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Abstract. In this paper, we deal with the Serre conjecture ring R〈n〉. The purpose
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Introduction

Throughout this paper R is a commutative ring with a unit element. We de-
note by R[n] the ring of polynomials in n indeterminates on R (but rather
by R[X] the ring in one indeterminate). Letting U be the multiplicative
set of monic polynomials in R[X], we denote by R〈X〉 the localization
R〈X〉 = U−1R[X] and we set R〈X1, ..., Xn〉 = R〈X1, ..., Xn−1〉〈Xn〉, where
X1, ..., Xn are n indeterminates. We note at once that the order of these
indeterminates is in general pertinent in the definition of R〈X1, ..., Xn〉,
since, for any two indeterminates X and Y , R〈X〉〈Y 〉 need not be equal
R〈Y 〉〈X〉 [9, Theorem 10]. Although this order is significant in general, it
has no influence throughout this work, so we can denote R〈X1, ..., Xn〉 by
R〈n〉. We say that R〈n〉 is the Serre conjecture ring in n indeterminates on
R. Letting S be the multiplicative set in R[n] formed by the polynomials
whose coefficients generate R, we recall that the localization R(n) = S−1R[n]
is called the Nagata ring on R with n indeterminates on R. It is clear that
R(n) is a localization of R〈n〉 and that we always have R[n] ⊆ R〈n〉 ⊆ R(n).
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We denote by dimR the Krull dimension of R and by dimvR its valuative
dimension, i.e. the limit of the sequence (dimR[n] − n) (and we emphasize
that R need not be a domain with such a definition). In a first section we
establish the Krull and valuative dimension of the rings R〈n〉 and R(n).

Recall that a finite dimensional ring R is said to be Jaffard if dimR[n] =
dimR + n, for all n [1], or equivalently dimR = dimvR, residually Jaffard if
the quotient of R by any prime p is Jaffard, locally Jaffard if the localization
of R at any prime p is Jaffard and lastly totally Jaffard if any quotient of any
localization (equivalently any localization of any quotient) is Jaffard [8] (we
may note that these last two definitions make sense if R is only supposed
to be locally finite dimensional). In a second section we investigate the
transfer of the Jaffard (and more precisely of the locally, residually and
totally Jaffard) properties from the Nagata ring R(n) to the Serre conjecture
ring R〈n〉 and converselly.

Letting R〈∞〉 (resp. R(∞)) be the union R〈∞〉 =
⋃

n R〈n〉 (resp. R(∞) =⋃
n R(n)), we say that R〈∞〉 (resp. R(∞)) is the infinite Serre conjecture

ring (resp. infinite Nagata ring) on R. In a third and last section we show
the Krull dimension of these rings to be the valuative dimension of R. If p is
a prime ideal of R, and n is a non negative integer, or n = ∞, we denote by
p[n] the extension of p in R[n] (i.e. the set of polynomials with coefficients
in p) and by p(n) (resp. p〈n〉) its localisation in R(n) (resp. in R〈n〉). We
denote by htp the height of p and as in [4] we let the valuative height of
p, denoted by htvp, be the valuative dimension of the localization Rp. We
show that the height of p(∞) and p〈∞〉 is the valuative height of p. Recall
that R is said to be a strong S-ring if, for any pair p ⊂ q of consecutive
primes in R, p[X] ⊂ q[X] are consecutive in R[X]. If R is a strong S-ring,
R[X] need not be so [19]; a ring R such that R[n] is a strong S-ring for any n
is said to be a stably strong S-ring. A stably strong S-ring is totally Jaffard
and totally Jaffard rings are strong S-rings [8, introduction]. We lastly show
that R〈∞〉 and R(∞) are stably strong S-rings.

Terminology is standard as in [17]. We use “⊂” to denote proper con-
tainment. If P is a prime ideal of R〈n〉, R[n], R(n), R〈∞〉 or R(∞) and
p = P ∩R, we say that P is above p. By convention, we let R[0], R(0) and
R〈0〉 be the ring R.
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1 Krull and valuative dimensions

It is clear that every prime ideal upper to a maximal ideal in R[X] contains
a monic polynomial [17, theorem 28]. Hence every maximal ideal of R〈X〉 is
either the extension m〈X〉 of a maximal ideal m of R, or the localisation of a
prime ideal P of R[X] which is an upper to a non maximal prime ideal p of
R. We thus get immediately the following, as already shown in [5, lemma1]
and [18, Th.2.1].

Lemma 1.1 For any ring R, dimR〈X〉 = dimR[X]− 1.

We generalize the result of lemma 1.1 as follows:

Proposition 1.2 Let R be a ring and n, r two non negative integers, then

dimR(n)[r] = dimR〈n〉[r] = dimR[n + r]− n.

Proof. Since R(n) is a localization of R〈n〉, we have

dimR(n)[r] ≤ dimR〈n〉[r] (1)

We next prove that

dimR[n + r]− n ≤ dimR(n)[r] (2)

Letting m be a maximal ideal of R such that dimR[n+r] = htm[n+r]+(n+r),
then dimR(n)[r] ≥ htm(n)[r] + r = htm[n][r] + r = htm[n + r] + r,
thus dimR(n)[r] ≥ dimR[n + r]− n.
Lastly we prove, by induction on n ≥ 1, that

dimR〈n〉[r] ≤ dimR[n + r]− n (3)

Case n = 1. From the special chain theorem [6, theorem 1], we have,

dimR〈1〉[r] = Sup{htM[r] + r} (4)

where M runs among the maximal ideals of R〈1〉. As noticed above, two
cases may occur.
a) M is the extension m〈1〉 of a maximal ideal m of R. In this first case,
htm〈1〉 = htm[1], and

htM[r] = htm[1][r] = htm[1 + r] (5)
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b) M is the localisation of a prime ideal P of R[1], which is an upper to a
non maximal prime ideal p of R. Hence there is a maximal ideal m of R
such that p ⊂ m. Therefore, from [6, lemma 1], we get

htM[r] = htP = htp[1][r] + 1 = htp[1 + r] + 1 ≤ htm[1 + r]. (6)

In any case, (4), (5) and (6) lead to

dimR〈1〉[r] ≤ Sup{htm[1 + r] + r} ≤ dimR[1 + r]− 1.

Case n ≥ 2. From the case n = 1, we get
htfi

dimR〈n〉[r] = dimR〈n− 1〉〈1〉[r] ≤ dimR〈n− 1〉[1 + r]− 1

thus, by induction hypothesis,
htfi

dimR〈n〉[r] ≤ dimR[(n− 1) + (1 + r)]− (n− 1)− 1 ≤ dimR[n + r]− n.

This proves (3). The result follows, putting (1), (2) and (3) together. ¦
In particular dimR〈n〉 = dimR(n) = dimR[n]− n. Thus we derive:

Corollary 1.3 Let R be a ring and n a non negative integer, then

dimvR = SupndimR〈n〉 = SupndimR(n).

It results also clearly from proposition 1.2 that, if T = R(n) or T = R〈n〉,
then dimT [r] − r = dimR[n + r] − n − r, hence the limit of the sequence
(dimT [r]−r), is the same as the limit of the sequence (dimR[m]−m). Thus
we get the following:

Corollary 1.4 Let R be a ring and n a non negative integer, then

dimvR〈n〉 = dimvR(n) = dimvR.

From proposition 1.2 and corollary 1.4, we note that R(n) and R〈n〉 have
the same Krull dimension and the same valuative dimension.
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2 Jaffard properties

It is clear that a finite dimensional ring T is a Jaffard ring if and only if, for
each non negative integer k, dimT [k] = dimT + k. From proposition 1.2 we
thus get:

Lemma 2.1 For any ring T , the following assertions are equivalent

(i) T is a Jaffard ring,

(ii) for any non negative integer k, dimT (k) = dimT ,

(iii) for any non negative integer k, dimT 〈k〉 = dimT .

From the same proposition 1.2 we obtain also the following results for
the transfer of the Jaffard (resp. locally Jaffard) property from the Nagata
ring R(n) to the Serre conjecture ring R〈n〉.
Proposition 2.2 Let R be a finite dimensional ring and n a non negative
integer. Then the following assertions are equivalent:

(i) R[n] is a Jaffard ring,

(ii) R〈n〉 is a Jaffard ring,

(iii) R(n) is a Jaffard ring,

(iv) for any non negative integer k, dimR(n) = dimR(n + k),

(v) for any non negative integer k, dimR〈n〉 = dimR〈n + k〉.

Proposition 2.3 Let R be a finite dimensional ring and n a non negative
integer. Then the following assertions are equivalent:

(i) R[n] is a locally Jaffard ring,

(ii) R〈n〉 is a locally Jaffard ring,

(iii) R(n) is a locally Jaffard ring.

Proof. It is trivial that (i) implies (ii) and (ii) implies (iii). Conversely, if
R(n) is a locally Jaffard ring, then Rp(n) is a Jaffard ring, for any prime
ideal p of R, and so is Rp[n], from the previous proposition. Thus R[n] is a
locally Jaffard ring, by [3, lemma 1.11]. Therefore (iii) imples (i). ¦
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Remarks 2.4 (i) From propositions 2.2 and 2.3, R〈n〉 and R(n) are Jaffard
rings (resp. locally Jaffard rings) whenever R is a Jaffard ring (resp. a locally
Jaffard ring) or if n ≥ dimvR− 1 [8, proposition 1].
(ii) If R[n] is a totally Jaffard ring, then so are clearly R(n) and R〈n〉. The
converse does not hold: [4, example 5.3] is a dimension 2, quasi-local and
totally Jaffard domain such that R[X] is not a strong S-ring. Thus R[n] is
not totally Jaffard for n ≥ 1. According to the previous remark, R(n) and
R〈n〉 are however dimension 2 locally Jaffard domains, for all n, thus even
totally Jaffard domains from [8, corollaire 1] (and therefore strong S-rings).

We show next that R〈n〉 is totally Jaffard for n large if and only if it is
a strong S-ring. First we set a lemma:

Lemma 2.5 Let R be a finite dimensional ring such that R〈n〉 is a strong
S-ring for all n, then R is totally Jaffard.

Proof. If R〈n〉 is a strong S-ring for all n, so is R(n) by localisation. For
any prime p of R, letting R = R/p, R(n) is isomorphic to R(n)/p(n), hence
is also a strong S-ring. For any prime q of R containing p, letting q = q/p
then Rq(n) is isomorphic to the localisation of R(n) at the prime q(n),
hence Rq(n) is again a strong S-ring. From [16, theorem 2] it results that
Rq = Rq/pRq is Jaffard. ¦

Since R〈n + m〉 is clearly the same as R〈n〉〈m〉 and totally Jaffard rings
are strong S-rings, we derive immediately the following:

Proposition 2.6 Let R be finite dimensional and k be a non negative in-
teger. The following assertions are equivalent:

(i) for n ≥ k, R〈n〉 is a strong S-ring

(ii) for n ≥ k, R〈n〉 is totally Jaffard.

We close this section with some questions and an example:

Question 2.7 Are R〈n〉 and R(n) residually Jaffard rings, when R[n] is?

We note that conversely, R〈n〉 and R(n) may be residually (even to-
tally) Jaffard rings, whereas R[n] is not: indeed, if R is a domain such that
dimR = 1 and dimvR = 2. From remark 2.4 (i), R〈n〉 and R(n) are thus
dimension 2 locally Jaffard domains, for n ≥ 1, hence totally Jaffard do-
mains [8, corollaire 1]. But R is not Jaffard, thus R[n] is not residually
Jaffard, for any n.
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Question 2.8 Is R〈n〉 a residually Jaffard (resp. a totally Jaffard ring,
resp. a strong S-ring), if and only if R(n) is?

Question 2.9 Is R〈n〉 a totally Jaffard ring (or equivalently a strong S-ring)
for n ≥ dimvR or at least for n large?

Lastly the following example presents a totally Jaffard domain R such
that R[X], R〈X〉 and R(X) are not residually Jaffard domains.

Example 2.10 As in [8, example 8], we let k be a field, u, v, w indetermi-
nates and S the multiplicative subset complement of the union m1 ∪ n1 of
the prime ideals m1 = (u− 1) and n1 = (u, v, w) of k[u, v, w]. The localisa-
tion B = S−1k[u, v, w] is a three dimensional semi-local domain, with two
maximal ideals m = S−1m1 and n = S−1n1 such that htm = 1 and htn = 3.
Finally, let I = m∩ n and R = k + I. Then R is a 3 dimensional quasi-local
totally Jaffard domain such that R[X] is not a residually Jaffard domain.
More precisely, it has been established in [8, example 8] that there exists a
prime ideal P in R[X] such that P ⊂ I[X] are consecutive in R[X], whereas
P[Y ] ⊂ I[X,Y ] are not in R[X, Y ]. This prime P lifts as a prime P′ of R(X)
(resp. R〈X〉). Clearly dimR(X)/P′ = htI[X]/P = 1 (resp. dimR〈X〉/P′ =
1). On the other hand dim(R(X)/P′)[Y ] ≥ htI[X,Y ]/P[Y ] + 1 ≥ 3 (resp.
dim(R〈X〉/P′)[Y ] ≥ 3). Therefore R(X)/P′ (resp. R〈X〉/P′) is not a Jaf-
fard ring.

3 Infinitely many indeterminates

We first give the Krull dimension of R(∞) and R〈∞〉, as already done by
D.E. Dobbs at al. in [9, corollary 2.5] for the infinite Nagata ring in the
particular case of a domain. We also give the height of the extended primes:

Proposition 3.1 For any ring R,

(i) dimvR = dimR(∞) = dimR〈∞〉,
(ii) for any prime p of R, htvp = htp(∞) = htp〈∞〉.

Proof. Since R〈∞〉 (resp. R(∞)) is the union of the rings R〈n〉 (resp. R(n),
by [9, lemma 2.1] we have the inequality dimR〈∞〉 ≤ Supn{dimR〈n〉} (resp.
dimR(∞) ≤ Supn{dimR(n)}. Moreover, any chain of primes in R〈n〉 (resp.
in R(n)) lifts in R〈∞〉 (resp. in R(∞)), hence the reverse inequality proving
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(i) from corollary 1.3. For any prime p of R, htvp = dimvRp = dimRp(∞).
But dimRp(∞) = htp(∞), since Rp(∞) is the localization of R(∞) with
respect to the prime p(∞). Thus htvp = htp(∞). On the other hand,
htp(∞) = htp〈∞〉, since p(∞) is a localisation of p〈∞〉. This proves (ii). ¦

We may note, as D.E. Dobbs et al. for the infinite Nagata ring, in the
special case of a domain [9, corollary 2.5], that it results easily from this
proposition that R(∞) and R〈∞〉 are Jaffard rings (if their dimension are
finite). We will show that they are in fact stably strong S-rings. First, we
set the following:

Lemma 3.2 Let P ⊂ Q be consecutive primes of finite height in R[∞]; then
P[1] ⊂ Q[1] are consecutive in R[∞][1].

Proof. We note first that there is an integer k such that P is the extension of
a prime ideal of R[k]. Indeed, letting Pn be the intersection Pn = P∩R[n],
if the extension Pn[1] of Pn to R[n + 1] = R[n][1] is such that Pn[1] ⊂
Pn+1, then htPn+1 > htPn, since any chain of R[n] lifts in R[n+1] (taking
the extension of each prime of the chain). If the set of integers such that
Pn[1] ⊂ Pn+1 were infinite, so would be htP, contrary to the hypothesis.
Therefore, there is an integer k such that Pk[n] = Pk+n, for all n, thus
P =

⋃
n Pk+n =

⋃
n Pk[n] = Pk[∞]. For the same reason, there is an

integer k such that both P and Q are extensions of primes of R[k] to R[∞].
Replacing R by R[k], since R[∞] and R[∞][k] are clearly isomorphic, we may
thus consider that P = p[∞] and Q = q[∞], where P and Q are respectively
above the primes p and q of R. The infinite polynomial ring R[∞] is the
set theoretic union of the rings R[n] and R[∞][1] the set theoretic union of
the rings R[n][1]. Since R[n][1] is isomorphic to R[n + 1], R[∞][1] is thus
isomorphic to R[∞]. Similarly P = p[∞] and Q = q[∞] are respectively the
union of the primes p[n] and q[n], whereas P[1] and Q[1] are respectively
the union of the primes p[n][1] and q[n][1], thus P[1] and Q[1] correspond
to the primes P and Q under the isomorphism of R[∞][1] with R[∞] ¦

Since R(∞)[m] (resp. R〈∞〉[m]) is a localisation of R[∞][m], which
is isomorphic to R[∞], consecutive primes of R(∞)[m] (resp. R〈∞〉[m])
correspond to consecutive primes of R[∞]. Thus we get:

Theorem 3.3 If R is a ring such that dimvR is finite, then R(∞) and
R〈∞〉 are stably strong S-rings.

Corollary 3.4 If R is a ring such that dimvR is finite, then R(∞) and
R〈∞〉 are totally Jaffard rings.
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