(E, D). He also proved that dim(D) < dim(Int(E, D)) < dim, (D) + J; asd if,
in addition, E is fractional, then dim(D) + 1 < dim(Int(E, D)) < dim, (D) + 1 [C4,
Proposition 1.3 and Corollary 1.4]. Iu this section we pursue this study. In particular,
we compute the valuative dimension of Int(E, D) whes E is a fractional subset of D
Mulmum[ﬂt&mﬂuyl.l}. We first consider the case in
which E is finite.

Lemma 4.1, Let D be any integral domain of guotient field K and E a finite subset
of K. Then:

(a) dim(Int(E, D)) = 1 + dim(D)

(b) dim, (Int(E, D)) = 1 + dim, (D)

(¢) D is @ Jaffard domain if and only if so is nt(E, D).

Prool. Let o € E, it is easily seen that Int{{a},D) = D + (X - a)K[X]. Hence,
10t(E, D) = Nueglnt({a}, D) = Nues(D+(X —a)K[X]). Let I = Mogg(X —a)K|X};
the rings D + I C Int(E, D) € K|X) share the ideal /. In particular, Int(E, D)/I =
B = NegD, and dim(B) = dim(D). Since dim(K[X]/J) = 0, from |C1) the point
(a) holds and, from [FIK3, Lemma 2.2, (b) and (c) follow. O
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Proposition 4.2, Let D be any integral domain of quotient field K and E a
fractional subset of D. Then:

(a) dim(Int(E, D)) = dimy(D) + 1

(b) D is a Jaffard demain if and only if Int{E,D) iz a Jaffard domain and
dim(Int(E, D)) = dim(D) + 1.

Proof. (a) Since E is a fractional ideal, there exists d € D such that dE C D. Henre
we have the following inclusions:

D|dX] € Int(E, D) € Int(F, D) C K[X],

where F is any finite subset of E. Therefore,
dime( D)+ 1 = dim,(Int(F, D)) < dime(Int{E, D)) < dim,(D{dX]) = dim.(D) + 1.
(b) Assume that Int(E, D) is a Jaffard domain with dim(Int(E, D)) = dim{ D) + 1.
From (a)} it follows that dim(D) = dim,(D), so that D is a Jaffard domain. The
converse is a straightforward consequence of {a). O

It is well known that dim{D{X]) -1 < dim(Int{D)} [C3, Proposition 1.4]. f A< B
is any extension of integral domains, we proved that the same inequality holds for
I{B,A) (Theorem 1.10). S0 we may ask whether a similar inequality does hold for
Int(E, D) where E is a subset of the quotient field of D. Next Example 4.4 gives a
negative answer to this question.

Remark 4.3. If E is just a non empty subset of K, the equality in Proposition 4.2
(a) does not hold in general. However, in any case, we have

(41) dim,(Int(E, D)) < dimy (D) + 1

since from the inclusions D £ Int{E, D) € K[X] we can deduce that
dimy(Int(E, D)} £ dim,(D) + t.d.p(Int(E, D)) [J, IV Proposition 5| and [G, The-
orem 20.7]. The inequality (4.1) may be strict even when £ is a D-submodule of &>
for instance, if D = T and E = §™'T for some multiplicative subset § of Z. then
Int(S—'Z,Z) = T [Mc, Lemma 2.0}; thus dim.(Int{5~*Z, Z)) = dim, (£} = 1.

Example 4.4. Let k be a field and X, Y, Z and W four indeterminates over k. Set
W= k(X) + YRX)[Y)ry = k(X)) + My,
Dy =k + M,
Vi=F(Z)+ WF(Z)[W]iwy = F(Z) + M, where F :=q.f{D}) = k{X,¥), and
D=0+ M.
Then V; and V are rank one valuation domains, and by wellknown properties of D+
M constructions, D; and [} are respectively of dimension 1 and 2 (¢f. [ABDFK]| and
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[BG]). Moreover, dim{D; X]) = 3 by [HH], and dim({ D{X]) = dim({V') +dim{D; [X]} +
inf{1,t.d.p,(F(Z)) = 5 by |ABDFK, Corollary 2.5]. It follows that dim(D[X])~1 =4
However, if E is a finite subset of q.L(D), then by Lemma 4.1 dim(Int(E, D)) =
dim{D} + 1 =3 < 4. So that the inequality dien(D[X]) — 1 < dim(Int(E, D} fails to
be true

Lemma 4.5. In:ﬂhmhiwﬂdmnhndthﬂﬂ{.f]-ht{ﬂ]. Let K be the
quotient field of D and I an ideal of D such that D/I is noi a finite field. Then:
(a) For each nonzero principal fractional ideal alD of D,

Int(aD,D) = D|X/a) and Int(aD,I) = I|X/a].
(b) For each nonzero D-submodule E of K, let E* := E\|0), and set
DIX/E®| i= Nuge= D|X /a], and  J[X/E"] = Neep-I[X/a).

Then
Int{E,D) = DIX/E*), Is(E,I)=IX/E")

Proof. (a) For the first equality, let f(X) € K[X], then
flaD) € D % f(aX) € Int(D) = D|X]  f(X) = f(aX/a) € D|X/a].

It is obvious that [{X/a] C Int(aD,J). Let f(X) € Int{aD,). Then, in, particular,
fIX) € Int(aD, D) = D|X /a]. Thus g(X) := f(aX) € DIX|NInt(D, ). I we consider
the canonical image F(X) = J(aX) € (D/I)[X], thes F{X) = 0 because D/] is infinite
and F(D/I) = 0. Hence, f(aX) € []X], whence f(X) & J|X/a].

(b) Since Int(E, D) = Nygg-Int{aD, D) and Int(E, ) = Nygp-Int(aD. ), the cop-
clusion follows from (a). O

Proposition 4.6. Let T be an integral domain, J & nonsero ideal of T, ¢ : T — T/ I
the canonical projection and k an infinite feld embedded in T/1. Set D := ¢~ '(k|
and K = q.£(D). Let E be & D-submodule of K such that ET is a principal T-module
with ET = T for some ¢ € E. Assume D|X] = Int{D). Then

dim(lot(E, D)) < ind {dim(T[X]) + 1, dim(D{X]) + 1. dim(Int(T)) + 1}.

Proofl. Without loss of generality we may assume that E # 0. From the assumptions
and from Lemma 4.5, we have:

Int(E, D) = Nage-D|X/a] € Nuge-T1X/a] € T1X/e] € Int(ET.T),
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and
Iot(E, I) = Nugge X/} 2 Int(ET, 1) 2 I1X/el.

Therefore Int{E, I} = Int{ET,J) = I[X/e] ia a common ideal of Int{E. D) and
Int{ ET,T). Hence, the following disgram of canonical homomorphisms is a pullback

Int(E,D) —— Int(E,D)/I1X/e]

| l

D(X[e] —— (D/DN)[X/[e] = kX/¢|

l !

T|X/e)] —— (T/I)[X/e]

l !

Int(ET,T) — Int(ET,T)/I[X/e].

Moreover, we note that k & D/I C Int(E, D)/I|1X/e] C kLX/e]. Since t.d.o(k[X/e]) =
1 and I[X/e] is a prime ideal of D[X/e] and Int(E,D), we deduce
dim{Int( E, D)/I1X/e]) < 1 (¢f |G, Theorems 20.7 and 30.9]). By [C1, Corollaire
1, p. 509] we have

dim(Int{ E, D)) < dim(D[X /e]) + dim(lat(E, D)/I[X/e]) < dim(D[X/e]) + 1

dim(Int(E, D)) < dims(T{X/e]) + dim{Int(E, D)/I[X/e]) < dim(T[X/e]) + 1
dim(Int(E, D)) < dim(Int(ET,T)) + dim(Iat(E, D)/I[X/e]) < dim(Int{ ET, T)) + 1.

The conclusion follows immedintely since D[X/e] = D[X], T[X/e] = T[X]. and
Int(eT.T) & In(T). O

Corollary 4.7. Let D be a PVD with quotient field K and £ a D-submodule of I,
Assume that the valuation overring canonically associated to D is & discrete valuation
domain. Then

dim(lnt{ E, D)) < dim{D|X]) < dim{D) + 2.

Proof. Let M be the maximal ideal of D, V = (M : M), ky := D/M and k =
V/M. I tde (k) =0, then D is & |-dimensional Jaffird domain. By Remark 4.3,
dim,(Int(E, D)) < dim,(D) + | = dim(D) + 1 = dim{ D[X]).

H t.dy,(k) > 0, D is a 1-dimensional domain with dim{D[X]) = dim{D) + 2 [HH],
By Proposition 4.6 dim(Int(E, D)) € dim(V[X]) + 1 = dim(V] + 2 = dim(D) + 2 =
dim{D|X]). O
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Next goal is to show that Carollary 4.7 holds in a more general context (in particular.
for every finite dimensional PV D).

Let D be an integral domain with guotient field K and S & non empty subset of
K* := K\ {0}. For each ideal J C D we extend the notation introduced in Lemma 4.5
secting:

T1X/5) = NuesliX/s].

Lemma 4.8. Let D be o Prifer domaim with quotient field K, 5 & non empty subset
of K* and I an sdeal of D.

() lnt(SD, 1) = Int({U,es8D, I) = N,esint{sD, I).

Assume, in addition, that Int(D) = D[X]. Then

(b) lat(5D, D) = D{X/S] and Int(SD,I) = I[X/5] whenever D/I is infinite

Proofl, (a) It is obvious that, for each ideal [ of D
Int(5D, 1) C Int{U,e55D, 1) = N,esint(sD, I').

For the converse, let f € K[X]. Since Dy is a valuation domuin for each M & Max{ D),
we have

f(sD) S I.Vs€ S5 & f(sDy) S Iy, Vs € S, VM € Max(D)

® fl(sr, 0a)Du) STt ¥n > 1, ¥ {8y, ,8,} € S, YA & Max{ D}
# f(2Dp) € Ine, ¥2 € 5Dy, YM € Max(D) = f(SDIC I =
(b) Follows from () and Lemma 45. O

Lemma 4.9. [et D be ¢ Bézout domam wik quotient field K, £ & nonzers D-
submodule of K and P & prime ideal of D such that D/ P w infinite. Then

(a) PIX/E*] = Int(E, P) 1 D|X/E"] is a prime ideal of DiX/E*

(b) if dim{D) « oo, then there exists an elemenia € E* such that

P[X/a]n D|X/E*| = P|X/E")
Proof. (a) From Lemma 4.8, we have

P|X/E"] € In((E, P)N D|X/E"| = Nuep-(Int(aD, P) N DIX /a]).

thmm.ﬁmDIthﬁmhrthtﬂmrmmtdﬂnpmduﬂm
4.5 (n}, we have for each a € E*

Int(aD, P) N D|X/a] = P|X/a].
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Since [} is & Bézout domain, for each finitely generated D-submeodule F = [ f;.
foooiy falD of K, there exists f € F such that F = fD, 3o that:

PX/F"] = Int(F, P) 0 D[{X/F"| = Int(fD, P} n D[X/ f] = PIX/f].

Let F be the set of all finitely generated D-submodules of E.
Since Int(E, P} = Npeglnt(F.P), DIX/E"] = NpeyD[X/F*|, and P{X/E*] =
MNeegPLX/F7), then

PlX{E"] = Int(E, P)n D|X/E").

Mext we show that P[X/E"] is a prime ideal of D[X/E"].
Let o, f € D{X/E°|\P[X/E®]. There exist F{a),F(8) € § such that o €
DIX/E*]\PX/Fla)], # € DIX/E*\P[X/F(8)"]. Set F(a) + F(8) = F = {D, for
some f € F. Then a,8 € DIX/F*\PIX/F*| = DIX/ fI\P[X/[]. hence af & P[X/f]
and a8 € D{X/E*|\P[X/E"].

(b) Since a finite dimensional Bézout domain is a Jaffard domain and Dp is
a valuation domain, from the inelusions Dp C D[X/E"]p C Int(E, D)p we get
dim(D{X/E*|p) < dim(Dp) + 1 (Remark 4.3),
For each o € E* and for each a € aD, we have P[X/E*| C P[X/a|n D|X/E*|C P, =
{f € DIX/E"] : f(a) € P}. Notice that P, := (P + (X — a)K[X]) N D[X/E"] is a
prime ideal of D|X/E"] and it is a maximal ideal above P. In fact, using the projection
*: D[X/E*| — D/P, f — fla){modP), we have that D{X/E*|/P, = D/P (being
ker{x) = Fa).
Mow, if P[X/a] N D[X/E*} € P, for some o € oD, we conclude that PIX/E"! =
P|X/a] N DIX/E"]; otherwise we would have a chain of prime ideals of De|X/E"|
lomger than dim(Dp) + 1.
Let us suppose, on the contrary, that for each o € E°, and for each o € D, P[X/a] N
D[X/E"| = Ps. Now, 0 € aD for every a € E”, so that P, = By = P for each
a, § € E. Since PIX/E"] = Nuge+(P[X/a] N DIX/E"]) = NaggPo. it holds that
PIX/E*) = P{X/a] N DIX/E"| = P, for every o € E" and a € E. O

Theorem 4.10. Let T be a finjte dimensional Bézout domain with quotient feld
K, Q a prime ideal of T, k a field contained in T/Q and ¢ : T — T/Q the canonical
projection. Set D := 7 (k). Assume that D[X] = Int{D). For each D-submocule E
of K,

dim(Int(E, D)} £ dim(T) + 2.
Moreover, if @ is madmal in T or if t.d.&(T/Q) = 0, then

dim(Int(E, D)} < dim{D[X]).
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Proof. We note that Int(0, D) = D+ X KX]. Hence dim(Int(0, D)) = dim{D}+1 =
dim{ D[X]) < dim{T[X]) + dim(¥[X]) = dim(T) + 2. Without loss of generality, we
may assume that E iz nongero, k is infinite (sinee Int{ D) = DY), |C3, Lemma 3.1])
and then T/Q is also infinite. It is easy to see that @ is a maximal ideal of D. By
Lemma 4.5 we have

Int{E, D)= D{X/E"] and Int(E, Q) = QIX/E").
Moreover by Lemma 4.8, we have
Iat(E.T} 2 It(ET.T) = Noge-Int(al, T} 2 Neep-TIX/a] = TIX/E"],

Int(E, Q) 2 Int(ET, Q) = Nuee-1ot{aT, Q) 2 Nuer- QX /al = QIX/E"].
Hence Int(E, Q) = Int{ ET, Q) = Q[X/E"). By Lemma 4.9, for each a € E”,

QIX/E") = QIX/a] N T[X/E"] = Q|X/a] N D[X/E"]
Let us consider the following pullback of caronical homomorphisms:

Int(E,D) = D|X/E*] ——  D[X/E"|/Q|X/E"] = k[X/E"]

| l

T|X/E"] — TLX/E*)/QIX/E*] = (T/QI[X/E"]

Int(ET,T) —_ Int(ET, T)/Q[X/E"].

Since k & D/Q € D|X/E*)/Q|X/E*] C D[X/a]/Q|X/a] = k[X/a], then

dim({ D|X/E*}/Q|X/E")) € 1 (cf. proof of Proposition 4.6).
Therefore, by [C1, Corollsire 1, p. 509] and Remark 4.3 dim(Int(E.D)] <
dim{Int{ ET, T')) + dim(D|X/E*)/Q[X/E")) < dim{Iat{ ET, T} + ! < dim(T'} + 2.
Note that if t.d,(T/Q} = 0, then D is a Jaffard domain. By Remark 4.3.
dim(Int(E, D) < dim(D) + 1 = dim( D[X]).
If Q is a maximal ideal of T, then dim({D) = dim(T); and if D is not a Jaffard domain
(ie. t.da(T/Q) > 1), then dim(D|X]) > dim(D) + 1 = dim(T) + 1. O

Corollary 4.11. Let V be a finite dimensional valuation domain with quetient feld
K and residue fieid k(V'). Let o : V —«k(V) be the canonical projection. Let k be an
infinite subfield of k(V') and D := ™Y (k). For each D-submodule E of K, we have

dim(Int(E, D)) < dim(D|X]) < dim(D) + 2
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Proof. Since D is a PV D with an infinite residue field k, then D|X] = Int| D). The
conclusion follows from Theorem 4.10. O

In the situation of the previous corollary, if k © k(V) is a finite extension of fields
and E is not a fractional subset of D, then Int{E, D) = D [Mc, Lemma 2.0]. so that
dim{Int{ E, D)) = dim{ D).
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