
Journal of Pure and Applied Algebra 171 (2002) 171–184
www.elsevier.com/locate/jpaa

On the class group of a graded domain

S. El Baghdadia, L. Izelgueb, S. Kabbajc; ∗;1
aDepartment of Mathematics, FST, P.O. Box 523, Beni Mellal, Morocco

bDepartment of Mathematics, University of Marrakech, P.O. Box S15, Marrakech, Morocco
cDepartment of Mathematical Sciences, KFUPM, P.O. Box 5046, Dhahran 31261, Saudi Arabia

Received 4 March 2001
Communicated by A.V. Geramita

Abstract

This paper studies the class group of a graded integral domain R=
⊕

�∈� R�. We prove
that if the extension R0 ⊂ R is inert, then Cl(R) =HCl(R) if and only if R is almost nor-
mal. As an application, we state a decomposition theorem for class groups of semigroup rings,
namely, Cl(A[�]) ∼= Cl(A) ⊕ HCl(K[�]) if and only if A[�] is integrally closed. This recovers
the well-known results developed for the classic contexts of polynomial rings and Krull semi-
group rings. Further, we obtain an interesting result on the natural homomorphism 
 :Cl(A) →
Cl(A[�]), that is, Cl(A[�]) =Cl(A) if and only if A and � are integrally closed and Cl(�) = 0.
Our results are backed by original examples. c© 2001 Elsevier Science B.V. All rights reserved.

MSC: 13C20; 13A02; 13F05; 13B22

0. Introduction

All rings considered in this paper are integral domains. Throughout, � will always
denote a torsionless grading monoid. That is, � is a commutative cancellative monoid,
written additively, and the quotient group generated by � is a torsion-free abelian
group. By a graded domain R=

⊕
�∈� R�, we mean an integral domain R graded by

an arbitrary torsionless grading monoid �. Suitable background on torsionless grading
monoids and �-graded rings is given in [21].

Let R be an integral domain. Following [7], we deAne the class group of R, denoted
Cl(R), to be the group of t-invertible fractional t-ideals of R under t-multiplication
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modulo its subgroup of principal fractional ideals. Divisibility properties of a domain
R are often reHected in group-theoretic properties of Cl(R). For R a Krull domain,
Cl(R) is the usual divisor class group of R. In this case, Cl(R) = 0 if and only if R
is factorial. If R is a PrIufer domain, then Cl(R) =Pic(R) is the ideal class group of
R. In this case, Cl(R) = 0 if and only if R is a Bezout domain. We assume familiarity
with class groups and related concepts, as in [7,10,12].

On one hand, a well-known result is that if R is a Z+-graded Krull domain, then
Cl(R) is generated by the classes of homogeneous height-one prime ideals of R [10,
Proposition 10:2], i.e., Cl(R) =HCl(R), where HCl(R) is the homogeneous class group
of R. In [3, Theorem 4:2], Anderson showed that the same holds for any �-graded Krull
domain, where � is an arbitrary torsionless grading monoid. So one may remove the
“Krull assumption” and legitimately ask the following: For an arbitrary graded domain
R, how does the equality “Cl(R) =HCl(R)” re8ect in ring-theoretic properties of R?

On the other hand, many authors investigated the problem of characterizing ring-
theoretic properties in terms of Picard groups. In [6], Bass and Murthy proved that
for an integral domain A, if Pic(A[X; X−1]) =Pic(A) then A is seminormal. However,
Pedrini showed that the converse fails to be true in general [22, p. 96]. Many years
later, Gilmer and Heitmann [14] solved completely the problem of characterizing “semi-
normality” in terms of Picard groups. They stated that Pic(A[X ]) =Pic(A) if and only
if A is seminormal. In the same line, in 1982, the Andersons [1] examined the prop-
erty of almost normality for graded domains. They established that if R is an almost
normal graded domain with R0 ⊂ R inert, then Pic(R) =HPic(R). So the problem re-
mained somehow open. However, in 1987, Gabelli proved that for an integral domain
A, Cl(A[X ]) =Cl(A) if and only if A is integrally closed [11, Theorem 3.6]. Recall
for convenience that A[X ], graded in the natural way, is almost normal if and only if
A[X ] (and hence A) is integrally closed. This motivates our second question: For an
arbitrary graded domain R, how does “almost normality” re8ect in group-theoretic
properties of Cl(R)?

This paper contributes to the study of class groups of graded integral domains. It
particularly provides a satisfactory (and unique) answer to the previous two questions.
As an application, we state a decomposition theorem for class groups of semigroup
rings. Indeed, Section 1 examines the interconnection between “almost normality” and
the equality “Cl(R) =HCl(R)” for a graded domain R. More precisely, we show, in
Theorem 1.1, that if R0 ⊂ R is inert, then Cl(R) =HCl(R) if and only if R is almost
normal. Some interesting contexts for this result are Z+-graded domains and polynomial
rings. However, Example 1.11 illustrates its failure if one omits the condition “R0 ⊂
R inert”. In the Arst part of Section 2, we focus on the speciAc case of semigroup
rings, which provide an important class of graded domains. We establish the following
decomposition theorem, Theorem 2.7: For an integral domain A, with quotient Aeld K ,
Cl(A[�]) ∼= Cl(A)⊕HCl(K[�]) if and only if A[�] is integrally closed. This recovers
most of the previous results stated for the classic contexts of polynomial rings [11] and
Krull semigroup rings [3]. The second part of Section 2 is devoted to semigroups. Here
we extend Chouinard’s results on Krull semigroups (cf. [8]) to arbitrary semigroups.
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As an application, we establish an interesting result, Theorem 2.12, on the natural
homomorphism 
 :Cl(A) → Cl(A[�]), that is, Cl(A[�]) =Cl(A) if and only if A and
� are integrally closed and Cl(�) = 0.

1. The class group of a graded domain

The discussion which follows, concerning basic facts and notations connected with
graded domains, will provide some background to the main result of this section and
will be of use in its proof. In this section, R=

⊕
�∈� R� denotes a �-graded domain

and S the multiplicatively closed subset of all nonzero homogeneous elements of R.
Thus RS is a 〈�〉-graded domain with

(RS)� =
{a
b

; a∈R�; 0 �= b∈R�; and �= � − �
}
:

In particular, (RS)0 is a Aeld and each nonzero homogeneous element of RS is a unit.
It is well-known that the domain RS , often called the homogeneous quotient Aeld of
R, is a completely integrally closed GCD-domain [2, Proposition 2:1]. If R is Z− or
Z+-graded, then RS

∼= (RS)0[X; X−1] ∼= (RS)0[Z]. Semigroup rings A[�], graded in the
natural way with degX � = �, constitute perhaps the most important class of �-graded
domains. The homogeneous quotient Aeld of A[�] is the group ring K[G], where K is
the quotient Aeld of A and G = 〈�〉, the quotient group of �.

We say that the graded domain R is almost normal [1] if for each homogeneous
element x∈RS of nonzero degree which is integral over R is actually in R. Any
integrally closed graded domain is almost normal; moreover, it is well-known that R is
integrally closed if and only if R is almost normal and R0 is integrally closed in (RS)0.
On the other hand, following Cohn [9], we say that an extension A ⊂ B of integral
domains is inert if whenever xy∈A for some x; y∈B, then x = ru and y = su−1 for
some r; s∈A and u a unit of B. The extension R0 ⊂ R=

⊕
�∈� R� is inert if and

only if for each �∈� ∩ (−�), R� contains a unit. This, particularly, happens if either
R=R0[�] is a semigroup ring, or R0 is a Aeld, or R is �-graded with � ∩ (−�) = 0.

Now, Let us review some terminology related to the v- and t-operations. Let A be
any domain with quotient Aeld K . By an ideal of A we mean an integral ideal of
A. Let I and J be two nonzero fractional ideals of A. We deAne the fractional ideal
(I : J ) = {x∈K | xJ ⊂ I}. We denote (A : I) by I−1 and (I−1)−1 by Iv. We say that
I is divisorial or a v-ideal of A if Iv = I . The ideal I is v-Anite if I = Jv for some
Anitely generated fractional ideal J of A. For a nonzero fractional ideal I of A, we
deAne It =

⋃{Jv | J ⊂ I Anitely generated}. The ideal I is a t-ideal if It = I . Under
the operation (I; J ) �→ (IJ )t , the set of t-ideals of A is a semigroup with unit A. An
invertible element for this operation is called a t-invertible t-ideal of A. For more
details about these notions, see [12, Sections 32 and 34].

A fractional ideal I of the graded domain R is homogeneous if there exists a nonzero
homogeneous element s of R such that sI is a homogeneous (integral) ideal of R. Each
homogeneous fractional ideal of R is contained in RS . Moreover, if I and J are nonzero
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homogeneous fractional ideals of R, then (I : J ) is also a homogeneous fractional ideal
of R, and so are I−1 and Iv [2, Proposition 2.5]. Let T (R) (resp., HT (R)) denote
the group of t-invertible fractional t-ideals (resp., homogeneous t-invertible fractional
t-ideals) of R, and P(R) (resp., HP(R)), its subgroup of principal fractional ideals. We
have Cl(R) =T (R)=P(R) and HCl(R) =HT (R)=HP(R), a subgroup of Cl(R). Now,
let x∈RS with x = x�1 + · · ·+ x�n , where x�i ∈ (RS)�i and �1 ¡ · · ·¡�n. We deAne the
content of x, denoted C(x), to be C(x) = (x�1 ; : : : ; x�n), the homogeneous fractional ideal
of R generated by the homogeneous components of x in RS . If I ⊂ RS is a fractional
ideal of R, then I is homogeneous if and only if C(x) ⊂ I for each x∈ I . A well-known
result due to Northcott [20] states that, for each x; y∈R, C(x)nC(xy) =C(x)n+1C(y)
for some integer n¿ 0.

We now announce our main result of this section. It sheds light on the intercon-
nection between “almost normality” and the equality “Cl(R) =HCl(R)” for a graded
domain R.

Theorem 1.1. Let R=
⊕

�∈� R� be a �-graded domain such that R0 ⊂ R is inert.
Then Cl(R) =HCl(R) if and only if R is almost normal.

The proof of this theorem requires some preliminaries.
Let I be a fractional ideal of R and assume that there exists s∈ S such that sI ⊂ R.

We deAne the content of I , denoted C(I), to be the homogeneous fractional ideal
of R generated by the homogeneous components in RS of all elements of I . We have
C(I) =

∑
x∈I C(x), and I is homogeneous if and only if C(I) = I . The next two lemmas

deal with technical properties of the content of a fractional ideal.

Lemma 1.2. Let I be a fractional ideal of R with sI ⊂ R for some s∈ S. Then
(1) C(HI) =HC(I); for each homogeneous fractional ideal H of R.
(2) C(Iv)v =C(I)v.
(3) C(It)t =C(I)t .

Proof. (1) is straightforward.
(2) We have I ⊂ C(I), hence Iv ⊂ C(I)v and C(Iv)v ⊂ C(I)v. The reverse inclusion

is trivial.
(3) We Arst show that It is homogeneous whenever I is. For, let x∈ It . Then there

exists a Anitely generated fractional ideal F ⊂ I such that x∈Fv. Since I is homo-
geneous, C(F) ⊂ I . Hence by (2), C(x) ⊂ C(Fv) ⊂ C(F)v ⊂ It . Therefore, It is
homogeneous. Now, since It ⊂ C(I)t and C(I)t is homogeneous, then C(It) ⊂ C(I)t .
Hence C(It)t ⊂ C(I)t . The reverse inclusion is trivial.

Lemma 1.3. Let x1; : : : ; xn ∈R such that (C(x1) + · · · + C(xn))v =R; and a∈ S.
Then (a; x1; : : : ; xn)v =R.

Proof. Let u∈ qf(R) such that a; x1; : : : ; xn ∈ uR. Then u= a=r for some r ∈R and, for
each i, xi = (a=r)ri for some ri ∈R. By the Northcott’s result, for each i = 1; : : : ; n, there
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exists a positive integer Ni such that C(xi)NiC(rxi) =C(xi)Ni+1C(r). Let N =N1 + · · ·+
Nn. Then C(xi)NC(rxi) =C(xi)N+1C(r), for each i = 1; : : : ; n. On the other hand, for
each i = 1; : : : ; n, C(rxi) =C(ari) = aC(ri) ⊂ aR, hence C(xi)N+1C(r) ⊂ aR. Therefore
(
∑n

i=1 C(xi)N+1)C(r) ⊂ aR. Since (
∑n

i=1 C(xi))v =R, then (
∑n

i=1 C(xi)N+1)v =R. It
follows that C(r)v ⊂ aR and hence r=a∈R. Thus 1∈ uR and hence (a; x1; : : : ; xn)v =R,
as desired.

Next we give a criterion for t-invertibility in a graded domain (see also [15,
Section 4]).

Lemma 1.4. Let I be an ideal of R such that C(I) is t-invertible. Then I is t-invertible
if and only if ItRS is principal.

Proof. If I is t-invertible, by Anderson and Ryckaert [5, Proposition 2.2], ItRS is
a t-invertible t-ideal. Since RS is a GCD-domain, ItRS is principal. Conversely, set
J =C(I)−1It . By Lemma 1.2, C(J )t =C(C(I)−1I)t = (C(I)−1C(I))t =R. Further, since
JRS = ItRS is principal, it suQces to show that if C(I)t =R and IRS is principal, then
I is t-invertible. Let x1; : : : ; xn ∈ I such that (

∑n
i=1 C(xi))v =R. Since IRS is princi-

pal, then IRS = aRS for some a∈ I . Now, if x∈ I , then x = ar=s for some r ∈R and
s∈ S. Thus x(s; x1; : : : ; xn)v ⊂ (a; x1; : : : ; xn)v. By Lemma 1.3, (s; x1; : : : ; xn)v =R, so
x∈ (a; x1; : : : ; xn)v and hence I ⊂ (a; x1; : : : ; xn)v. On the other hand, there exists t ∈ S
such that for each i, xi = ari=t for some ri ∈R. Hence tI ⊂ (ta; tx1; : : : ; txn)v ⊂ aR, i.e.,
t=a∈ I−1. Therefore, t = at=a∈ II−1 and, by Lemma 1.3, R= (t; x1; : : : ; xn)v ⊂ (II−1)t .
Hence, I is t-invertible.

Notice that a useful case of Lemma 1:4 is when C(I) =R.

Lemma 1.5. Let a∈RS be a nonzero element and Pa = aRS ∩ R. Then Pa = uJ for
some u∈RS and some homogeneous ideal J of R if and only if Pa = aC(a)−1.

Proof. If Pa = uJ , then PaRS = aRS = uRS ; so there exist s; t ∈ S such that u= (s=t)a.
Now, since (s=t)aJ ⊂ R, then (s=t)J ⊂ C(a)−1, and hence Pa = (s=t)aJ ⊂ aC(a)−1.
The reverse inclusion is trivial. Conversely, if Pa = aC(a)−1, let s∈C(a) be a nonzero
homogeneous element. Then Pa = (a=s)(sC(a)−1), and hence we may take J = sC(a)−1.

We next state our key lemma. Its main eRect is to link, under the stated hypothesis,
t-invertibility to almost normality.

Lemma 1.6. Assume that R0 ⊂ R is inert. The following statements are equivalent:
(i) R is almost normal.

(ii) For each v-;nite v-ideal I of R; there exist u∈RS and a homogeneous v-;nite
v-ideal J of R such that I = uJ .

(iii) For each t-invertible t-ideal I of R; there exist u∈RS and a homogeneous
t-invertible t-ideal J of R such that I = uJ .
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Proof. The equivalence (i) ⇔ (ii) follows from [1, Theorems 3:7(2) and 3:2].
(ii) ⇒ (iii) is obvious.
(iii) ⇒ (i) Let a∈RS be homogeneous of nonzero degree and integral over R.

Set Pa = (1 − a)RS ∩ R and let f(X ) =X n + rn−1X n−1 + · · · + r0 ∈R[X ] such that
f(a) = an + rn−1an−1 + · · · + r0 = 0. Regrouping terms of the same degree, we may
assume that the ri’s are homogeneous of pairwise distinct nonzero degrees. We have
f(X ) = (X − a)g(X ), where g(X ) =X n−1 + bn−2X n−2 + · · · + b0 with the bi’s are
homogeneous elements of RS of pairwise distinct nonzero degrees. On the other hand,
f(1) = (1−a)g(1)∈Pa, so 1+rn−1 + · · ·+r0 ∈Pa, moreover C(1+rn−1 + · · ·+r0) =R.
It follows that C(Pa) =R. Since PaRS = (1−a)RS is principal and Pa is a t-ideal, then
Pa is t-invertible (cf. Lemma 1:4). Therefore, there exist u∈RS and J , a homogeneous
t-invertible t-ideal such that Pa = uJ . By Lemma 1.5, Pa = (1 − a)C(1 − a)−1. We
deduce that f(1) = (1 − a)(1 + bn−2 + · · · + b0)∈ (1 − a)C(1 − a)−1, i.e., 1 + bn−2 +
· · ·+ b0 ∈ (1; a)−1. It follows that a+ abn−2 + · · ·+ ab0 ∈R, hence a∈R since the bi’s
are homogeneous of pairwise distinct nonzero degrees.

Proof of Theorem 1.1. It follows from Lemma 1.6.

Remark 1.7. (1) In [17], Matsuda constructed an example illustrating the fact that in
[1, Theorem 3:7(2)] and hence in Lemma 1.6(i) ⇒ (ii) the “R0 ⊂ R inert” hypothesis
cannot be deleted.

(2) In Lemma 1.6, we need this hypothesis only for the implication (i) ⇒ (ii).
However, [1, Theorems 3:2 and 3:7(1)] shows that we can omit it if we assume that
R contains a (homogeneous) unit of nonzero degree. In this case, R is almost normal
if and only if R is integrally closed.

(3) By substituting the hypothesis “R contains a unit of nonzero degree” for “R0 ⊂ R
inert”, the statement of Theorem 1.1 remains true, that is, Cl(R) =HCl(R) if and only
if R is integrally closed.

Corollary 1.8. If R=R0 ⊕ R1 ⊕ : : : is Z+-graded; then Cl(R) =HCl(R) if and only if
R is almost normal.

Let A be an integral domain and X an indeterminate over A. Using [1, Proposition
5:8], one may show that HCl(A[X ]) =Cl(A). Thus we reobtain Gabelli’s result.

Corollary 1.9 (Gabelli [11, Theorem 3:6]). Cl(A[X ]) =HCl(A[X ])(=Cl(A)) if and
only if A is integrally closed.

Let A ⊂ B be an extension of integral domains. Then R=A + XB[X ] is a particular
graded domain with the natural graduation. We reobtain [4, Corollary 1:2].

Corollary 1.10. Cl(A+XB[X ]) =HCl(A+XB[X ]) if and only if B is integrally closed.

Proof. This follows from Corollary 1.8 and the fact that A + XB[X ] is almost normal
if and only if B is integrally closed.
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Now, it seems natural to ask whether the equivalence “Cl(R) =HCl(R) ⇔ R is
almost normal” always holds for a graded domain R. By the proof of (iii) ⇒ (i) of
Lemma 1.6, the implication “Cl(R) =HCl(R) ⇒ R is almost normal” is always true.
However, the converse fails to be true, in general, as the following example shows.

Example 1.11. Let K be a Aeld and let X , Y , and Z be three indeterminates over K .
Set T =K[X; Y; Z]=(YZ + X − X 2). Then T is an integral domain and T =K[x; y; z],
where yz = x(x− 1). Let d be an integer and set Td =K[x]yd if d¿ 0, T0 =K[x], and
Td =K[x]z−d if d¡ 0. Then T =

⊕
n∈Z Td is a Z-graded integral domain (cf. [18, p.

13]). Now, let R=
⊕

n∈Z Rd be the Z-graded subring of T deAned as follows: Rd =Td

if d �= 0 and R0 =K + x(x − 1)K[x]. Then R is almost normal and Cl(R) �=HCl(R).

Let S be the multiplicatively closed subset of nonzero homogeneous elements of
R. Then RS =K(x)[y; z] is a Z-graded integral domain with (RS)d =K(x)yd if d¿ 0,
(RS)0 =K(x), and (RS)d =K(x)z−d if d¡ 0. Now, let /∈ (RS)d be integral over R
with d¿ 0. Then /n + Fn−1/n−1 + · · · + F0 = 0 for some F0; : : : ; Fn−1 ∈R. Since /
is homogeneous of degree d, we may assume that Fi ∈R(n−i)d for each i. It fol-
lows that /=’(x)yd for some ’(x)∈K(x) and, for each i; Fi =fi(x)y(n−i)d for some
fi(x)∈K[x]. Hence ’n + fn−1’n−1 + · · · + f0 = 0. Since K[x] is integrally closed,
then ’(x)∈K[x], and hence /∈Rd. The case d¡ 0 is similar. Therefore, R is almost
normal.

Now we exhibit an invertible ideal of R which is not proportional to any invertible
homogeneous ideal of R. Let a= x2(x− 1), b= x−y, c= x(x− 1)− xy, d= 1 + (z=x),
e = z + x − 1, and f = x − 1. Set I = (a; b; c) and J = (d; e; f). Then I and J are
two fractional ideals of R with IJ ⊂ R and 1 = 16af − (4x(x − 1) − 1)[(be − cd)2 −
(bd)2 + 2bd]∈ IJ . It follows that I is an invertible ideal of R. Now, assume that
there exist q∈RS and H a homogeneous (integral) ideal of R such that I = qH . Since
a∈ I and a is a homogeneous element of R, necessarily q is homogeneous in RS .
Therefore, I is a homogeneous fractional ideal of R. It follows that I =C(I) = (x; y)
and J =C(J ) = (1; z=x). Thus, IJ = (x; x − 1; y; z), a contradiction since x �∈ R.

Example 1.12. Let T =C[X ], where C is the Aeld of complex numbers. Then R=
Z[
√−5] + XC[X ], graded in the natural way, is an almost normal graded domain

which is not integrally closed (and hence a nonKrull domain) with R0 ⊂ R inert. In
this case, Cl(R) =HCl(R) =Cl(Z[

√−5]) =Z=2Z (cf. [5, Theorem 3.12(2)]).

2. Application: a decomposition theorem for semigroup rings

Let A denote an integral domain with quotient Aeld K and � a nonzero torsionless
grading monoid with quotient group G = 〈�〉. In the Arst part of this section, we focus
on the speciAc case of semigroup rings. These constitute maybe the most important
class of graded domains. We appeal to the main theorem of Section 1 to establish a
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decomposition theorem for the class group of a semigroup ring. SpeciAcally, we show
that Cl(A[�]) ∼= Cl(A) ⊕ HCl(K[�]) if and only if A[�] is integrally closed. This
recovers most of the well-known results stated for the classic contexts of polynomial
rings [11] and Krull semigroup rings [3]. The problem breaks into two parts: Arst,
we explore the question of when Cl(A[�]) coincides with HCl(A[�]); then state that
HCl(A[�]) ∼= Cl(A) ⊕ HCl(K[�]).

Lemma 2.1. Let A[�] be any semigroup ring. The following statements are equiva-
lent:
(i) A[�] is almost normal;

(ii) A[�] is integrally closed;
(iii) A and � are integrally closed.

Proof. For (i) ⇒ (ii), see the proof of [1, Corollary 3:9]. The implication (ii) ⇒ (i)
is obvious. Finally for (ii) ⇔ (iii), see [13, Corollary 12:11].

It is known that the extension A ⊂ A[�] is always inert. Thus, as a consequence of
Theorem 1.1 and Lemma 2.1, we have:

Proposition 2.2. Let A[�] be a semigroup ring. Then Cl(A[�]) =HCl(A[�]) if and
only if A[�] is integrally closed.

In order to prove the second (and remaining) part of our main theorem, Theorem
2.7, we need some preliminary results. We begin our discussion by handling a number
of technical points. Let F(�) denote the set of all fractional ideals of �. Under
ordinary addition of subsets of G, that is, X + Y = {x + y | x∈X and y∈Y}, F(�) is
a commutative monoid with zero element �. If Y; Z ∈F(�), then (Y :Z) is deAned to
be the fractional ideal (Y :Z) = {g∈G | g+Z ⊂ Y}. The fractional ideal Y−1 = (� :Y )
(resp., Yv = (Y−1)−1) is called the inverse (resp., the v-closure) of Y . We say that Y
is divisorial or a v-ideal if Yv =Y . The ideal Y is v-Anite if Y = (F + �)v for some
Anite subset F of G. Note that Anitely generated fractional ideals of � are of the form
F + �, where F is a Anite subset of G. For more details about the v-operation on
semigroups, see [13, p. 215].

Now, let Y be a fractional ideal of �. We deAne Yt =
⋃{(F + �)v |F ⊂ Y a Anite

subset}. It is easily seen that if �∈G and Y; Z ∈F(�), then:
(i) (� + �)t = � + �; (� + Y )t = � + Yt .
(ii) Y ⊂ Yt ; if Y ⊂ Z , then Yt ⊂ Zt .

(iii) (Yt)t =Yt .
Therefore, Y �→ Yt deAnes a ∗-operation on � (cf. [19, Section 10]), called the
t-operation. It is done in analogy with the t-operation for domains. A fractional ideal Y
of � is a t-ideal if Yt =Y , or equivalently for each Anite subset F ⊂ Y , (F +�)v ⊂ Y .
Clearly, if Y is a fractional ideal of �; Yt ⊂ Yv and hence a v-ideal is a t-ideal.
Let t(�) denote the subset of F(�) of all t-ideals of �. One may easily see that
(Y +Z)t = (Yt +Z)t = (Yt +Zt)t for Y; Z fractional ideals of �, and hence t(�) forms a
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commutative monoid, with zero element �, under the operation (Y; Z) �→ (Y +Z)t . An
invertible element for this operation is called a t-invertible (fractional) t-ideal of �.
As in the case of domains, a t-invertible t-ideal is always divisorial and v-invertible.
Conversely, a divisorial v-invertible ideal Y of � is t-invertible if and only if Y and
Y−1 are v-Anite.

In what follows, the graduation on the semigroup ring A[�] will always mean the
natural graduation.

Lemma 2.3. Let A[�] be a semigroup ring and let I; J (resp.; Y; Z) be two fractional
ideals of A (resp.; �). Then
(1) I [Y ] is a homogeneous fractional ideal of A[�].
(2) I [Y ] is ;nitely generated if and only if I and Y are ;nitely generated.

If; moreover; I and J are nonzero; then
(3) (I [Y ] : J [Z]) = (I : J )[(Y :Z)].
(4) (I [Y ])v = Iv[Yv].
(5) (I [Y ])t = It[Yt].

Proof. (1) First, note that I [Y ] is the subset of elements of K[G] of the form
∑

aiX �i ,
where ai ∈ I and �i ∈Y . We have A[�]I [Y ] ⊂ I [Y + �] = I [Y ]. On the other hand, if
0 �= a∈A and �∈� are such that aI ⊂ A and �+Y ⊂ �, then aX �I [Y ] ⊂ A[�]. Hence
I [Y ] is a fractional ideal of A[�]. The fact that I [Y ] is homogeneous is obvious.

(2) If I and Y are Anitely generated ideals, it is obvious that I [Y ] is Anitely gener-
ated. Conversely, suppose that I [Y ] is Anitely generated. Since I [Y ] is homogeneous,
there exist a1; : : : ; an ∈ I and �1; : : : ; �n ∈Y such that I [Y ] = (a1X �1 ; : : : ; anX �n). Now,
one may easily check that I = (a1; : : : ; an) and Y = {�1; : : : ; �n} + �.

(3) Clearly, (I : J )[(Y :Z)] ⊂ (I [Y ] : J [Z]). For the reverse inclusion, let f∈ (I [Y ] :
J [Z]). So fJ [Z] ⊂ I [Y ] and then f∈ (I : J )[G]. On the other hand, fJ [Z] ⊂ I [Y ]
implies that � + Z ⊂ Y for each �∈Supp(f). Hence Supp(f) ⊂ (Y :Z). It follows
that f∈ (I : J )[(Y :Z)].

(4) Follows from (3).
(5) By (2) and (4), we have

(I [Y ])t =
⋃

{(F[T ])v |F ⊂ I and T ⊂ Y; F and T are ideals of Anite type}

=
⋃

{Fv[Tv] |F ⊂ I and T ⊂ Y; F and T are of Anite type}
= It[Yt]:

Corollary 2.4. Let A[�] be a semigroup ring; I a nonzero fractional ideal of A; and
Y a fractional ideal of �. Then
(1) I [Y ] is a v-ideal (resp.; t-ideal) if and only if I and Y are v-ideals (resp.; t-ideals).
(2) I [Y ] is v-;nite if and only if I and Y are v-;nite.
(3) I [Y ] is v-invertible (resp.; t-invertible) if and only if I and Y are v-invertible

(resp.; t-invertible).
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Proof. (1) is a consequence of statements (4) and (5) of Lemma 2.3.
(2) Follows from (2) and (4) of Lemma 2.3.
(3) Follows from the fact that (I [Y ](I [Y ])−1)v = (II−1)v[(Y + Y−1)v] and (I [Y ]

(I [Y ])−1)t = (II−1)t[(Y + Y−1)t].

Next we give a characterization of the homogeneous divisorial ideals of a semigroup
ring.

Proposition 2.5. Let A[�] be a semigroup ring. The following statements are equiv-
alent:
(i) I is a homogeneous fractional v-ideal of A[�];

(ii) I = J [Y ] for some fractional v-ideals J and Y of A and �; respectively.

Proof. (i) ⇒ (ii) Let I be a nonzero homogeneous fractional ideal of A[�]. Then
there exist 0 �= c∈A and �∈� such that cX �I ⊂ A[�], so I ⊂ K[G]. Let Y be the
set of degrees of all homogeneous elements of I and let J be the A-submodule of K
generated by the coeQcients of all elements of I . We have Y + � ⊂ Y , � + Y ⊂ �
and cJ ⊂ A. Hence Y and J are fractional ideals. Next we show that I = J [Y ]. The
inclusion I ⊂ J [Y ] is trivial. For the reverse inclusion, let f; 0 �= g∈A[�] such that
I ⊂ (f=g)A[�]. Let aX � ∈ I with a �= 0. Then f=g= aX �=h for some 0 �= h∈A[�].
Now, let bX � ∈ I . Then bX � ∈ (aX �=h)A[�]. That is, bX �h∈ aX �A[�], so bh∈ aA[�].
Therefore, bX � ∈ (f=g)A[�] and hence bX � ∈ I (since I is divisorial). Hence J [Y ] ⊂ I
and I = J [Y ].

(ii) ⇒ (i) Follows from Corollary 2.4.

Theorem 2.6. Let A[�] be a semigroup ring. We have the following splitting exact
sequence of natural homomorphisms:

0 → Cl(A) → HCl(A[�]) → HCl(K[�]) → 0:

Proof. Since A[�] is a Hat A-module, the natural homomorphism Cl(A) → Cl(A[�]);
[J ] �→ [J [�]] is well-deAned (cf. [5, Proposition 2.2]), and it induces a natural homo-
morphism 
 :Cl(A) → HCl(A[�]). On the other hand, since K[�] is a quotient ring
of A[�], we have the natural homomorphism Cl(A[�]) → Cl(K[�]), [I ] �→ [IK[�]].
It induces a natural homomorphism  :HCl(A[�]) → HCl(K[�]). By Corollary 2.4
and Proposition 2.5, if I is a homogeneous t-invertible t-ideal of A[�], I = J [Y ]
for some t-invertible fractional t-ideals J and Y of A and �, respectively. Hence
 ([I ]) =  ([J [Y ]]) = [K[Y ]]. Thus we have the sequence

Cl(A)

→HCl(A[�])

 →HCl(K[�]):

We Arst show that 
 is injective. Let J be a t-invertible t-ideal of A such that
J [�] = uA[�] for some homogeneous element u∈K[G]. Then u∈A and J = uA. Hence

 is injective.
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Next we show that Im
=Ker . Clearly Im
 ⊂ Ker . To show that Ker ⊂ Im
,
let I be a homogeneous t-invertible t-ideal of A[�] such that IK[�] =fK[�] for some
homogeneous element f∈K[�]. We may assume that f =X � for some �∈�. Now,
set I1 =X−�I . Then I1 ⊂ A[�] and I1K[�] =K[�]. It follows that J = I1 ∩ A �= 0 and
by [1, Proposition 5:7], I1 = J [�]. Since I1 is a t-invertible t-ideal, J is a t-invertible
t-ideal of A (cf. Corollary 2.4). Hence 
([J ]) = [I ] and Ker ⊂ Im
.

Now, let I be a homogeneous t-invertible t-ideal of K[�], by Proposition 2.5,
I =K[Y ] for some ideal Y of �. From Corollary 2.4, Y is a t-invertible t-ideal of
� and A[Y ] is a t-invertible t-ideal of A[�]. Now, consider the map

 ′ :HCl(K[�]) → HCl(A[�]); [I ] = [K[Y ]] �→ [A[Y ]]:

It is clear that  ′ is a well-deAned homomorphism and  o ′ = i, the identity map.

Finally, we are able to announce our decomposition theorem.

Theorem 2.7. Let A[�] be a semigroup ring. Then Cl(A[�]) ∼= Cl(A) ⊕ HCl(K[�]) if
and only if A[�] is integrally closed.

Proof. It follows from Proposition 2.2 (i.e., Theorem 1.1) and Theorem 2.6.

The following corollary is a straightforward consequence of the above results.

Corollary 2.8. Let A[�] be an integrally closed semigroup ring. Then Cl(A[�]) ∼=
Cl(A) ⊕ Cl(K[�]).

The second part of this section is devoted to semigroups. Here our ambiant semigroup
� is actually a nonzero torsionless grading monoid. This is indispensable to ensure
that the associated semigroup ring A[�] will be an integral domain. Our purpose is
to extend Chouinard’s results on Krull semigroups (cf. [8]) to arbitrary semigroups.
As an application, we establish an interesting result, Theorem 2.12, on the natural
homomorphism 
 :Cl(A) → Cl(A[�]) along with a few consequences.

In [8, Lemma 1, p. 1463], the author proved that Cl(K[�]) ∼= Cl(�) for any Aeld K
and any Krull semigroup � with �∩(−�) = 0. This agreed with the fact that Cl(K[�])
is not controlled by K provided K[�] is a Krull domain [3, Proposition 7:3(2)].

In analogy with the case of integral domains, we deAne the (t-)class group of the
semigroup �, denoted Cl(�), to be the group of t-invertible fractional t-ideals of �
under t-multiplication modulo its subgroup of principal fractional ideals. Also, in a
Krull semigroup, the t-operation and the v-operation coincide. Thus, if � is a Krull
semigroup, Cl(�) is just the divisor class group of � deAned in [8], see also [13,
Section 16].

Theorem 2.9. Let K be a ;eld. Then HCl(K[�]) ∼= Cl(�).
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Proof. Consider the map ’ :Cl(�) → HCl(K[�]); [Y ] �→ [K[Y ]]: If Y is a t-invertible
t-ideal of �, then by Corollary 2.4, K[Y ] is a homogeneous t-invertible t-ideal of K[�].
Hence ’ is a well-deAned homomorphism. Now, let Y be a t-invertible t-ideal of �
such that K[Y ] =fK[�] for some homogeneous element f∈K[G]. We may suppose
that f =X � for some �∈Y . That is, K[Y ] =X �K[�]. Therefore K[Y ] =K[�+�], and
hence Y = � + � is principal. It follows that ’ is injective. To show that ’ is also
surjective, let I be a homogeneous t-invertible t-ideal of K[�]. By Proposition 2.5
and Corollary 2.4, there exists Y , a t-invertible t-ideal of �, such that I =K[Y ]. Thus
’([Y ]) = [I ].

As a consequence of Theorem 2.9, we have the following corollaries which recover
[8, Lemma 1].

Corollary 2.10. Let K be a ;eld. If � is integrally closed; then Cl(K[�]) ∼= Cl(�).

Proof. It follows from Lemma 2.1, Proposition 2.2, and Theorem 2.9.

Corollary 2.11. Let A[�] be an integrally closed semigroup ring. Then Cl(A[�]) ∼=
Cl(A) ⊕ Cl(�).

Proof. It follows from Theorem 2.7 and Theorem 2.9.

We close this section by a brief study of the canonical homomorphism 
 :Cl(A) →
Cl(A[�]), [J ] �→ [J [�]]. Let R be a graded domain. It is well-known that, when
deAned, the homomorphism 
 :Cl(R0) → Cl(R), [I ] �→ [(IR)t] is not an isomorphism
in general. For example, see [3, Section 6]. Nevertheless, in the case of a semigroup
ring we give a complete characterization for 
 to be an isomorphism.

Theorem 2.12. Let A be an integral domain. Then Cl(A[�]) =Cl(A) if and only if A
and � are integrally closed and Cl(�) = 0.

Proof. Assume that Cl(A[�]) =Cl(A). Since 
 maps into HCl(A[�]), then Cl(A[�]) =
HCl(A[�]). Therefore, A[�] is integrally closed (cf. Proposition 2.2) and Cl(�) = 0
(cf. Corollary 2.11). The converse follows from Lemma 2.1 and Corollary 2.11.

We conclude with some corollaries and examples illustrating (the scope of) Theorem
2.12.

Theorem 2.12 generalizes [11, Theorem 3:6] (see also Corollary 1.9). To see this,
let � =

⊕
Z+e�. Clearly, G =

⊕
Ze�. Since � is factorial (cf. [13, Theorem 6:8]), then

Cl(�) = 0. Hence

Corollary 2.13. Cl(A[{X�}]) =Cl(A) if and only if A is integrally closed.
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As another consequence of Theorem 2.12, we have the following result on group
rings which recovers [16, Proposition 5:3].

Corollary 2.14. Let A be an integral domain and G a nonzero torsion-free abelian
group. Then Cl(A[G]) =Cl(A) if and only if A is integrally closed.

Corollary 2.15. Let A be an integral domain. Then Cl(A[{X�; X−1
� }]) =Cl(A) if and

only if A is integrally closed.

Example 2.16. Let � =Z×Z+ and let A be an integrally closed domain. By [13, The-
orem 6.8], � is factorial. Hence � is integrally closed and Cl(�) = 0. Thus Cl(A[�]) =
Cl(A[X; X−1; Y ]) =Cl(A).

Example 2.17. Let � =
⋃

n¿0 (1=pn)Z+, where p is a positive prime integer. Since �
does not satisfy the a.c.c on subsemigroups, then � is not a Krull semigroup. Now let
A=Z[

√−5] and K its quotient Aeld. By [13, Theorem 13:5], K[�] is a Bezout do-
main. Hence � is integrally closed and Cl(�) =Cl(K[�]) = 0. Thus Cl(Z[

√−5][�]) =
Cl(Z[

√−5]) =Z=2Z .

Theorem 2.12 shows that the class group of A[�] measures the failure of integral
closure for the ring A and for the semigroup �. The following example illustrates this
fact. It also illustrates the failure of Corollary 2.10 for non-integrally closed semigroups.

Example 2.18. Let � = {0; 2; 3; 4; : : :} and K be any Aeld. Then K[�] =K[X 2; X 3] and
� is not integrally closed. Let Y0 = {2; 3; 4; : : :}. Then Y0 is an integral ideal of �,
and if Y is a nonprincipal integral ideal of �, Y = n + Y0, for some integer n¿ 0.
On the other hand, one can easily check that Y0 is a divisorial ideal of �. Hence all
ideals of � are divisorial. Thus Cl(�) =Pic(�). Now let Y be an invertible ideal of
�. Then Y + (� :Y ) =�. Let n∈Y and m∈ (� :Y ) such that n + m= 0. We have
Y = n + m + Y ⊂ n + �, so Y = n + � is a principal ideal. Hence Cl(�) =Pic(�) = 0.
Thus Cl(�) =HCl(K[�]) = 0, while Cl(K[�]) =K (cf. [5, Example 4:7(2)]).

References

[1] D.D. Anderson, D.F. Anderson, Divisorial ideals and invertible ideals in a graded integral domain, J.
Algebra 76 (2) (1982) 549–569.

[2] D.D. Anderson, D.F. Anderson, Divisibility properties of graded domains, Canad. J. Math. 34 (1) (1982)
196–215.

[3] D.F. Anderson, Graded Krull domains, Comm. Algebra 7 (1979) 79–106.
[4] D.F. Anderson, S. El Baghdadi, S. Kabbaj, The homogeneous class group of A + XB[X ] domains,

Internat. J. Commutative Rings, to appear.
[5] D.F. Anderson, A. Ryckaert, The class group of D + M , J. Pure Appl. Algebra 52 (1988) 199–212.
[6] H. Bass, M.P. Murthy, Grothendieck groups and Picard groups of abelian group rings, Ann. of Math.

86 (1967) 16–73.
[7] A. Bouvier, Le groupe des classe d’un anneau intSegre, in: 107Seme CongrSes des SociTetTes Savantes, Vol.

4, Brest, 1982, pp. 85–92.



184 S. El Baghdadi et al. / Journal of Pure and Applied Algebra 171 (2002) 171–184

[8] L.G. Chouinard, Krull semigroups and divisors class groups, Canad. J. Math. 33 (6) (1981) 1459–1464.
[9] P.M. Cohn, Bezout rings and their subrings, Proc. Cambridge Philos. Soc. 64 (1968) 251–264.

[10] R.M. Fossum, The Divisor Class Group of a Krull Domain, Springer, New York, 1973.
[11] S. Gabelli, On divisorial ideals in polynomial rings over Mori domains, Comm. Algebra 15 (1987)

2349–2370.
[12] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
[13] R. Gilmer, Commutative Semigroup Rings, Chicago Lecture Notes in Mathematics, University of

Chicago Press, Chicago, 1984.
[14] R. Gilmer, R. Heitmann, On Pic(R[X ]) for R seminormal, J. Pure Appl. Algebra 16 (1980) 251–257.
[15] E.G. Houston, M. Zafrullah, On t-invertibility II, Comm. Algebra 17 (8) (1989) 1955–1969.
[16] R. Matsuda, On algebraic properties of inAnite group rings, Bull. Fac. Sci. Ibaraki Univ. Ser. A. Math.

7 (1975) 29–37.
[17] R. Matsuda, On the content condition of a graded integral domain, Comment. Math. Univ. St. Paul. 33

(1) (1984) 79–86.
[18] R. Matsuda, 
 :Pic(R0) → HPic(R) is not necessarily surjective, Bull. Fac. Sci. Ibaraki Univ. Ser. A.

Math. 16 (1984) 13–15.
[19] R. Matsuda, Torsion-free abelian semigroup rings VI, Bull. Fac. Sci. Ibaraki Univ. Ser. A. Math. 18

(1986) 23–43.
[20] D.G. Northcott, A generalization of a theorem on the content of polynomials, Proc. Cambridge Philos.

Soc. 55 (1959) 282–288.
[21] D.G. Northcott, Lessons on Rings, Modules, and Multiplicities, Cambridge University Press, Cambridge,

1968.
[22] C. Pedrini, On the K0 of certain polynomial extensions, Lecture Notes in Mathematics, Vol. 342,

Springer, New York, 1973, pp. 92–108.


