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1 INTRODUCTION

All rings considered below are commutative with unit, typically (integral) domains,
and all modules and ring homomeorphisms are unital. As its title suggests, this
article contributes to a program which was begun in [7]. That article determined,
i. 8., when the clagsical D+ M construction (in which the ambient domain K + M
is a valuation domain) produces a coherent domain. In (8], to which the present
article may be considered a sequel, [8, Theorem 3.6] treated the more general
problem of characterizing n-coherence for the classical D + M construction, with
a complete answer being given in case D has quotient field K. {All relevant
definitions, including that of n-coherence, will be recalled three paragraphs hence.
For the moment, recall that 1-coherence is equivalent to coherence [8, page 270}.)
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It wag. noted in (3] that many of the themes and techniques in {7} carry over to
more general D -+ M contexts (in which X + M need not be a valuation domain).
In this spirit, our main result, Theorem 2.1, studies the transfer of n-coherence
between a general D+ M construction and the associated ring D, with best results
in case the ambient K + M is a Bézout domain. In Theorem 2.8, we return to the
classical D + M context, to study the possible transfer of the strong n-coherence
property between D + M and D. Moreover, one upshot of Proposition 3.3 is that
for coherent domains, strong n-coherence is equivalent to n-coherence.

There is also a markedly homological aspect to this article. For instance,
Theorem 3.4 establishes that for a (context more general than a) general D + M
construction, K + M is a flat module over D 4 M if and only if D has quotient
field K. (The proofs of many of our results, including Theorem 3.4, depend on
resolutions, specifically, finding that the kernels of certain homomorphisms on (D+
M){®) are canonically isomorphic to M™=1), While this observation is prominent
in the homological considerations in (7, proof of Theorem 3|, our first use of it
occurred in the first-named author’s proof of Proposition 4.5 (ii) in “On going-
down for simple overrings IT", Comm. Algebra 1 (1974), 439-458. This occurrence
predates by two years its oft-cited occurrence in {3, Theorem 3].) Theorem 3.4 may
be viewed as a compenion for the results in {7, Theorem 7 and Corollary 8] on
flatness of ideals in the classical D + M construction. _

In addition to pursuing resolution-theoretic themes from [7], the homological
aspect of this work owes much to the classification of non-Noetherian rings initiated
by Costa in [4]. Specifically, in addition to the n-coherence results described above,
Theorem 2.1 also studies the transfer of the weak (n, d)-domain property between
D+ M and D, Theorem 2.8 also studies the transfer of the (n, d)-domain property
between D 4+ M and D, and Corollary 3.2 establishes that for coherent domains,
the (n,d)- and the weak (n, d)-properties are equivalent.

This paragraph collects background from (8], [4] and {5) on the concepts
mentioned above. Following [4] and [8], if n is & nonnegative mteger, we say that
an R-module F is n-presented if there is an exact sequence

Fn—>Fn..1—’---—-—bFo—bE——iO

of R-modules in which each F; is finitely generated and free; and that \(E) =
Ar(E) = sup{n : Eis ann-presented R-module}. If n > 1, we say that R is n-
coherent, if each (n —1)-presented ideal of R is n-presented; and that R is strong n-
coherent if each n-presented R-module is (n+1)-presented. (For other inequivalent
usages of “n-coherent”, see [8, page 270}.) Given nonnegative integers n and d, we
say that a ring R is an (n,d)-ring if pdg(E) < d for each n-presented .R-module
E (as usual, pd denotes projective dimension); and that R is a weak (n, d)-ring
if pdp{I) £ d — 1 for each (n - 1)-presented ideal I of R. Since, in case R
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is a domain, every finitely generated torsionfree R-module can be embedded in a
finitely generated free R-module, & is an (n, d)-domain if and only if pdg(F) < d-1
for each (n — 1)-presented torsionfree R-module E. We note, for motivation, that
the (n,d)- and weak (n,d)-ring concepts are relevant to a sequel to [8] because,
i.a., Priifer domains are the (1, 1)-domains and the (possibly weak) (2, 1)-domains
of D + M type are tractable: cf. [4, Theorem 5.1], [5].

It is convenient to use “local” to refer to (not necessarily Noetherian) rings
with a unique maximal ideal. Also, unadorned tensor products @ are generally
taken over the implicit base ring, not necessarily Z. Finally, note that the riding
assumptions and notations for Section 2 are announced at its outset.

2 n~-COHERENCE AND THE (n,d)-PROPERTY

Throughout this section, we adopt the following riding assumptions and notations:
T is a domain of the form T = K + M, where K is a field and M is a nonzero
meximal ideal of T; D is a subring of K; the quotient field of D is k = ¢f(D) € K;
R=D+M;and Ty =k+ M.

THREOREM 2.1 Let T', Ty and R be as above. Then:
1) R is n-coherent = D i n-coherent;

R i3 a weak (n,d)-domain = D is a weak {n, d)-domain.
2) Suppose that T is o Bézout domain end [K : k] = co. Then:

a) Tb is a weak (2, 1)-domain but not coherent. In particular, Tp is n—coherent
Y > 2.

b) R is not coherent. Moreover, Yn > 2 and Vd > 1, we hove:

R is n-coherent <> D is n-coherent;

R is a weak (n,d)-domain <= D i3 a weak (n,d)-domain.
3) Suppose that T is e Bézout domain, with 1 # [K : k] < o0, and M is not a
principal ideal of T'. Then:

a) Ty 18 a weak (2, 1)-domain but not coherent. In particular, Ty is n-coherent
Yn > 2,

b) R is not coherent, Moreover, ¥ > 2 and Vd > 1, we have:

- R i3 n-coherent <=> D is n-coherent; :

R is a weak (n,d)-domain <= D is o weak (n,d)-domain, . -
4) Suppose that T is o Bézout domain, with 1 # [K : k] < oo, and thet.D is-a local
(n, 1)-domain, for some n > 2. Then R is a weak (n, 1) domain; in particular, R
8 m-coherent, ¥m > n. :
5) Suppose that T' s e Bézout domain. a,-nd,' k=K. Then:-

R i3 n-coherent <= D is n-cokerent; :
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.+ R is.a weak (n,d)-domain <=+ D is a weak (n,d)-domain.
6) Suppose that T is e local weak (n,1)-domain for somen > 1 and K = k. Then:
. R is n-coherent <= D is n-coherent;
R is o weak (n,d)-domain <= D is a weak (n,d)-domain.

Before proving Theorem 2.1, we establish the following six Lemmas.

LEMMA 2.2 Suppose that T is a Bézout domain. If I is o finitely generated ideal
of R, then I = Wa + Ma, for some a € IT and some D-submodule W of K.

Proof: Let I be a finitely generated ideal of R; without loss of generality, I # 0.
Since T is a Bézout domain and IT is a nonzero finitely generated ideal of T,
we have that IT = Taq, for some nonzero element ¢ € IT. As aM = aT'M =
ITM = IM C I, it follows that M C (1/a)]. Also, (1/a)I € (1/a)IT =T, and
so M C (1/a)] € T. Put W = (1/a)I [} K; evidently, W is a D -submodule of
K. Moreover, (1/a)I (M = M, since M C (1/a}I. Hence (1/a}] = (1/a)INT =
((1/e)INK) -+ ((1/a)I M) =W + M, and so I = Wa + Ma, s asserted.

LEMMA 2.3 Let A — B be an injective flat ring homomorphism and let Q be an
ideal of A such that QB = Q. Let E be an A-module such that E ®4 B is B-flat.
Then:

D A(E)2n<=> Ap(E® B) 2 n and Aayg(E® A/Q) = n.

2) pda(E) £ d & pdp(E ® B) < d and pdy/q(E® A/Q) < d.

Proof: 1) The assertion for the case n = 0 is a well-known result concerning finitely
generated modules: cf. {11, Theorem 5.1.1(3)], {9].

Now, using induction on n, suppose the assertion holds for some n > 0 and let
E be an (n+ 1)-presented A-module such that E®4 B is B-flat. We have an exact
sequence 0 — K — A™ — E — 0, where A4(K) > n and m is some nonnegative
integer. By hypothesis, B is a flat A-module; moreover, as in [5, proof of Lemma
1], Tori(E,A/Q) = 0. (Indeed, the exact sequence 0 —+ @ — A — A/Q — 0
yields the exact sequence 0 — Tory (E,A/Q) - E®Q — E — E/QE — 0. Since
we still have E@4 Q 2 (E®@.B)®pQ, E®.1 B (E®4B)® B, QC B
and E®4 B B-flat, it follows from [5, diagram (3)] that Tor}(E, A/Q) =0 as
claimed). So fensoring over A with B and A/ Q respectwely, we get the following
exact sequences :
(™) 0-—»B®K——>B®Am(‘3Bm)——>B®E——>0and

0—A/QVK — A/Q® A™ (X (A/Q)™) - A/QO E —0
of B- and A/@-modules, respectively. On the other hand, since A4(K) > n and
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K ®4 B is B-flat (using {*), since E ® 4 B is B-flat);- the induction assumption
applies to the A-module K; thus, Ap(B ® K) 2 n and Ag/p(4/Q @ K) 2 n.
Therefore, the exact sequences (*) and [8, Lemma 2.2(b)] allow us to conclude
that \g(B® E) > n+1and Ay o(A/Q@E)2n+1..

Conversely, let E be any A-module such that Ag(B@F) > n+1, Ay /Q(A/Q®
E) > n+1, and E®4 B is B-flat. For some m > 0, we have an exact sequence
0 — K — A™ =+ E — 0 of A-modules. The exact sequences (*}, in conjunction
with [8, Lemma 2.2(c)], yield that Ag(B ® K} > n, Ay/q(4/Q ® K) = n, and
K ®4 B is B flat (since £®4 B is B-flat). By the induction assumption, it follows
that A4(K) > n; and the exact sequence 0 — K — A™ — E — 0, together with
(2, Lemmea, 2.2(b)], shows that A4(E) 2 n+1.

2) We induct on d. The case d = 0 is well known: cf. [11, Theorem 5.1.1(1)},
[14]; and the case d = 1 follows from the proof of [5, Lemma 1]. Let d > 1 and
assume that 2) is true for any integer @’ < d. Let E be an A-module such that
E ®4 B is B-flat. Suppose that pds(E) < d. Since B is A-flat, we have that
pdp(F ®4 B) < d. Choose an exact sequence of A-modules 0 —» K — F —
E — 0 in which F is free. Hence, pd4(K) < d — 1. By the induction assumption,
pdajq(K @4 A/Q) < d — 1. Hence, by (*), pdasq(E @4 A/Q) < d.

Conversely, suppose that pdg(E @4 B) < d and pdjy/o(E @4 A/Q) < d.
As above, Tor{!(E,A/Q) = 0, so that pda(K ®4 A/Q) < d— 1, where K is
the kernel of an epimorphism from a free A-module to E. Reasoning as above,
K ®4 B is B-flat and pdg(K ®4 B) < d — 1. Then, by the induction assumptlon,
pda(K) <d -1, so that pda(F) < d, and this completes the proof.

LEMMA 2.4 Consider the pullback

A ——— B(=514)

I

AlQ — B/Q

where B = §~ 1A for some multzplzcatwe subset-S of A, A — B is an injective ﬂat
ring homomorphism, and Q is an ideal of both A and B. Then:

1) Assume that B is a local weak (n,1)-domain. Let I be any nonzero (n — 1)
presented ideal of A. Then there exists 0 # x € B ond an-ideal I' 2 Q of A such
that I @ A/Q = I' /@ as A/Q-modules and I = xI' 22 I'-as A-modules. .

2) Assume that B is o local week (n,1)-domain. Then:
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A/Q s n-coherent = A is n-coherent; =

A/Q is a weak (n,d)-domain = A is a weak (n, q;l) domain.
3) Assume that B is a veluation demain and Q, the mazimal ideol of B, is a finitely
generated ideal of B. Then:" :

A i3 n-coherent <= A/Q is n-coherent;

A is a weak (n,d)-domain <= A/Q is o weak (n,d)-domain.

m
Proof.- 1) Let [ =-Ze;A be any nonzero (n — 1)-presented ideal of A. We have

i=1
I®A/Q=TI/IQ. Since IB(2 I®,4 B) is an (n— 1)-presented B-module and B is
a local weak (n, 1)-domain, IB is a nonzero projective, hence principal idesl of B.
Hence there exists 0 # z € B such that IB = xB; then IQ = IQB = Q(IB) =
#BQ = 2Q. Also, by replacing z with a suitable ', we may assume without loss
of generality that I = «I', where I’ is an ideal of A. (In detail: Vi = 1,.
we ha.ve a; € I C IB = mB then 3b; € A and 33; € S such that a; = m(b;/si

Thus, for 2 ==/ H 8; € B, we have d; = z'b}, where by = ( H 8;)b; € A and
=1 . - F=1,5d

m
= Z Abj, Then I = 'I’; and IB = 2B = z'B since elements of S are units in

1

i=1
B.} Therefore, IQ = 2@ and I = zI' & I’ as A-modules, where I’ is an ideal of
A, so that we have: I ® A/Q=T1/IQ =zI'[aQ = I’/Q as A/Q-modules.

2) A/Q is n-coherent == 4 is n-coherent: Let I be any nonzero {(n — 1)-
presented ideal of A. Since I ®4 B ¢ I B is a nonzero projective, hence principal
ideal of B, we have that I ®4 B is B-flat. Then Lemma 2.3, 1) may be applied
to the given pullback and the A-module E = I, giving Ay/q(I ® A/Q) > n— 1.
Express I via @ and I’ as in 1). Observe that I ®4 B & IB = 2B = B which,
in particular, is an n-presented B-module. Now, I @ A/Q = I'/Q is an (n ~ 1)-
presented ideal of the n-coherent ring A/Q, 80 Aa/o(I®A/Q) = A 4/0{I'/Q) 2 n.
Thus from Lemma 2.3, 1), A4(I) = n; and so A is n-coherent.

A/Q is a weak (n,d)-domain => 4 is a weak (n,d)-domain: Argue as
above, using both Lemma 2.3, 1) and Lemma 2.3, 2).

3) A is n-coherent <=> A/Q is n-colierent: Since any valuation domain is a
local weak (n,1)}-domain ¥n > 1, then 4/Q is n-coherent implies that A is n-
coherent by 2). Conversely, let J = I/Q be any nonzero (n — 1)-presented ideal of
A/Q, where I is an ideal of A such that @ C I. Moreover, I'B is a finitely generated
ideal of B since ¢ is. Then I ®4 B2 IB = B & B for some z € B, since B is a
valuation domein and /B is a finitely generated ideal of B. In particular, I @4 B
is B-flat. We apply Lemma 2.3 to the above pullback and the A-module E = I.
We have I @4 B & B which, in particular, is an (n — 1)-presented B-module.
Moreover, I @ A/Q & I/1Q = I/Q(=: J). Indeed, since Q C I, then I € I \ Q;
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then b is aunit in B, whence @ = bQ C IQ C @ and Q= IQ. As J'is an (n—1)-
presented A/Q-module, we now see from Lemma, 2.3, 1) that A4(f) 2 n —1. But
A is assumed to be n-coherent, and so A4{I) > n. Thus from Lemma 2.3, 1),
Aaja(J) = AasoI ® A/Q) 2 n, and so A/Q is n-coherent.

A is a weak (n,d)-domain <= A/Q is a weak (n, d)-domain: Argue as
above, using both Lemma 2.3, 1) and Lemma 2.3, 2). The proof is complete,

LEMMA 2.5 Suppose that T'.is @ Bézout domain (but not a field). Then each
nonzero 1-presented ideal of Ty is isomorphic to Ty, Consequently, To is a weak
(2,1)-domain and n-coherent ¥n 2 2, in each of the following cases:

1) [K: &= '

2)1£[K: k] < 0o and M is not a principal ideal of T.

Proof We first claim that M is not a finitely generated ideal of 7h. Indeed, [3,
Lemma 1} shows that if [K : k] = co, then M is not a finitely generated ideal of
Ty. On the other hand, if 1 # [K : k] < co and M is not a principal ideal of T,
then M is not a finitely generated ideal of Tp. (Otherwise, M would be finitely
generated, hence principal, over T, since T is a Bézout domain.) Thus, the claim
has been established,

We shall prove that each nonzero 1-presented ideal I of Tp is prmectwe, in
fact principal, over Ty, Use Lemma 2.2 to write I = Wa -+ Ma, where W is a
k-submodule of X and a € IT. Since M is not a finitely generated ideal of Tp, we
have W £ 0. Now, I @ k= I ® To/M =2 I/IM = (Wa + Ma)/M(Wa+ Ma) =
(Wa + Ma)/Ma = Wa =2 W is a finite dimensional k-vector space, since I is a
finitely generated ideal of Tp. Thus, there exists a nonnegative integer p such that
W = kP, We claim that p= 1.

Indeed, if p > 2, let ey,...,e, be a k-vector space basis of W, and consider
the surjective Tp-module homomorphism

u:(k+ M?P — W+M(E I}, given by

(dl + 1, .. d +mp Z(d +ml)el

(To verify that u is surjective, it suffices to show that zm( ) contains each nonzero
element m € M. Consider a nonzero element o = Y §;e; € W, with each 6; € k.
A straightforward calculation shows that w(6ia~1m,...,8p0~'m) = m.} Since I
is a 1-presented Ty-module, ker(v) is a finitely generated To-module. On the other
hand, we have - : :

ker(u) = {(d1 +mi,...,dp + m,,) Z(d* + m;) ; = 0} = [sm(,e K n M= O &nd
S ' =1

{e,} is 1iheaf1y‘iedepeﬁdeht! ()Lvef:k] {(m;, :mp) Zm,e, = 0}'
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Since Me; =M for each i, it follows that ker(u) & MP~!, Asp—1 > 1 and
ker(u) is finitely generated over Tp, so is M, a contradiction. - This proves the
claim that p=1,and so W & k, Hence I = Wa+Ma 2 W+ M2 k+ M =T,
as a Tp-module. In fact, we have also proved that each nonzero (n — 1)-presented
ideal of Tp is isomorphic to Ty, hence infinitely presented, ¥Yn > 2, that is Tj is
n-coherent Vn > 2, to complete the proof.

LEMMA 2.6 Suppose that T' is a Bézout domain (but not o field) such that

14 [K : k] < co. Suppose also that D is a local (n, 1)-domain (but not a field) for
some n > 2. Then each nonzero (n — 1)-presented ideal of R is isomorphic to R.
Consequently, R is a weak (n,1)-domain and is m-coherent Ym > n.

Proof: Let I be any nonzero {n — 1)-presented ideal of R. Use Lemma 2.2 to write
I'=Wa+ Ma, where W is a D-submodule of K and e € IT. Now, M (= Mea) is
not a finitely generated ideal of R (by (3, Lemma 1] since D is not a field), and so

T T N
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Proof of Theorem 2.1: 1) Since R is faithfully flat over D, the first assertion follows
from [8, Theorem 2.12, page 274}; and the second assertion is the conclusion of

Lemma 2.7.
2) Assume that T is & Bézout domain and [K : k] =

a) To is a weak (2,1)- domaln and n-coherent ¥n > 2 by Lemma 2..5, 1). On t.he
other hand, T} is not coherent by [3, Theorem 3] since [K : k] =

b) R is not coherent by [3, Theorem 3]. Let n > 2 and d > 1.

R is n-coherent <= D is n-coherent: If R is n-coherent, then I} is n-
coherent by 1). Conversely, assume that D is n-coherent, and let I be any nonzero
(n — 1)-presented ideal of R. By Lemma 2.2, write' I = Wa + Ma, where W is
a D-submodule of K and e € IT. Since Ma = M is not a fnitely generated
ideal of R by [3, Lemma 1], we have W # 0. Since R is D-flat, Ax(W ®p
R) = AR(WR) = Ag(W(D + M)) = Ag(W + M) = Ag(I) > n - 1; therefore,
Ap(W) > n — 1, since R is a faithfully flat D-module. Moreover, since Tp is R-
flat, I @ Ty = ITh = kWa + Ma is an (n — 1)-presented ideal of Tp. Thus, by

l W # 0. Since R is D- flat, we have Ar(W @p R) = Ap(WR) = Ag(W(D+ M)) =
Ar(W + M) = Ag(I) = n ~ 1; therefore, Ap(W) > n — 1 since R is a faithfully
flat D-module. On the other hand, since W C K & k" where » = [K : k] < oo,

Lemma 2.5, 1), since n > 2, IT, is isomorphic to Tp. Also, by the proof of Lemma
2.5, 1), we can identify kW (2 W ®p k) = k. Since W s finitely generated over
D, there exists 0 #£ § € D such that W & §W C D. But D is n-coherent, so

i ; ~ . . . i
1; there ex1sts'0 ;é b€ D such that W & §W C D" since k = gf(D). So, there exists 3 Ap(W) = Ap(6W) > n (since W is an (n — 1)-presented ideal of D). Therefore,
! a nonnegative integer m such that W 2 D™ as a D-module (since D is a local . since R is D-flat, Ap(J) = Ar(W +M) = Ap(W ®@p R) > n, and so R is n-coherent.
(n,1)-domain). We claim that m = 1. 7
Rl ” 1ndeed if m > 2, let b i i R A e
Bl _ et e1,...,6y, be a basis for W as & D-module. Consider (n, d)-domain, then D is a weak {n,d)-domain by 1). Conversely, assume that D

i the R-module h
i ¢ frmodule homomorphism is a weak (n,d)-domain, and let J be any nonzero (n — 1)-presented ideal of . By

i {(D+M)™ - W+ M(2 I), given by

_ _(dl + M1y s_dm +mm) = Z(di +mi)“3i-
i=1
As in the proof of Lemma 2.5, v is surjective and ker(v) & M™-1, Hence, since
I is’an (n — 1)-presented R-module, ker(v) is an (n — 2)-presented R-module;
in particular, ker(v) = M™~1 is a finitely generated R-module. Thus, M is &
finitely generated ideal of R, a contradiction. This proves the claim that m = 1,
Therefore, W= D and I =Wa+ Ma =W+ M = D+ M = R as R-modules, to
complete the proof.

LEMMA 2.7 Let n,d be nonnegatwe mtegers If Risa weak (n,d)- domam, then
so i3 D. . . ‘

Proof Mimie the end of the proof of [5, Lemma 2], with Lemma. 2.3 replacing the
role of [5, Lemma 1]. :

Lemma 2.2, write J = Wa + Ma, where W is a D-submodule of K and e € JT'
Since Ma = M is not a finitely generated ideal of B by [3, Lemma 1], W # 0. Asin
the above argument, we have Ap(W) > n—1 and there exists 0 # 6 € D such that
W = 6W C D. Since D is a weak (n,d}-domain, pdp(W) = pdp(§W) < d - 1.
Therefore, pdp(J) = pdr(W + M) = pdr(W ®p R) < d—1 (the inequality holding
since R is a flat D-module). Thus, R is a weak (n, d)-domain.

3) Argue as for 2).
4) This is a restatement of Lemma 2.6.
B) Assume that 7" is a Bézout domain and K = k.

R i3 n-coherent <= D is n-coherent: By 1), it remains to show that if D
is n~coherent, then R is n-coherent. Without loss of generality, R # T, and so D is
not a field. Let I be a nonzero (n — 1)-presented ideal of R. Write I = Wa+ Ma,
where W is a D-submodule of K and e € IT. Since Ma & M is not a finitely
generated ideal of R by [3; Lemma 1], W:% 0. We have I ® T 2. IT (since

= (D\ {0})"!R is R-flat) = Ta 2 T is T-flat, and Lemma 2.3 may be applied .
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to-A= R; B =T, E=I,and the pullback - .

R e T

l |

D(= R/M) —— k(=T/M).

Now, IQT = Ta which is, in particular, an n-presented ideal of T Als?, I®R/M =
I/IM = (Wa+Ma)/(Wa+Ma)M = (Wa+ Ma)/Ma 2 Wa W isan (n—1)-
presented D-module by Lemma 2.3, 1) and so there exists 0 # 6 € D S.U.Ch t,ha'.t
§W C D. Then we have Ag;p{I ® R/M) = Ap(W) = Ap(6W) = n since D is
n-col-l-erent and W is an (n — 1)-presented ideal of D. Thus, by Lemma 2.3, 1),
Ar(I) = n, and so R is n-coherent.

R .is a weak (n,d)-domain <= D is a weak (n,d)-domain: Argue as
above, using both Lemma 2.3, 1) and Lemma 2.3, 2). '

6) Since K = k, we have that T = SR, with § = D\ {0}. The assertions
now follow by combining 1) and Lemma 2.4, 2).

THEOREM 2.8 Suppose that T is a valuation domain. Suppose also that one of
the following three conditions holds:

() [K : k] = oo; (b) 1< [K:k) <00 and M = M? (c) K = k.

Let n and d.be nonnegative integers such that n 2 2. Then:

1) R is an (n, d)-domain <= D is an (n, d)-domain.

2) R is strong n-colgerent <= D is strong n-coherent.

We need the following lemma before proving Theorem 2.8:

LEMMA 2.9 Suppose that T is an (no, 1)-do§rnaz'n for someng > 1 and thatk = K.
Let n and d be nonnegative integers such that n > no. Then:

1) R is an (n,d)-domain <= D is an (n, d)-domain,

2) R is atrong n-coherent 4=> D) is strong n-coherent,

Proof: 1) <=) Using a criterion mentioned in the introduction, it suffices to S%IOW
that if E is an (n— 1)-presented torsionfree R-module, then pdr(F) < d—1. Since
k=K, T is R-flat: Thus, E®gr T is an {n —1)-presented torsionfree T-modu'le
(since R is a domain, E embeds in some free R-module F, hence E®gT embeds in
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the free T-module F ®@g T7); hence, it is T-projective since T is an (ng, 1)-domain
and n > ng, Now E®g D is (n—1}-presented by Lemma 2.3, 1) and is a torsionfree
D-module as in the proof of [5, Lemma 2]. Since D is an (n, d)-domain,
pip(E ®p D) < d~ 1. It follows from Lemma 2.3, 2) that pdp(F) < d ~ 1.

=) Assume that R is an (n,d)-domain. Let E be an (n — 1)-presented
torsionfree D-module. Replacing [5, Lemma 1] by our Lemma 2.3, we may mimic
the end of the proof of {5, Lemma 2] to show that pdp(E) < d —1.

2) Argue as above, using Lemma 2.3, 1). This achieves the proof.
Proof of Theorem 2.8 If ¢) holds, Lemma 2.9 gives the conclusion. Next, sup-
pose that a) or b) hold. Then [4, Corollary 5.2] shows that R is a (2,1)-domain.
Replacing T' by Ty, Lemma 2.9 once more gives the result. '

3 FURTHER RESULTS

In [8, page 277], the question was raised whether strong n-coherence is equivalent
to n-coherence for n > 2. An affirmative answer is given in Proposition 3.3 for rings-
satisfying certain properties P,, @, (defined below). It is shown in Proposition 3.1
that the F,,, @y, conditions also imply the equivalence of the {n, d)-domain and the
weak (n,d)-domain conditions. Since eoherence implies F,, Proposition 3.1 may
be viewed as a companion of the result of {5, Propesition 2] that for a coherent
ring, one has equivalence of the (1, d)-ring and the weak (n,d)-ring conditions.
Finally, the section concludes, in the spirit of {7}, by characterizing when K + M
is (D 4 M)-flat. .

We next focus the setting for (3.1) - (3.3). Let R be a domain with quotient
field @, end M be a torsionfree R-module. As usual, rank(M) denotes the Q-
vector space dimension of @ ® g M. An R-submodule M’ of M is said to be pure
(in M) if M/M' is a torsionfree KE-module, '

Let n be a positive integer. We say that R satisfies P, if, for every (n — 1)-
presented torsionfree R-module M, there exists f € Hom(M, Rren#(M)~1} guch
that f(M) is n-presented. This is equivalent to saying that every nonzero (n—1)-
presented torsionfree R-module M has a proper (n—1)-presented pure submodule.
Observe that if R is a coherent domain, then R satisfies Py, ¥n. '

We say that R satisfies Q,, if, for every (n—1)-presented torsionfree R-module
M, there exists a projective submodule M’ of R™"4(M)=1 gych that M + M’ is 5
projective R-module.

PROPOSITION 3.1 Let n,d be positive integers. Let R be a domain which satisfies
Py or Qn. Then the following conditions are equivalent: - . Ce e
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* ~a) R is a weak (n,d)-domain;
b) R is an (n,d)-domain,

Proof. The implication b) => a) holds even without the hypothesis of P, or Q,,.
Conversely, assume @), and let M be a nonzero (n - 1)-presented torsionfree R-
module. We have to show that pdp(M) < d — 1. We proceed by induction
on p = rank(M). If p = 1, then M is finitely generated over R and embeds
canonically in the quotient field of R, whence M is isomorphic to an ideal of R
and the assertion follows from a). We now proceed to the induction step, with
p>1L

Suppose first that R satisfies Py, so that M has a proper {n — 1)-presented
pure submodule M'. As rank(M'), rank(M/M') < rank(M) ~ 1 = p — 1, it
follows from the induction assumption that pdr(M’), pdr(M/M') < d—1, whence
pdr(M) < d—1 as desired.

Suppose next that R satisfies Qn, so that R™#"%(M)—1 hag g projective sub-
module M’ such that M + M’ is projective, Then pdr(M) < pdp(M N M"). Note
that if M N M’ # 0, then M N M satisfles the induction assumption, Thus, in all
cases, de(M NM’') < d-1, whence pdp(M) < d -1, completing the proof.

COROLLARY 3.2 Let R be a coherent domain, and let n,d be positive integers,
Then the following conditions are equivalent;
a) R is e weak (n,d)-domain;
b) R is an (n, d)-domain,

Proof: Since coherence implies the P,-property, Proposition 3.1 applies.

By reasoning s in the proof of Proposition 3. 1, one can prove the following
result (cf. also [5, Proposition 2J). -

PROPOSITION 3.3 Let n be a positive integer. Let R be a domain which satisfies

P, or Qn (for instance, let R be coherent) Then the following conditions are
equivalent;

a})-R is n-coherent;
b) R is strong n-coherent.

Finally, we turn to questions involving flatness in the D + M construction,
In view of a result [7, Theorem 7] for the classical D + M context in which T is
a valuation domain, one might well conjecture that if T is a domain and & # K,
then T is not Tp-flat. This assertion is included in Corollary 3.5 below. First, we
show that T is R-flat if and only if k = K. .

D + M n-Coherent and an (n, d)-Domain 269
THEOREM 3.4 Let T be a domain of the form K.+ M, where K is o field and M
is a nonzero ideal of T'. Let R = D+ M, where D is a subring of K. Then T is

R-flat if and only if ¢f (D} = K.

Proof: If gf{D) = K, then T = S™'R is R-flat, where S = D \ {0}.. Conversely,
assume that T is R-flat. Let Ty = k4 M, where k = gf (D). Since T is R-flat, then
T ®@p Ty is To-flat. Now, T®pTo =T ®rS"IR 2 S =T, and so T is To- flat.
Our aim is to show that X = k. Assume, on the contrary, that K # k. Choose
a k-vector space basis {e; : 4 € L} of K; well-order L = {1,2,...}. Consider the
surjective Tp-module homomorphism

u: F(= T“”) s T(= K + M), given by

AN Zt e;. Put E = ker(u). Then

E = {(a; + my); € F: E(ai +my)e; =0} = [smce KnNnM=10

={{m:)1 € F: Zm;e; =0} € M'D),

Since T' = F/E is Ty~ flat we have from [13, Theorem 3.55, page 88] that E‘I =
E n FI for each ideal I of Ty. Consider I = T'a, where 0 # a € M. We have
EI C M = (MDD = (MTa)) = (Ma)™) = (M)a. On the other hand,
FI = T = (ToD)® = (ToTa)P) = (Ta)®) = (I)E), Let my = a and my =
—(e1/ex)my = —(er/ea)a. Set f = (m1,m3,0,0,...). Since mye; -+ mzez = 0, we
have f € E, and so f € ENFI. However, f ¢ EI C Mg, since m; = a ¢ Ma.
This contradiction shows that K = k, thus completing the proof.

COROLLARY 3.5 Under the hypothesis of Theorem 8.4, put k= qf(D) and Tp =
k+ M. Then T is Ty-flat if and only if k = K,

Proof. This is the conclusion of Theorem 3.4 for the spécia.l case in which D is a
field (for then D = k and Tp = R).

We close by noting that [3, Theorem 5] and [14, Theorem 1.1} lead to a direct
proof of the special case of Corollary 3.5 in which T is assumed to be a Priifer

domain.
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