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5.1, we believe that limn .... ", t is not approximately 0.28, for we believe that 
limn .... ", t is approximately T. Thus, although Table 5.1 suggests there is an 
answer for the value of limn .... ", ~, we believe that it points toward the wrong 
answer! 

Our interpretation is the following. The relatively low values of n in Table 
5.1 point to %"- --t 0.28 "" S = E(:!-. - :!-.) because these values of n do not ac
commodate enough "highly composi~e" nPto illustrate the attenuating effect of the 
inclusion/exclusion processes entering into the calculation of T. Thus we are moved 
to close with the following observation, which we intend both as moral and as pun: 
the strategy of relying on empirical evidence has its limits I 

References 
[1] D. Dobbs and R. Hanks, A Modern Course on the Theory 0/ Equations, 2nd 

ed., Polygonai Pub!. House, Washington, N.J., 1992. 

[2] W.J. LeVeque, Fundamentals 0/ Number Theory, Addison-Wesley Pub!. Co., 
Reading, Mass., 1977. 

[3] J .L. Mott, Eisenstein-type irreducibility criteria, Zero-dimensional Commutative 
Rings (D.F. Anderson and D.E. Dobbs, eds.), Lecture Notes in Pure and App!. 
Math., vol. 171, Marcel Dekker, Inc., New York, 1995, pp. 307-329. 

[4] 1. Niven and H.S. Zuckerman, An Introduction to the Theory 0/ Numbers, 4th 
ed., John Wiley & Sons, New York, 1980. 

[5] J.M.H. Olmsted, Advanced Calculus, Appleton-Century-Crofts, Inc., New York, 
1961. 

When Is D + M n-Coherent and an (n, d)-Domain? 

DAVID E. DOBBS Department of Mathematics, University of Tennessee, 

Knoxville, Tennessee 37996-1300 

SALAH-ED DINE KABBAJ Department of Mathematical Sciences, KFUPM, 
P.O.Box 849, Dhahran 31261, Saudi Arabia. 

NAJIB MAHDOU Departement de Mathematiques et Informatique, Faculte des 
Sciences et Techn,iques Fes-Sa'iss, Universite de Fes, Fes, Morocco. 

MOHAMED SOBRANI Departement de Mathematiques et Informatique, Faculte 
des Sciences et Techniques Fes-Salss, Universite de Fes, Fes, Morocco. 

1 INTRODUCTION 

All rings considered below are commutative with unit, typically (integral) domains, 

and all modules and ring homomorphisms are unital. As its title suggests, this 
article contributes to a program which was begun in [7]. That article determined, 
\. a., when the classical D + M construction (in which the ambient domain K + M 
is a valuation domain) produces a coherent domain. In [8], to which the present 
article may be considered a sequel, [8, Theorem 3.6] treated the more general 
problem of characterizing n-coherence for the classical D + M construction, with 
a complete answer being given in case D has quotient field K. (All relevant 
definitions, including that of n-coherence, will be recalled three paragraphs hence. 

For the moment, recall that I-coherence is equivalent to coherence [8, page 270].) 
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It was noted in [3] that many of the themes and techniques in [7] carryover to 
more general D + M contexts (in which K + M need not be a valuation domain). 
In this spirit, our main result, Theorem 2.1, studies the transfer of n-coherence 
between a general D+M construction and the associated ringD, with best results 
in case the ambient K + M is a Bezout domain. In Theorem 2.8, we return to the 
classical D + M context, to study the possible transfer of the strong n-coherence 
property between D + M and D. Moreover, one upshot of Proposition 3.3 is that 
for coherent domains, strong n-coherence is equivalent to n-coherence. 

There is also a markedly homological aspect to this article. For instance, 
Theorem 3.4 establishes that for a (context more general than a) general D + M 
construction, K + M is a flat module over D + M if and only if D has quotient 
field K. (The proofs of many of our results, including Theorem 3.4, depend on 
resolutions, specifically, finding that the kernels of certain homomorphisms on (D+ 
M)(n) are canonically isomorphic to M(n-I). While this observation is prominent 
in the homological considerations in [7, proof of Theorem 3], our first use of it 
occurred in the first-named author's proof of Proposition 4.5 (ii) in "On going
down for simple overring'S II", Comm. Algebra 1 (1974),439-458. This occurrence 
predates by two years its oft-cited oCCurrence in [3, Theorem 3].) Theorem 3.4 may 
be viewed as a companion for the results in [7, Theorem 7 and Corollary 8] on 
flatness of ideals in the classical D + M construction. 

In addition to pursuing resolution-theoretic themes from [7], the homological 
aspect of this work owes much to the classification of non-Noetherian rings initiated 
by Costa in [4]. Specifically, in addition to the n-coherence results described above, 
Theorem 2.1 also studies the transfer of the weak (n, d)-domain property between 
D + M and D, Theorem 2.8 also studies the transfer of the (n, d)-domain property 
between D + M and D, and Corollary 3.2 establishes that for coherent domains, 
the (n, d)- and the weak (n, d)-properties are equivalent. 

This paragraph collects background from [8], [4] and [5] on the concepts 
mentioned above. 'Following [4] and [8], if n is a nonnegative integer, we say that 
an R-module E is n-presented if there is an exact sequence 

Fn-->Fn-I-->···-->Fo-->E-->O 

of R-modules in which each F, is finitely generated and free; and that A(E) = 
AR(E) = sup{n : Eis ann-presentedR-module}. If n ;:: 1, we say that R is n
coherent if each (n-l)-presented ideal of R is n-presented; and that R is strong n
coherent if each n-presented R-module is (n+ I)-presented. (For other inequivalent 
usages of "n-coherent", see [8, page 270].) Given nonnegative integers nand d, we 
say that a ring R is an (n, d)-ring if pdR(E) :::; d for each n-presented R-module 
E (as usual, pd denotes projective dimension); and that R isa weak (n, d)-ring 
if pdR(!) :::; d - 1 for each (n - I)-presented ideal I of R. Since, in case R 
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is a domain, every finitely' generated torsionfree R~module can be embedded in a 
finiteiy generated free R-module, R is an (n,d)-domain if and only ifpdR(E) :::; d-l 
for each (n - I)-presented torsionfree R-module E. We note, for motivation, that 
the (n,d)- and weak (n,d)-ring concepts are relevant to a sequel to [8] because, 
La., Prilfer domains are the (1, I)-domains and the (possibly weak) (2, I)-domains 
of D + M type are tractable: cf. [4, Theorem 5.1], [5]. 

It is convenient to use "local" to refer to (not necessarily Noetherian) rings 
with a unique maximal ideal. Also, unadorned tensor products @ are generally 
taken over the implicit base ring, not necessarily Z. Finally, note that the riding 
assumptions and notations for Section 2 are announced at its outset. 

2 n-COHERENCE AND THE (n, d)-PROPERTY 

Throughout this section, we adopt the following riding assumptions and notations: 
T is a domain of the form T = K + M, where K is a field and M is a nonzero 
maximal ideal ofT; D is a subring of K; the quotient field of D i8k = qf(D) C;;; K; 

R= D+M; and To = k+M. 

THEOREM 2.1 Let T, To and R be as above. Then: 
1) R is n-coherent ==> D is n-coherentj 

R is a weak (n,d)-domain ==? D is a weak (n,d)-domain. 
2) Suppose that T is a Bezout domain and [K : k] = 00. Then: 

a) To is a weak (2, I)-domain but not coherent. In particular, To is n-coherent 
Vn ;:: 2. 

b) R is not coherent. Moreover, Vn ;:: 2 and Vd ;:: 1, we have: 
R is n-coherent <==? D is n-coherent; 
R is a weak (n,d)-domain <==? D is a weak (n,d)-domain. 

3) Suppose that T is a Bezout domain, with I # IK : k] < 00, and M is not a 
principal ideal ofT. Then: 

a) To is a weak (2, I)-domain but not coherent. In particular, To is n-coherent 
Vn ;:: 2. 

b) R is not coherent. Moreover, Vn;:: 2 .and Vd ;:: 1, we have: 
. R is n-coherent <==? D is n-coherent; 

R is a weak (n,d)-domain <==? D is a weak (n, d)-domain. 
4) Suppose that T is a. Bezout domain, with 1 # IK : k] < 00, and that D is a local 
(n, I)-domain, for some n ;:: 2. Then R is a weak (n, I)-domain; in particular, R 
is m-coherent, Vm ;:: n. 
5) Suppose that T is a Bezout domain and k = K. Then:· 

R is n-coherent <==? D is n-coherent; 
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. R iBa weak (n, d)-domain {=} D is a weak (n, d)-domain. 

6) Suppose that T is a local weak (n, I)-domain for some n ~ 1 and K = k. Then: 

R is n-coherent {=} D is n-coherenti 

R is a weak (n, d)-domain {=} D is a weak (n, d)-domain. 

Before proving Theorem 2.1, we establish the following six Lemmas. 

LEMMA 2.2 Suppose that T is a Bezout domain. If I is a finitely generated ideal 

of R, then I = Wa + M a, for some a E IT and some D-submodule W of K. 

Proof Let I be a finitely generated ideal of R; without loss of generality, I # O. 
Since T is a Bezout domain and IT is a nonzero finitely generated ideal of T, 

we have that IT = Ta, for some nonzero element a E IT. As aM = aTM = 

ITM = 1M ~ I, it follows that M ~ (l/a)I. Also, (l/a)I ~ (l/a)IT = T, and 
so M ~ (l/a)I ~ T. Put W = (l/a)tnK; evidently, W is a D -submodule of 
K. Moreover, (l/a)InM = M, since M ~ (l/a)!. Hence (l/a)I = (l/a)InT = 
«l/a)InK) + «l/a)InM) = W + M, and so 1= Wa + Ma, as asserted. 

LEMMA 2.3 Let A -> B be an injective flat ring homomorphism and let Q be an 
ideal of A such that QB = Q. Let E be an A-module such that E <8>A B is B-flat. 

Then: 
1) AA(E) ~ n {=} AB(E ® B) ~ nand AA/Q(E ® A/Q) ~ n. 

2) pdA(E) :::; d {=} pdB(E ® B) :::; d and pdA/Q(E ® A/Q) :::; d. 

Proof 1) The assertion for the case n = 0 is a well-known result concerning finitely 
generated modules: cf. [11, Theorem 5.1.1(3)], [9J. 

Now, using induction on n, suppose the assertion holds for some n ~ 0 and let 
E be an (n+ I)-presented A-module such that E®A B is B-flat. We have an exact 
sequence 0 -> K -> Am -> E -> 0, where AA(K) ~ nand m is some nonnegative 
integer. By hypothesis, B is a flat A-m9dule; moreover, as in [5, proof of Lemma 
1J, Tor~(E,A/Q) = O. (Indeed, the exact sequence 0 -+ Q -> A -> A/Q -> 0 
yields the exact sequence 0 -> Tor~(E,A/Q) -> E®Q -> E -> E/QE -> O. Since 
we still have E ®A Q !lO (E ®A B) ®B Q, E ®A B !lO (E ®A B) ®B B, Q ~ B 

and E <8>A B B-flat, it follows from [5, diagram (3)J that Tor~(E,A/Q) = 0 as 
claimed). So tensoring over A with Band A/Q respectively, we get the following 

exact sequences: 
(*) 0 -+ B ® K -+ B ® Am(!lO Bm) -> B ® E -> 0 and 

o -> A/Q ® K -> A/Q ® Am(!lO (A/Q)m) -> A/Q ® E -> 0 
of B- and A/Q-modules, respectively. On the other hand, since AA(K) ~ nand 
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K ®A B is B-flat (using (*), since E <8>A B is B-flatj;.the induction. assumption 
applies to the A-module K; thus, AB(B <8> K) ~ nand AA/Q(A/Q <8>K) ~ n. 

Therefore, the exact sequences (*) and [8, Lemma 2.2(b)J allow us to conclude 

that AB(B ® E) ~ n + 1 and AA/Q(A/Q ® E) ~ n + 1. 
Conversely, let E be any A-module such that AB(B®E) ~ n+1, AA/Q(A/Q® 

E) ~ n + I, and E <8>A B is B-flat. For some m ~ 0, we have an exact sequence 
0-> K -> Am -> E -> 0 of A-modules. The exact sequences (*), in conjunction 
with [8, Lemma 2:2(c)], yield that AB(B ® K) ~ n, AA/Q(A/Q ® K) ~ n, and 
K ®A B is B flat (since E®A B is B-flat). By the induction assumption, it follows 
that AA (K) ~ n; and the exact sequence 0 -> K -> Am -> E -> 0, together with 

[2, Lemma 2.2(b)J, shows that AA(E) ~ n + 1. 
2) We induct on d. The case d = 0 is well known: cf. [11, Theorem 5.1.1(1)J, 

[14J; and the case d = 1 follows from the proof of [5, Lemma 1J. Let d > 1 and 
assume that 2) is true for any integer d' < d. Let E be an A-module such that 
E ®A B is B-flat. Suppose that PdA(E) :::; d. Since B is A-flat, we have that 
pdB(E ®A B) :::; d. Choose an exact sequence of A-modules 0 -> K -> F -> 

E -> 0 in which F is free. Hence, pdA (K) :::; d - 1. By the induction assumption, 
pdA/Q(K ®A A/Q) :::; d - 1. Hence, by (*), pdA/Q(E <8>A A/Q) :::; d. 

Conversely, suppose that pdB(E ®A B) :::; d and pdA/Q(E ®A A/Q) :::; d. 

As above, Tort(E, A/Q) = 0, so that pdA/Q(K ®A A/Q) :::; d - 1, where K is 
the kernel of an epimorphism from a free A-module to E. Reasoning as above, 
K <8>A B is B-flat and pdB(K ®A B) :::; d - 1. Then, by the induction assumption, 
pdA (K) :<; d - 1, so that pdA (E) :::; d, and this completes the proof. 

LEMMA 2.4 Consider the pullback 

A B(= 8-1A) 

1 1 
A/Q B/Q 

where B = 8-1 A for some multiplicative subset 8 of A, A -> B is an injective flat 

ring homomorphism, and Q is an ideal of both A and B. Then: 
1) Assume that B is a local weak (n,l)-domain. Let I be any nonzero {n -1)' 

presented ideal of A. Then there exists 0 # x E B and an ideal [' :2 Q of A such 

that I ® A/Q!lO I' /Q as A/Q-modules and I = xl' !lO J'·as A-modules. 

2) Assume that B is a local weak (n, I)-domain. Then: 
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A/Q i8 n-coherent => A is n-coherent; 

A/Q is a weak (n,d)-domain => A is a weak (n,d)-domain. 

3) Assume that B is a valuation domain and Q, the maximal ideal of B, is a finitely 
generated ideal of B. Then: 

A is n-coherent ~ A/Q is n-coherent; 

A is a weak (n, d)-domain ~ A/Q is a weak (n, d)-domain. 

m 

Proof· 1) Let I = La,A be any nonzero (n -l)-presented ideal of A. We have 
i=l 

I ®A/Q e; I/IQ. Since IB(e; l<i~A B) is an (n-1)-presented B-module and B is 
a local weak (n, l)-domain, IB is a nonzero projective, hence principal ideal of B. 
Hence there exists 0 '" x E B such that I B = xB; then IQ = IQB = Q{I B) = 
xBQ = xQ. Also, by replacing x with a suitable x', we may assume without loss 
of generality that I = xl', where I' is an ideal of A. (In detail: IIi = 1, .•. ,m, 
we have a, E I ~ IB = xB, then 3b, E A and 3s, E S such that a, = X(b,/8,). 

m m 

Thus, for x' =.x/ II Sj E B, we have ti, = x'b;, where b; = ( II 8j)b; E A and 
j=1 j=l,j;'i 

m 

I' = LAb;. Then I = x'I'; and I B = xB = x' B since elements of S are units in 
i=l 

B.) Therefore, IQ = xQ and I = xl' e; I' as A-modules, where I' is an ideal of 
A, so that we have: I ® A/Q e; 1/ IQ = xl' /xQ e; l' /Q as A/Q-modules. 

2) A/Q is n-coherent => A is n-coherent: Let I be any nonzero (n -1)
presented ideal of A. Since I ®A B e; IBis a nonzero projective, hence principal 
ideal of B, we have that I ®A B is B-flat. Then Lemma 2.3, 1) may be applied 
to the given pullback and the A-module E = I, giving AA/Q(I ® A/Q) 2': n - 1. 
Express I via x and l' as in 1). Observe that I ®A B e; IB = xB e; B which, 
in particular, is an n-presented B-module. Now, I ® A/Q e; I' /Q is an (n - 1)
presented ideal of the n-coherent ring A/Q, so AA/Q{I ®A/Q) = AA/Q{I' /Q) 2': n. 
Thus from Lemma 2.3, 1), AA{I) 2': n; and so A is n-coherent. 

A/Q is a weak (n,d)-domain => A is a weak (n,d)-domain: Argue as 
above, using both Lemma 2.3, 1) and Lemma 2.3, 2). 

3) A is n-coherent ~ A/Q is n-coherent: Since any valuation domain is a 
local weak (n,l)-domain lin 2': 1, then A/Q is n-coherent implies that A is n
coherent by 2). Conversely, let J = I/Q be any nonzero (n-1)-presented ideal of 
A/Q, where lis an ideal of A such that Q c I. Moreover, IBis a finitely generated 
ideal of B since Q is. Then I ®A B e; IB = xB e; B for some x E B, sinceB is a 
valuation domain and IBis a finitely generated ideal of B. In particular, I ® A B 

is B-flat. We apply Lemma 2.3 to the above pullback and the A-module E = I. 
We have I ® ABe; B which, in particular, is an (n - 1 )-presented B-module. 
Moreover, I ® A/Q e; 1/ IQ = I/Q(=: J). Indeed, since Q c I, then 3b E 1\ Q; 
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then b is a ,unit in E, whence Q = bQ ~ IQ~ Q and Q= IQ.As J'is an (n-1)
presented A/Q-module, we now see from Lemma 2.3, 1) that AA (1) ~ n - 1. But 
A is assumed to be n-coherent, and so AA{I) ~ n. Thus from Lemma 2.3, 1), 

AA/Q(J) = AA/Q{I ® A/Q) 2': n, and so A/Q is n-coherent. 
A is a weak (n,d)-domain ~ A/Q is a weak (n,d)-domaln: Argue as 

above, using both Lemma 2.3, 1) and Lemma 2.3, 2). The proof is complete. 

LEMMA 2.5 Suppose that T is a Bezout domain (but not a field). Then. each 
nonzero 1-presented ideal of To is isomorphic to To. Consequently, To is a weak 
(2, l)-domain and n-coherent lin 2': 2, in each of the following cases: 

1) [I( : k] = 00, 

2) 1 '" [I( : k] < 00 and M is not a principal ideal of T. 

Proof We first claim that M is not a finitely generated ideal of To. Indeed, [3, 
Lemma 1] shows that if [I( : k] = 00, then M is not a finitely generated ideal of 
To. On the other hand, if 1 '" [I( : k] < 00 and M is not a principal ideal pf T, 
then M is not a finitely generated ideal of To. (Otherwise, M would be finitely 
generated, hence principal, over T, since T is a Bezout domain.) Thus, the claim 

has been established. 
We shall prove that each nonzero 1-presented ideal I of To is projective, in 

fact principal, over To. Use Lemma 2.2 to write I = Wa + M a, where W is a 
k-submodule of I( and a E IT. Since M is not a finitely generated ideal of To, we 
have W '" O. Now, I®k e; I®ToIM e; 111M = (Wa+Ma)IM(Wa+Ma) = 
(Wa + Ma)/Ma e; Wa 80! W is a finite dimensional k-vector space, since I is a 
finitely generated ideal of To. Thus, there exists a nonnegative integer p such that 

W e; kP • We claim that p = 1. 
Indeed, if p 2': 2, let e1. ... , ep be a k-vector space basis of W, and consider 

the surjective To-module homomorphism 
u : (k + M)P ---> W + M(8o! 1), given by 

p 

(d l + m1. .. " dp + mp) f-> L(d; + m,)e,. 
;=1 

(To verify that u is surjective, it suffices to show that im(u) contains each nonzero 
element m EM. Consider a nonzero element a = L: ole, E W, with each 0, E k. 
A straightforward calculation shows that u(ola-Im, ... ,ova-1m) = m.) Since I 
is a 1-presented To-module, ker(u) is a finitely generated To-module. On the other 

hand, we have 
p 

ker(u) = {(d l + m1. .. " dp + m p ) : L(d, + mile, ,,; O} = [since J( n M;; Oan'd 
i~l . ,. 

v 
{e,} is linearly ind~pe~dent' ~ver k] = {(ml," ., mvF L m,e, = O}. 

. . "i=l 
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SihceMe, '=M for each i, it follows thatker(u) ~ MP-,~, As p - 1 ~ 1 and 
ker(u)'is finitely generated over To, so is M, a contradiction. This proves the 
claim thatp= 1, and so W~ k. Hence 1= Wa+Ma~ W+M~ k+M=To 

as a To-module. In fact, we have also proved that each nonzero (n - I)-presented 
ideal of To is isomorphic to To, hence infinitely presented, "In ~ 2, that is To is 
n-coherent "In ~ 2, to complete the proof. 

LEMMA 2.6 Suppose that T is a Bezout domain (but not a field) such that 

I '" [K : k) < 00. Suppose also that D is a local (n, I)-domain (but not a field) for 
some n ~ 2. Then each nonzero (n - I)-presented ideal of R is isom01phic to R, 

Consequently, R is a weak (n, I)-domain and is m-coherent "1m ~ n. 

Proof: Let I be any nonzero (n-I)-presented ideal of R. Use Lemma 2.2 to write 
I = Wa + M a, where W is a D-submodule of K and a E IT. Now, M(~ M a) is 
not a finitely generated ideal of R (by [3, Lemma I) since D is not a field), and so 

W '" O. Since R is D- flat, we have AR(W®DR) = AR(WR) = AR(W(D+M» = 

AR(W + M) = AR(!) ~ n - 1; therefore, AD(W) ~ n - I since R is a faithfully 
flat D-module, On the other hand, since W ~ K ~ kr where r = [K : k) < 00, 

there exists 0 '" 0 E D such that W 9j oW ~ Dr since k = qf(D). So, there exists 
a nonnegative integer m such that W 9j Dm as a D-module (since D is a local 
(n, I)-domain). We claim that m = 1. 

Indeed, if m ~ 2, let e" ... , em be a basis for W as a D-module. Consider 
the R:module homomorphism 

,v: (D + M)m .... W + M(9j !), given by 
m 

(d, + mt, ... , dm + mm) H ~)d, + m,)e,. 
'=1 

As in the proof of Lemma 2.5, v is surjective and ker( v) 9j M m-l. Hence, since 
I is an (n - I)-presented R-module, ker(v) is an (n - 2)-presented R-module; 
in particular, ker(v) 9j Mm-l is a finitely generated R-module. Thus, M is a 

finitely generated ideal of R, a contradiction. This proves the claim that m = 1. 
Therefore, W 9j D and 1= Wa+ Ma 9j W + M 9j D + M = R as R-modules, to 
complete the proof. 

LEMMA 2.7 Let n, d be nonnegative integers. If R is a weak (n, d)-domain, then 
so is D. 

Proof:' Mimic the end of the proof of [5, Lemma 2), with Lemma 2.3 replacing the 
role of [5, Lemma 1). 
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Proof of Theorem 2.1: 1) Since R is faithfully flat over D, the first assertion follows 
from [8, Theorem 2.12, page 274); and the second assertion is the conclusion of 

Lemma 2.7. 

2) Assume that T is a Bezout domain and [K : k) = 00, 

a) To is a weak (2, I)-domain and n-coherent "In ~2 by Lemma 2 .. 5, 1). On the 
other hand, To is not coherent by [3, Theorem 3) since [K : k) = 00. 

b) R is not coherent by [3, Theorem 3), Let n ~ 2 and d ~ 1. 

R is n-coherent {=? D is n-coherent: If R is n-coherent, then D is n

coherent by 1). Conversely, assume that D is n-coherent, and let I be any nonzero 

(n - I)-presented ideal of R. By Lemma 2.2, write I = Wa + Ma, where W is 
a D-submodule of K and a E IT. Since M a ~ M is not a finitely generated 

ideal of R by [3, Lemma 1], we have W '" O. Since R is D-flat, AR(W ®D 

R) = AR(WR) = AR(W(D + M» = AR(W + M) = AR(I) ~ n -1; therefore, 
AD(W) ~ n - I, since R is a faithfully flat D-module. Moreover, sinceTo is R

flat, I ® To ~ ITo = kWa + M a is an (n - I)-presented ideal of To. Thus, by 
Lemma 2.5, 1), since n ~ 2, ITo is isomorphic to To. Also, by the proof of Le'mma 
2.5, 1), we can identify kW(9jW ®D k) 9j k. Since W is finitely generated over 

D, there exists 0 '" 0 E D such that W 9j oW ~ D. But D is n-coherent, so 
AD(W) = AD(OW) ~ n (since oW is an (n - I)-presented ideal of D). Therefore, 
since R is D-flat, AR(I) = AR(W +M) = AR(W®DR) ~ n, and so R is n-coherent. 

R Is a weak(n, d)-domain {=? D Is a weak (n, d)-domain: If R is a weak 
(n, d)-domain, then D is a weak (n, d)-domain by 1). Conversely, assume that D 

is a weak (n, d)-domain, and let J be any nonzero (n -I)-presented ideal of R. By 
Lemma 2,2, write J = Wa + M a, where W is a D-submodule of K and a E JT. 

Since M a ~ M is not a finitely generated ideal of R by [3, Lemma I), W '" O. As in 
the above argument, we have AD(W) ~ n-l and there exists 0 '" 0 E D such that 
W 9j oW ~ D, Since D is a weak (n, d)-domain, pdD(W) = pdD(oW) ::; d - 1. 
Therefore, pdR(J) = pdR(W +M) = pdR(W®D R) ::; d-l (the inequality holding 
since R is a flat D-module). Thus, R is a weak (n, d)-domain, 

3) Argue as for 2). 

4) This is a restatement of Lemma 2'.6. 

5) Assume that T is a Bezout domain and K = k, 

R is n-coherent {=? D is n-coherent: By 1), it remains to show that if D 
is n-coherent, then R is n-coherent. Without loss of generality, R '" T, and so D is 
not a field. Let I be a nonzero (n - I)-presented ideal of R, Write I = Wa + M a,' 

where W is a D-submodule of K and a E IT. Since M a 9j M is not a finitely 
generated ideal of R by [3; Lemma 1), W'", O. We have I® T~, IT (since 
T = (D \ {O} )-1 R is R-flat) = Ta 9j Tis T-flat, and Lemma 2.3 may be applied, 
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toA=R;B= T,E = 1, and the pullback ., 

R T 

1 1 
D(= RIM) k(=TIM). 

Now, l®T ~ Ta which is, in particular, an n-presented ideal ofT. Also, I®RIM = 
111M = (Wa + Ma)/(Wa + Ma)M = (Wa+Ma)IMa ~ Wa g; W is an (n-1)
presented D-module by Lemma 2.3, 1) and so there exists 0 l' 0 E D such that 
oW !:;; D. Then we have AR/M(I ® RIM) = AD(W) = AD(OW) ;::: n since D is 
n-coherent and oW is an (n - 1)-presented ideal of D. Thus, by Lemma 2.3, 1), 

AR(I) ;::: n, and so R is n-coherent. 
. Ris a weak (n,d)-domain {=} D Is a weak (n,d)-domain: Argue as 

above, using both Lemma 2.3, 1) and Lemma 2.3,2). 
6) Since K = k, we have that T = 8-1 R, with 8 = D \ {o}. The assertions 

now follow by combining 1) and Lemma 2.4, 2). 

THEOREM 2.8 Suppose that T is a valuation domain. Suppose also that one of 

the following three conditions holds: 
(a) [K : kJ = 00; (b) 1 < [K: kJ < 00 and M = M2; (c) K = k. 
Let nand dbe nonnegative integers such that n ;::: 2. Then: 
1) R is an (n, d)-domain {=} D is an (n, d)-domain. 
2) R is strong n-coherent {=} D is strong n-coherent. 

We need the following lemma before proving Theorem 2.8: 

LEMMA 2.9 Suppose thatT is an (no, 1)-domain for some no ;::: 1 and that k = K. 

Let nand d be nonnegative integers such that n ;::: no· Then: 
1) R is an (n,d)-domain {=} D is an (n,d)-domain. 
2) R is strong n-coherent {=} D is strong n-coherent. 

Proof. 1) {=) Using a criterion mentioned in the introduction, it suffices to show 

that if E is an (n-1)-presented torsionfree R-module, then pdR(E) :5 d-1. Since 
k = K, T is R-flat: Thus, E ®R Tis an (n -1)-presented torsionfree T-module 

(since R is a domain, E embeds in some free R-module F, hence E®RT embeds in 
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the free T-module F ®R T); hence, it is T-projective since T is an (no,1)-domain 
and n ;::: no. Now E®RD is (n-1)-presented by Lemma 2.3, 1) and is a torsion free 
D-module as in the proof of [5, Lemma 2J. Since D is an (n, d)-domain, 

pdD(E ®R D) :5 d - 1. It follows from Lemma 2.3, 2) that pdR(E) :5 d - 1. 

=?) Assume that R is an (n, d)-domain. Let E be an (n - 1)-presented 
torsionfree D-module. Replacing [5, Lemma 1J by our Lemma 2.3, we may mimic 
the end of the proof of [5, Lemma 2J to show that pdD(E) :5 d - 1. 

2) Argue as above, using Lemma 2.3, 1), This achieves the proof. 

Proof of Theorem 2.8: If c) holds, Lemma 2.9 gives the conclusion. Next, sup
pose that a) or b) hold. Then [4, Corollary 5.2J shows that R is a (2,1)-domain. 
Replacing T by To, Lemma 2.9 once more gives the result. 

3 FURTHER RESULTS 

In [8, page 277J, the question was raised whether strong n-coherence is equivalent 
to n-coherence for n ;::: 2. An affirmative answer is given in Proposition 3.3 for rings 
satisfying certain properties Pn , Qn (defined below). It is shown in Proposition 3.1 
that the Pn, Qn conditions also imply the equivalence of the (n, d)-domain and the 
weak (n, d)-domain conditions. Since coherence implies Pm Proposition 3.1 may 
be viewed as a companion of the result of [5, Proposition 2) that for a coherent 
ring, one has equivalence of the (1, d)-ring and the weak (n, d)-ring conditions. 
Finally, the section concludes, in the spirit of [7J, by characterizing when K + M 
is (D + M)-flat. 

We next focus the setting for (3.1) - (3.3). Let R be a domain with quotient 
field Q, and M be a torsionfree R-module. As usual, rank(M) denotes the Q
vector space dimension of Q ® R M. An R-submodule M' of M is said to be pure 
(in M) if MIM' is a torsionfree R-module. 

Let n be a positive integer. We say that R satisfies Pn if, for every (n - 1)
presented torsionfree R-module M, there exists f E Hom(M,Rrank(M)-l) such 
that f(M) is n-presented. This is equivalent to saying that every nonzero (n -1)
presented torsionfree R-module M has a proper (n -1 )-presented pure submodule. 
Observe that if R is a coherent domain, then R satisfies Pn , lin. 

We say that R satisfies Qn if, for every (n-1)-presented torsionfree R-module 
M, there exists a projective submodule M' of Rrank(M)-l such that M + M' is a 
projective R-module. 

PROPOSITION 3.1 Let n,d be positive integers. Let R be a domain which satisfies 
Pn or Qn. Then the following conditions are equivalent: 
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a) Ris a weak (n,d)-domain; 

b) R is an (n, d)-domain. 

Proof The implication b) =} a) holds even without the hypothesis of Pn or Qn. 

Conversely, assume a), and let M be a nonzero (n - l)-presented torslonfree R
module. We have to show that pdR(M) :5 d - 1. We proceed by induction 
on p = rank(M). If p = l,then M is finitely generated over R and embeds 
canonically in the quotient field of R, whence M is isomorphic to an ideal of R 
and the assertion follows from a). We now proceed to the induction step, with 
p> 1. 

Suppose first that R satisfies Pn , so that M has a proper (n - I)-presented 
pure submodule M'. As rank(M') , rank(M/M' ) :5 rank(M) - 1 = p - I, it 
follows from the Induction assumption that pdR(M' ), pdR(M/M') :5 d-1, whence 
pdR(M) :5 d - 1 as desired. 

Suppose next that R satisfies Qn, so that Rrank(M)-1 has a projective sub
module M' such that M + M' is projective. Then pdR(M) :5 pdR(M n M'). Note 
that if M n M' i- 0, then M n M' satisfies the induction assumption. Thus, in all 
cases, pdR(M n M') :5 d - 1, whence pdR(M) :5 d - 1, completing the proof. 

COROLLARY 3.2 Let R be a coherent domain, and let n, d be positive integers. 
Then the following conditions are equivalent: 

a) R is a weak (n, d)-domain; 

b) R is an (n, d)- domain. 

Proof Since coherence implies the Pn-property, Proposition 3.1 applies. 

By reasoning as in the proof of Proposition 3.1, one can prove the following 
result (cf. also [5, Proposition 2]). 

PROPOSITION 3.3 Let n be a positive integer. Let R be a domain which satisfies 

Pn or Qn (for instance, let R be coherent). Then the following conditions are 
equivalent: 

a) R is n-coherent; 

b) R is strong n-coherent. 

Finally, we turn to questions involving flatness in the D + M construction. 
In view of a result [7, Theorem 7J for the classical D + M context in which T is 
a valua~ion domain, one might well conjecture that if T is a domain and k i- K, 
then T Jsnot To-flat. This assertion is included in Corollary 3.5 below. First, we 
show that Tis R-flat if and only if k = K. 
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THEOREM 3.4 Let T be a domain of the form K + M, where X is a field and M 
is a nonzero ideal ofT. Let R = D + M, where D is a subring of K. Then Tis 

R-flat if and only if qf(D) = 1(. 

Proof: If qf(D) = K, then T = 8-' R is R-flat, where 8 = D \ {O}. Conversely, 
assume that T is R-flat. Let To = k+M, where k = qf(D). Since T is R-flat, then 
T®RTO is To-flat. Now, T®R To = T®R8- J R S; 8-'T = T, and so T is To- flat. 
Our aim is to show that K = k. Assume, on the contrary, that K i- k. Choose 
a k-vector space basis {ej : i E L} of 1(; well-order L = {1, 2, ... }. Consider the 

surjective To-module homomorphism 
u: F(= TJL» -> T(= 1( + M), given by 
(t,), I-> L t,e,. Put E = ker(u). Then , 
E = {(a, + m,), E F: L(a, + mile, = O} = [since K n M = OJ , 
= {(mil, E F: Lm,e, = O} C;; M(L). , 

Since T S; F/E is To-flat, we have from [13, Theorem 3.55, page 88J that EI'F 

En FI for each ideal I of To. Consider I = Ta, where 0 i- a E M.We have 
EI C;; M(L) I = (M I)(L) = (MTa)(L) = (M a)(L) = (M)(L)a. On the other hand, 
FI = TJLl 1= (ToI)(L) = (ToTa)(Ll = (Ta)(Ll = (I)(Ll. Let m, = a and m2 = 

-(et/e2)m, = -(et/e2)a. Set f = (m"m2,O,O, ... ). Since m,e, +m2e2 = 0, we 
have fEE, and so fEE n Fl. However, f rt EI <;; M(Ll a , since m, = a rt M a. 

This contradiction shows that 1( = k, thus completing the proof. 

COROLLARY 3.5 Under the hypothesis of Theorem 3.4, put k = qf(D) and To = 

k + M. Then T is To-flat if and only if k = K. 

Proof This is the conclusion of Theorem 3.4 for the special case in which D is a 

field (for then D = k and To = R). 

We close by noting that [3, Theorem 5J and [14, Theorem 1.1J lead to a direct 
proof of the special case of Corollary 3.5 in which T is assumed to be a Priifer 

domain. 
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Kaplansky Ideal Transform: A Survey 

Marco Fontana Universita degli Studi "Roma 'fre", Italy 

o INTRODUCTION 

In 1956, M. Nagata [Nl] introduced the ideal transform TR(I) = Un(R : In) of an 
integral domain R with respect to an ideal I of R (cf. (3.3)). This transform proved 
very useful in his series of papers on the Fourteenth Problem of Hilbert (cf. [Nl], 
[N2), [N3], [N4) and [N5]). 

Hilbert's XIV,h Problem 
Let k be a field, Xl, X2, ... ,Xn algebraically independent elements over k and let L be 
a subfield ofk(xl,x2,""xn) containing k. Is the ring k[Xl,X2, ... ,xn]nL finitely 
generated over k? 

Hilbert's problem was motivated by the following problem of invariant theory: 

Hilbert's XIV'h Problem (strict form) 
Let k be afield, Xl,X2, ... ,Xn algebraically independent elements over k and let G be 
a subgroup ofGL(n,k). Is the ring of invariants, k[Xl,X2, ... ,Xn )G, sub,ing of the 
polynomial ring k[Xl,X2,'" ,xn ), finitely generated over k? 

Positive answers to the Hilbert's XIV,h problem were given, in particular cases, by 
D. Hilbert, E. Fischer, E. Noether and H. Weyl (cf. for instance [N5, Chapter 0)). 
The next significant contributions were made after Zariski generalized, in 1954, the 
original form of the problem in the following way: 

Zariskl's Problem [Z] 
Let k be a field and A a finitely generated and integrally closed k-algebra with quotient 
field K. Let L be a subfield of K containing k. Is AnL a finitely generated k-algebra? 

Zariski answered this question, In the affirmative, when tr.degkL ::; 2 and D. Rees 
in 1957 [Re] gave a counterexample when tr.degkL = 3. Finally, in 1959, Nagata [N2) 
gave a counterexample to Hilbert's XIV,h Problem, when tr.degkL = 4. 

One of the key steps for a negative solution to this type of problem, made by Nagata 
[Nl), lies in the following result that shows clearly the role of the ideal transform: 
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