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Abstract. Itis proved under mild assumptions that the class of Jaffard domains
and the class of S-domains are each stable under direct limit. New examples of Jaffard
domains obtained thereby include the factorial domain of Fujita, and Nagata rings
in arbitrarily many indeterminates over a Jaffard domain. New examples of S-domains
are the polynomial rings in arbitrarily many indeterminates over any domain. Also,
any locally finite-dimensional directed union of universally catenarian going-down
domains is itself a universally catenarian going-down domain. However, many related
types of rings (such as [stably] strong S-domains or [universally] catenarian domains)
are not preserved by direct limit. Numerous examples illustrate the need for various
hypotheses, the failure of various converses, etc., as well as the sharpness of bounds
that we give for the dimension and the valuative dimension of a direct limit.

1. Introduction

A well known and useful result [12, Proposition 22.6] states that any directed
union of Priifer domains is a Prifer domain. This was generalized to direct limits of
Priifer domains in [8]. One purpose of this paper is to develop similar stability results
for other related classes of (commutative integral) domains. A natural class to consider
is that of the (not necessarily Noetherian) universally catenarian domains introduced
in [3], since each locally finite-dimensional Priifer domain is universally catenarian
(cf. [3, Theorem 6.2]). Unfortunately, we show in Example 2.15 that universal
catenarity is not stable under direct limit. However, a satisfactory analogue of the
motivating result is given in Corollary 2.10: any locally finite-dimensional directed
union of universally catenarian going-down domains is itself a universally catenarian
going-down domain. (Going-down domains were introduced in [6]; each Priifer
domain is a going-down domain.)

Corollary 2.10 follows ultimately from our first main result, Theorem 2.3. This
asserts that, under mild restrictions, direct limit preserves Jaffard domains. (Recall
from [1] that a domain A of finite (Krull) dimension »n is a Jaffard domain if its
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valuative dimension, dim,(A), is also #; each finite-dimensional universally catenarian
domain is a Jaffard domain.) New examples of Jaffard domains obtained as
applications of Theorem 2.3 include the factorial domain constructed by Fujita [11]
(see Corollary 2.4) and the Nagata ring in arbitrarily many indeterminates over a
Jaffard domain (Corollary 2.5). We assume familiarity with Nagata rings, as in [12,
section 33].

Theorem 2.3 is preceded by two lemmas giving inequalities describing how
dimension and valuative dimension behave under direct limit. Equality holds for
certain directed unions (Corollary 2.8). However, examples in section 3, especially
Example 3.5, show emphatically that the inequality results are best-possible. In fact,
section 3 is devoted to examples that illuminate the results in section 2 by showing
that certain hypotheses cannot be deleted, certain converses fail, etc. Much of section
3 depends on “gluing” ideas, asin [9, Theorem 1.47, with which we assume familiarity.

It was shown in [15, Theorem 3.5], essentially via a result of Nagata [16], that
any Priifer domain is a (stably) strong S-domain. Moreover, each finite-dimensional
strong S-domain is a Jaffard domain. It now seems natural to ask whether direct
limit preserves (stably) strong S-domains. Unfortunately, Example 2.15 is a
counterexample to this too. However, there is a positive result: Theorem 2.12
establishes that, with mild restrictions, S-domains are stable under direct limit. One
consequence (Corollary 2.13) is that polynomuial rings in arbitrarily many
indeterminates over any domain must be S-domains.

What are the appropriate transition maps for our directed systems of rings? A
clue comes via Noetherian rings. (A Noetherian domain is perhaps the most important
example of an S-domain and, in the finite-dimensional case, of a Jaffard domain.)
It is known [2a, Exercise 12 (e), page 44] that any directed system of Noetherian
rings with flat transition maps has a coherent direct limit. Since flat ring-
homomorphisms satisfy going-down (cf. [14, Exercise 37, page 44]), we often
consider transition maps satisfying going-down. Occasionally, we consider ones with
going-up. Both are tractable because direct limit preserves going-down [8] and
going-up [7].

All rings considered are commutative, with unit; and all ring-homomorphisms
are unital. Suitable background on direct limits is [13, pages 128-130]. Any
nonreferenced material is standard, as in [12], [14].

2. Stability theorems for Jaffard domains and S-domains

To avoid unnecessary repetition, let us fix notation for much of sections 2 and
3. Data will consist of a directed system (4, f;) of rings indexed by a directed set
(I, <); and its direct limit, 4 =li_rynAP together with the canonical maps f;: 4, 4.
Put d;=dim(4;) and d=dim (A). The case in which A4 is a directed union of 4;’s
corresponds to the f;’s being inclusion maps; thus, directed unions can be treated
by assuming all f;, to be monomorphisms. Finally, notice that if 4; is a domain for
each je I, then 4 is also a domain.
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Before giving a stability result for Jaffard domains, we give two lemmas describing
how dimension and valuative dimension behave under direct limit. The statement of
Lemma 2.1 1s part of [2b, Exercice 11, page VIII. 82]. We include a proof for the
sake of completeness.

LEMMA 2.1.  With the above notation, d<sup(d;).

Proof. Pick a chain Pyc P, < - < P,of e+ 1 distinct prime ideals in 4. (Take
e=d if d<oxc.) Choose y;e P\P;_, for i=1, - -+, e. Since [ is directed, there exist
jeland x;€ 4; such that f(x;)=y, (for i=1, - - -, ¢). Then, thanks to the existence

of the x;s, { /; '(P):0<i<e} is a chain of e+ 1 distinct primes in 4;, whence e<d,,
completing the proof.

It is well known that Spec(A4), with the Zariski topology, maps homeo-
morphically onto liér_nSpec(A). (This follows, for instance, from [13, Proposition
6.1.2, page 128].) The induced order-isomorphism readily leads to another proof
of Lemma 2.1.

We next give the analogue of Lemma 2.1 for valuative dimension.

LEMMA 2.2, Suppose that A; is a domain for each jel. Then dim(A4)<
sup(dim,(4;)).

Proof. Essentially by definition, dim(A)=sup({dim(B): B an overring of A4}).
Now. if B is an overring of A4, it follows from [8, Lemma 2.6] that lei_r>nBj, where
B, is a suitable overring of A;. Then, using Lemma 2.1, we have

dim(B) <sup(dim(B))) < sup(dim,(4,))
completing the proof.

THEOREM 2.3.  Suppose there exists j € I such that A, is a Jaffard domain whenever
Jj<kin 1. If d=sup(d,) < oo, then A is a Jaffard domain.

Proof. Let J={kel:j<k}. Since J is confinal in J, 4 is canonically the direct
limit of the directed system (4,, f,,) indexed by J. Moreover, the assumptions are
preserved if we replace I with J. Indeed

d<supl{d,: keJ}<sup{d;:iel}=d

where the first inequality follows from Lemma 2.1 and the second is trivial. Thus,
without loss of generality, 4, is a Jaffard domain for each ke /.

Now, using Lemma 2.2 and the fact that dim,(4,)=d,(since 4, is Jaffard), we
have

dim(A4) <dim (A4} <sup(dim,(4,)) = sup(d,) =d=dim(A) .

Thus, dim,(4)=dim(4) < co, completing the proof.
The assumption that d<oo was made in Theorem 2.3 in order to avoid
non-Jaffard (indeed, infinite-dimensional) examples such as R[X,, X,, ---]=
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liglR[Xl, -+, X,], where R is any Noetherian ring. Similar assumptions in
subsequent results are made for similar reasons.

The next seven results are applications of Theorem 2.3. The first two are about
specific rings; the remaining five are more general. We begin these applications by
considering a three-dimensional non-Noetherian UFD constructed by Fujita [117.
(Some errors have been found in [11] but, according to a private communication
from Fujita, the main conclusions are correct.) Since it is an open problem to compute
the valuative dimension of a UFD, the next result is of some interest. It answers
affirmatively a conjecture of Alain Bouvier.

COROLLARY 2.4. The example of Fujita is a Jaffard domain.

Proof. Let us recall the construction from [11]. Let Y, Y,, Y5, Xy, X3, -+~
be denumerably many indeterminates over a field k. Put A,=k[[Y,, ¥,, Y3]1]; and
let 4, be the Nagata ring 4,(X,). Next, put

Ay =AY A, pivixs - Where fi=Y:X,+7Y,; and 4;=4,(X,).
For each positive integer j, put

Ay =A(X;. ), with maximal ideal (Y, f;,,, ¥3), where
Jiv1=Y3X; 0+ f;/Y, and
A2j+2:A2j+1[fj+1//Y1](Y1,fj+1,r’y‘,Y3)'

It was shown in [11] that A=UA, is a three-dimensional quasilocal UFD. Notice
next that for each j, 4; is a three-dimensional regular local ring. In particular, 4; is
Noctherian and, hence, a Jaffard domain. Viewing the directed union U4 as a direct
limit, we see via Theorem 2.3 that A4 is a Jaffard domain, completing the proof.

[t was shown in [1, Proposition 1.21 and Corollary 1.23 (a)] that if Xy, - - -, X,
are finitely many indeterminates over a Jaffard domain A, then the Nagata ring
A(X,, -+, X,) is also a Jaffard domain, having the same dimension as 4. We next

extend this result to any number of indeterminates.

COROLLARY 2.5. Let {X,} be a set of (arbitrarily many) algebraically independent
indeterminates over a d-dimensional Jaffard domain A. Let B be the Nagata ring
A({X}). Then B is a d-dimensional Jaffard domain.

Proof. Tt is easy to see that B is a directed union of the Nagata rings of the
form A(X;. -, X,;). According to the result recalled above from [1], each
A(X;, ", X;) is a d-dimensional Jaffard domain. By Theorem 2.3, it therefore
suffices to show that dim(B)=d. By Lemma 2.1, dim(B) <d. For the reverse inclusion,
one need only remark via [12, Proposition 33.1 (4)] that if 0#£P,c--- =P, is a
chain of d+ 1 distinct primes in 4, then {P,A({X;}):0<k<d} is a chain of distinct
nonzero primes in B. The proof is complete.

We turn now to more general considerations. The next result is stated for
motivational purposes. It is an immediate consequence of the observations that direct
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limits preserve integrality; and that if D = £ is an integral extension of domains, then
D is a Jaffard domain if and only if E is a Jaffard domain [1, Proposition 1.1].

PROPOSITION 2.6. Suppose that A; is a domain for each jel and that f; is an
integral monomorphism whenever j<k in I Then the following conditions are
equivalent:

(1) A, is a Jaffard domain for some je I,

(2) There exists je I such that A, is a Jaffard domain whenever j<k in [,

(3) A;is a Jaffard domain for all jel,

(4) A is a Jaffard domain.

Since integral maps satisfy going-up, the next result generalizes the implication
(2) = (4) in Proposition 2.6. Note that it is a corollary of Theorem 2.3, not of
Proposition 2.6.

CoROLLARY 2.7.  Suppose that A; is a domain for each jel and that f; is a
monomorphism  satisfving going-up whenever j<k in 1. Suppose also that
e=sup(d;)< co. Then d=e. (Thus, if there exists je I such that A, is a Jaffard domain
whenever j<k in I, then A is a Jaffard domain.)

Proof. We have d<e by Lemma 2.1. For the reverse inequality, it suffices to
prove that dim(A;) <d for each je . Since monomorphisms satisfying going-up must
also satisfy lying-over [ 14, Theorem 42], it suffices to show that (the monomorphism
A;— A) f; satisfies going-up. This, in turn, holds since direct limits preserve going-up
[7, Theorem 2.1 (b)]. Finally, the parenthetical assertion now follows from Theorem
2.3. The proof is complete.

Many important examples arise as directed unions of valuation domains. We
next analyze the dimensions of such, generalizing the context as well. Among the
examples in section 3 that illuminate the results of this section, we note that Examples
3.5 and 3.6 show the need for the “f,(M;)c M,” hypothesis in Corollary 2.8.
(Corollary 2.8 may be viewed as the “going-down” analogue of Corollary 2.7.)

COROLLARY 2.8. Suppose that (A;, M}) is a quasilocal domain for each je I and
that [ is a local monomorphism satisfying going-down whenever j<k in I. ("“Local”
here means that f(M;)c M,.) Then d=sup(d)). (Hence if d<oo and each A; is a
Juffard domain, A is also a Jaffard domain.)

Proof. A is a quasilocal domain whose maximal ideal M satisfies f; '(M)=M;
for each jel (cf. [13, Proposition 6.1.4, page 129]). Moreover, f;: 4;— A satisfies
going-down since direct limits preserve going-down [8, Theorem 2.1]. Hence d,<d
for each je 1. It follows that sup(d;) <d. Since Lemma 2.1 gives the reverse inequality.,
we have the asserted equality. Finally, Theorem 2.3 now gives the parenthetical
assertion, to complete the proof.

The next two applications concern some classes of rings that were of special
interest in [ 1] and [3].
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CoROLLARY 2.9.  Suppose, for each je I, that A; is a locally Jaffard domain and
that, for each Pe Spec(A), one has ht(P)zsup(ht(fj"(P)))< oo. Then A is a locally
Jaffard domain.

Proof. Put P;=f;'(P). By [13, Proposition 6.1.6 (ii), page 130], A4, is
canonically isomorphic to liE)n(Aj)Pj, which is a direct limit of Jaffard domains. By
Theorem 2.3, A, is a Jaffard domain, compieting the proof.

COROLLARY 2.10. Let A=UA; be a directed union of universally catenarian
going-down domains A;. (So f is an inclusion map whenever j<k in I.) Suppose, for
each Pe Spec(A), that sup(ht(f; "(P))<oc. Then A is also a universally catenarian
going-down domain. (Hence, if dim(A) < oo, then A is a Jaffard domain.)

Proof. The hypothesis on P, together with Lemma 2.1 and the isomorphism
noted in the proof of Corollary 2.9, yields that A4 is locally finite-dimensional. Also,
A is a going-down domain since direct limits preserve going-down domains [8,
Corollary 2.7]. Thus, essentially by [3, Theorem 6.27, it suffices to show that A’ is
a Prifer domain. (As usual, D’ denotes the integral closure of a domain D.) Now,
A’ is a Priifer domain, essentially by [3, Theorem 6.2]. Hence, the integral closure
of 4, in the quotient field of 4 (call this B)) is also a Priifer domain (cf. [12, Theorem
22.3}). However, it is clear that 4’ is the directed union UB; of Priifer domains.
Hence, by [12, Proposition 22.6], 4" is a Prifer domain, as required. Finally, the
parenthetical assertion follows from [3, Corollary 3.3], to complete the proof.

What about stability results for related classes of Jaffard domains? Here is one
such result. Let 4 = UA; be a directed union of locally finite-dimensional going-down
strong S-domains A; such that sup(ht(f; '(P)))< <o for each Pe Spec(A4); then A4 is
also a locally finite-dimensional going-down strong S-domain. (In view of [4, Theorem
17, this result is just a translation of Corollary 2.10.) This raises the question whether
direct limits preserve strong S-domains. As we shall see in Examples 2.15 and 2.16,
the answer is negative; these examples show that several related questions also have
negative answers. So, it is of some interest to give a positive stability result for
S-domains. We do so in Theorem 2.12 and then give two applications. First, we give
the following useful resuit.

Lemma 211, A chain Py - - c P, of m+1 distinct primes in A is saturated
if the chain {f;'(P;):0<i<m} consists of m+1 distinct primes and is saturated in
A; for each jel.

Proof. Without loss of generality, m=1. Put P=P,, Q=P,, P;= f; (P), and
Q;=f; Q). (No confusion with the notation P, should arise: just arrange 0¢/1.) If
the result fails, there exists We Spec(A4) lying strictly between P and ; put
W= f; "W). By the “saturated” hypothesis, for each j, W, is either P; or Q;. Let
J={jel:W;=P}and K={jel: W;=Q;}. Now, if j<kin I, we have f o f;, = f;. and
50 fle fi t=/f; " Ttfollows thatif jeJ (resp., je K) and j<k in [, then ke J (resp.,
ke K). Since [ is directed and J is disjoint from K, either J or K coincides with /.
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Without loss of generality, J=1I. Then, by [13, Proposition 6.1.2 (ii), page 128],
P=limP;=lim W;= W, the desired contradiction, to complete the proof.
- —

THEOREM 2.12.  Suppose that A; is an S-domain for each je I and that f is a
monomorphism satisfving going-down whenever j<k in I. Then A is an S-domain.

Proof. Let P be a height | prime ideal of 4. Put P;= f; '(P) for each jel.
Since f; satisfies going-down by [8, Remark 2.2 (a)], we have ht(P)<1. Since
P=lim P;+#0, there exists e/ such that ht(P,) =1 whenever i<k in /. Now, consider

—

A[X]=1limA4,[ X] where k ranges over the indexes satisfying i<k in /. Since 4, is
-

an S-domain, ht(P,[X])=1; that is, 0c P,[ X ] is saturated for each k. By Lemma
2.11, it follows that 0 < P{ X ] is saturated in A[X]. In other words, ht(P[X])=1, to
complete the proof.

Just as with the applications of the eariler theorem, we shall discuss the specific
before the general. Corollary 2.13 (a) generalizes the fact thatif { X} are indeterminates
over a UFD 4, then A[{X;}] is (a UFD and hence) an S-domain. For Corollary
2.13 (b), note that by definition, A[[{X,.}]]zli_r)nA[[Xil, X 11

COROLLARY 2.13.  Let {X;} be anonempty set of (arbitrarily many) indeterminates
over a domain A.Then:

(a) A[{X;}] is an S-domain,
(b) If A is Noetherian, then A[[{X;}1] is a coherent S-domain.

Proof. (a) A[{X;}] is a directed union of the domains of the form
A[X;,, -+, x; ], n>1. Each of the latter domains is an S-domain, by [ 10, Proposition
2.1]. Each transition map in this directed system is flat (indeed, induces a free module),
hence satisfies going-down. The assertion now follows from Theorem 2.12.

(b) View B=A[[{X}]1] as a direct limit of the (Noetherian) domains
A[[X;,. - - -, X, 1]. Each transition map is flat, hence satisfies going-down. (The point
is that if D is a Noetherian ring, then D[[X]=IID is D-flat: cf. [5, Theorem 2.1].)
The coherence assertion follows via [2a, Exercise 12 (e), page 44]; the S-domain
assertion, via Theorem 2.12. The proof is complete.

The next application is in the spirit of Proposition 2.6. Note that its implication
(3) = (4) follows directly from Theorem 2.12.

CoROLLARY 2.14.  Suppose that A; is a domain for each jeI and that fy is an
integral monomorphism satisfying going-down whenever j<k in I. Then the following
conditions are equivalent:

(1) A;is an S-domain for some je I,

(2) There exists je I such that A, is an S-domain whenever j<k in I,
(3) A;is an S-domain for all je I,

(4) A is an S-doamin.
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Proof. (4)=(3) by [15, proof of Theorem 4.6] since f;: 4,— A is an integral
monomorphism for each je [; (3) = (2) = (1) trivially; and (1) = (4) by [ 15, Theorem
4.9] since f; also satisfies going-down (cf. [8, Remark 2.2 (a)]). The proof is complete.

We close this section with two examples which, in contrast to Theorems 2.3 and
2.12, show that several relevant properties are not stable under direct limit.

ExampLE 2.15. Direct limits do not preserve any of the following four
properties: stably strong S-domain, strong S-domain, catenarity, universal catenarity.
Indeed, there is a directed union 4 = UA; of denumerably many universally catenarian
(hence catenarian and [stably] strong S-) domains A4; such that the inclusion map
A;— A, satisfies going-down whenever j<k, although A is neither catenarian nor a
[stably] strong S-domain. (A4 fortiori, A is not universally catenarian; by Theorem
2.12, any such A4 is an S-domain.)

In detail, put 4;=Q[X,, - -, X;], with A:li_r)nAsz[Xl,Xz, <--]. As in the

proof of Corollary 2.13 (a), each transition map satisfies going-down. Moreover,
each A; is universally catenarian (since Q, being trivially Cohen-Macaulay, is
universally catenarian). However, [3, Proposition 2.1] yields that A4 is not a [stably]
strong S-domain. Since 4=B[X,] where B=Q[X,, X5, ---], and B=~A is not a
strong S-domain, it follows from [3, Lemma 2.3] that 4 is not catenarian. The
verification is complete.

ExaMPLE 2.16. Let d be a positive integer. Then there exist a domain 4 and
denumerably many indeterminates X, X,, - - - over 4 such that:

(a) For any subset {X; } of {X;}, the ring A({X; }) is a d-dimensional strong
S-domain;

(by A[X,,---,X,]is a strong S-domain for each nonnegative integer »; and

() A[{X;}] is (an S-domain but) not a strong S-domain.

In detail, take 4 to be a d-dimensional denumerable valuation domain, say

A=0+ Y1Q[Y1](y1)+ o+ Y, 0(Y, o, Yd—l)[Yd](Yd) :
Indeed, since A4 is a Jaffard domain, the first assertion in (a) follows from Corollary

2.5; the second, since each A({ X, }) is a valuation domain (cf. [12, Proposition 33.1
and Theorem 33.4]). Next, (b) is a consequence of [10, Proposition 2.1]. Finally, as
for (c), [3, Proposition 2.1] yields that B= A[{X;}] is not a strong S-domain, while
Corollary 2.13 (a) assures that B is an S-domain. The verification is complete.

3. Additional examples

The examples in this section show that various bounds in section 2 are
best-possible, various hypotheses in section 2 cannot be deleted, etc. Following each
name of an example in this section, we list between braces { - -} the relevant results
from section 2. The examples are increasing unions A= UA;, that is, directed unions
of denumerably many rings A,c 4, c4,c---.
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EXaMPLE 3.1 {Lemma 2.1, Lemma 22}, Letebea nonnegative integer. Then
there exists an increasing union 4= UA; of Noetherian domains A; such that 4 is
Noetherian, dim(Aj)zdim,,(Aj) =j+e for each j>0, and dim(4)=dim(A4)=e.

In detail, let X, - -+ x,, Yi, Y, -+ be infinitely many indeterminates over a
field k. Let Ag=k[X,, - --, X.]; this means A, =k if e=0. For j> 1, put
Ajzk(yh Y2~ T, Yj(j—l)/z)[Xh T, Xm Yj(j—l)/2+la T, Yj(j+1)/2] .

Then A=UA4; is an increasing union since
Ajck(Yl, T, Yj(j+1)/2)[X1’ LX)
kY, e, Yyl Xy, -, X YiGenyzet = o Y(j+1)(j+2)/2]:Aj+1 .

By the Hilbert Basis Theorem, each 4 ; 1s Noetherian; its (valuative) dimension is
j(j+l)/2~j(/'—l)/2+e=j+e. (Cf. [12, Theorem 30.5 and Corollary 30.10].) The
remaining assertions follow easily since A =k(Y,, Yy, )Xy, - X,

Note that the cse d=0, e=1 of Example 3.2 is handled with a different example
in [2b, Exercise 11,page VIII. 82].

EXAMPLE 3.2 {Lemma 2.1, Lemma 22}, LetO<d<e be integers. Then there
exists an increasing union A= UA; of Noetherian domains A4; such that A4 is
Noetherian, dim(Aj)zdimv(Aj)ze for each j>0, and dim(4)=dim(A4)=d.

In detail, consider indeterminates Yio o YsXoy, o, Xoe—ay "7} X, oo,
Xje—ap =+~ over a field k. Put

A0=k[X013 T, XO(e—d)7 Yl’ T, Yd] ,
Ay =k(Xoy, -, XO(e~d))[X11s Y, Xue—d)s Yo, -, Y]

and, for any j> 1,

Aj=k(Xoq, - -+, XO(e—d)’ s XGen X(rl)(e—d))[lea s Xiemap Yoo Y.

It is clear that A=UA; is an increasing union of Noetherian domains, and that
dim(4 ) =dim,(4 J=(e—d)+d=e. The assertions about 4 follow since one may
verify that A=k({X;:0<j, I<i<e—d[y, - -, v,].

EXAMPLE 3.3 {Theorem 2.3}, Let d be a positive integer. Then there exists an
increasing union 4 = UA; of d-dimensional non-Jaffard domains A; such that 4 is a
d-dimensional Jaffard domain.

In detail, let X, X,, --- be denumerably many indeterminates over a field k,
and let (V, M)=k({X})+ M be a d-dimensional valuation domain. Put Aog=k+M

and, for each j>1, put

Aj=k(Xy, - X))+ M= VX axph(Xy, - - -, X).
Now, Spec(A;)= Spec(V) as sets (cf. [9, Theorem 1.4]), whence dim(4)) =dim(V)=d.
Moreover 4 is just the d-dimensional valuation domain ¥ and so A4 is a Jaffard

3
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domain. However, applying [1, Proposition 2.5] to the above pullback description
of A; yields that 4; is not a Jaffard domain, since k({X}}) is not algebraic over
k(X,, -+ -, X)). (In fact, the cited result yields that dim,(4;)=co.) The verification is
complete.

Before giving the final two examples, we need the following technical facts.

LeEmMMA 3.4.  Let V be a valuation domain with quotient field K; X={X,, - - -, X,,}
a finite set of indeterminates over K; Pe Spec(V); k=Vp/P; and W a nontrivial
valuation ring of k(X) containing k. Let V* be the "‘composite’” valuation ring

VE=Vp(X) <)V -

Then:

(@) VEnK=V,.

(b) The conductor of V* in Vp(X) is J=PVp(X). If Qe Spec(V'*) contains /,
then QN Ve=0n V=P

Proof. (a) 1t is well known that V* is a valuation domain (cf. [17, (11.4)]).
Consider the commutative diagram

Ve o, Vp(X)
i

Ve Vp(X)

Lo

k C—a W 5 k(X)

By the universal mapping property of pullback, there is a ring-homomorphism
Ve— V*, necessarily an injection, making the induced diagram commute. Hence
Voo V* K. For the reverse inclusion, notice that V*n Kc Vi{X)n K=Vp, 1o
complete the proof of (a).

(b) The first assertion is immediate since W # k(X). Next, since P is a common
ideal of V and V,, it suffices to show that Q n ¥, contains (and hence equals) P.
For this, note that

P=PVpo(X)nVpcQOnVp
thus completing the proof.

ExXAMPLE 3.5 {Lemma 2.1, Corollary 2.8; cf. also Examples 3.2 and 3.6}. Let
0 <d<ebeintegers. Then there exists an increasing union 4 = U4 of valuation (hence
quasilocal) domains A; such that dim(4;)=e for each j>0 and dim(4)=d.

In detail, let ¥ be an e-dimensional valuation domain with quotient field K. Let
P be the height d prime ideal of V; put ¥* =V, and k= Vp/P. Consider indeterminates
X1y Xie—a over K and k. Let K, (resp., k,) be the field resulting by adjoining
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these indeterminates to K (resp., k). Next, take W, as any (e—d)-dimensional
valuation ring of k, containing k. Let V1 be the “composite” valuation ring

Vi=V*X, s Xiema) X, Wy

It is clear, via [9, Theorem 1.4] and Lemma 3.4, that dim(V,) =dim(V*({ X, ;})) +
dim(W)=d+ (e —d)=e; that Vin K=V*; and that each prime of V, with height
at least d lies over P,

We iterate the construction. Here is the next step. Let P, be the height d prime
of Vi: K, (resp., k,) result from K, (resp., k,) by adjoining indeterminates
Yot Xye—gyp W, be an (e— d)-dimensional valuation ring of k, containing k;
and V, be the “composite” valuation ring

V2=(V1)P,(X21,~ T, X2(e—d)) X, Wi

Continuing in this way, we obtain e-dimensional valuation domains V,cV,c - - -
Put 4=UV;. We claim that dim(A4)=d.

Let We Spec(A). Put W,=WnV, for each j>1. Let P; denote the height ¢
prime of ¥;. For each j, either WicP;or P,cW, If P;=W; for some j, we have
Wi..nV;=P; by Lemma 3.4 (b): as WiiinVi=Wn V=W, it follows that
P;=W, Hence, W;< P; for all j; that is, Q=UP; contains W. Thus, to prove the
claim, it suffices to show that Qe Spec(A) and ht ,(Q)=d.

It is clear from the pullback construction of the V/’s that P, P, ---. Hence
Qe Spec(A). Moreover, B= U(V)p, is an increasing union to which Corollary 2.8
applies. (The required going-down property holds for the transition maps because
any valuation domain is a going-down domain.) Hence dim(B) = sup(dim(( Var)) =d.
But (B,Q) is quasilocal by [13, Proposition 6.1.4, page 129], whence
htg(Q)=dim(B)=d. Since 4 is a Priifer (indeed, valuation) domain by [12, Proposition
22.6], the inclusion map A- B satisfies going-down, whence ht (Q) < htg(Q)=d. But
it is clear by applying [9, Theorem 1.4] to the construction of the Vs that the
saturated chain of primes leading down from P;in V; gives a compatible family in
the sense of [13, Proposition 6.1.2 (i), page 128]. The upshot in the direct limit is a
chain of d+ I distinct primes inside Q; thatis, /i1 ,(Q) > d, proving the claim. Therefore,
by defining A;=V;_, for each j>0, the assertion follows.

EXAMPLE 3.6 {Lemma 2.1, Corollary 2.8; cf. also Examples 3.2 and 3.5}, Let
d be a positive integer. Then there exists an increasing union 4 = UA; of valuation
(hence quasilocal) domains A; such that dim(4;)= oo for each ;>0 and dim(A4)=d.

The details are somewhat like those of Example 3.5, and so we only sketch
them. Let ¥ be an infinite-dimensional valuation domain, with quotient field K, such
that Spec(V), as a partially ordered set, looks like

OCQICQZC“'CdeQc~--CchPj_lc-“cPch.

(The notation means, ia., that hr,(Q)=d: Q has no immediate successor; and P; has
“coheight” j, in the sense that dim(V/P))=j.) Put Vi= Vp, and k;= Vj/Pj for each
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j=1. Let W, be a one-dimensional valuation ring of k,(X,) containing k,. Let
(V,, M,) be the “‘composite” valuation ring

Vi= Vl(Xl) X Wi -

Reasoning as in the preceding example, we see that dim(V,)=o0; V, n K=V"; the

conductor of ¥, in V(X,)is P, ;=P V!(X,); and M| and P, ; each lie over P,.
Here 1s the next step. Let W, be a two-dimensional valuation domain of

k,(X,, X5, Y,) containing k,(X,). Let (VV,, M,) be the “composite” valuation ring

V,= VZ(XI’ X, Y ) x kz(X1,Xz,Y1)W2 -

Reasoning as above, we have dim(V,)=o0; V, n K=V?; the conductor of V, in
VX1, X3, Y is Py =P, VXX, X,); and M,, P, ,, and the prime of V, with
coheight 1 each lie over P,.

The pattern is clear. For instance,

I3
V3— v (le XZ* Yl’ X3» YZ’ Y3)Xk(Xl.Xz,Yn.Xsszst)W3

where W, is a three-dimensional valuation domain of k(X,, X,, Y, X3, Y,, Y3)
containing k5(X,, X,, Y;). Notice, as above, that the “top” four prime ideals of W,
each lie over P5. Continuing in this way, we obtain a sequence of infinite-dimensional
valuation domains ¥V, =V, < -; let 4 denote their union. It will suffice to show
that dim(A4)=d.

The verification proceeds nearly as in Example 3.5. Here is one difference. If
We Spec(A) and Q; is the prime of V; corresponding to Q, we must show that
W;=W nV;is contained in Q. If this fails, Q; is properly contained in W; and there
exists k> such that no prime of V¥, lies over W;; this contradicts the existence of
W.= W n V,. Hence, each prime of 4 is contained in Q*=UQ,.

As in the proof of Example 3.5, we see via Corollary 2.8 that B=U(V})y; is
d-dimensional; via [13, Proposition 6.1.4, page 129] and going-down considerations
that At (Q*)<htg(Q*)=d; and via [9, Theorem 1.4] and [13, Proposition 6.1.2 (i},
page 128] that At ,(Q*)>d. The verification is complete.
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