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Abstract The class (resp., t-class) semigroup of an integral domain is the semigroup
of the isomorphy classes of the nonzero fractional ideals (resp., t-ideals) with the
operation induced by ideal (t-) multiplication. This paper surveys recent litera-
ture which studies ring-theoretic conditions that reflect reciprocally in the Clifford
property of the class (resp., t-class) semigroup. Precisely, it examines integral do-
mains with Clifford class (resp., t-class) semigroup and describes their idempotent
elements and the structure of their associated constituent groups.

1 Introduction

All rings considered in this paper are integral domains. The notion of ideal class
group of a domain is classical in commutative algebra and is also one of major
objects of investigation in algebraic number theory. Let R be a domain. The ideal
class group C(R) (also called Picard group) of R consists of the isomorphy classes
of the invertible ideals of R, that is, the factor group I(R)/P(R), where I(R) is the
group of invertible fractional ideals and P(R) is the subgroup of nonzero principal
fractional ideals of R. A famous result by Claiborne states that every Abelian group
can be regarded as the ideal class group of a Dedekind domain.

If R is Dedekind, then I(R) coincides with the semigroup F(R) of nonzero
fractional ideals of R. Thus, a natural generalization of the ideal class group is
the semigroup F(R)/P(R) of the isomorphy classes of nonzero fractional ideals
of R. The factor semigroup F(R)/P(R) is denoted by S(R) and called the class
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semigroup of R. The class semigroup of an order in an algebraic number field was
first investigated by Dade, Taussky and Zassenhaus [18] and later by Zanardo and
Zannier [59]. Halter-Koch [34] considered the case of the class semigroup of lattices
over Dedekind domains.

The investigation of the structure of a semigroup is not as attractive as the study
of a group. This is the reason why it is convenient to restrict attention to the case
of a particular type of semigroups, namely, the Clifford semigroups. A commu-
tative semigroup S (with 1) is said to be Clifford if every element x of S is (von
Neumann) regular, i.e., there exists a ∈ S such that x2a = x. The importance of a
Clifford semigroup S resides in its ability to stand as a disjoint union of groups Ge,
each one associated to an idempotent element e of the semigroup and connected by
bonding homomorphisms induced by multiplications by idempotent elements [16].
The semigroup S is said to be Boolean if for each x ∈ S, x = x2.

Let R be a domain with quotient field K. For a nonzero fractional ideal I of R, let
I−1 := (R : I) = {x∈ K | xI ⊆ R}. The v- and t-closures of I are defined, respectively,
by Iv := (I−1)−1 and It :=

⋃
Jv where J ranges over the set of finitely generated

subideals of I. The ideal I is said to be divisorial or a v-ideal if Iv = I, and I is said
to be a t-ideal if It = I. Under the ideal t-multiplication (I,J) �→ (IJ)t , the set Ft(R)
of fractional t-ideals of R is a semigroup with unit R. An invertible element for this
operation is called a t-invertible t-ideal of R.

The t-operation in integral domains is considered as one of the keystones of
multiplicative ideal theory. It originated in Jaffard’s 1960 book “Les Systèmes
d’Idéaux” [37] and was investigated by many authors in the 1980s. From the
t-operation stemmed the notion of (t-)class group of an arbitrary domain, extend-
ing both notions of divisor class group (in Krull domains) and ideal class group
(in Prüfer domains). Class groups were introduced and developed by Bouvier
and Zafrullah [12, 13], and have been extensively studied in the literature. The
(t-)class group of R, denoted Cl(R), is the group under t-multiplication of fractional
t-invertible t-ideals modulo its subgroup of nonzero principal fractional ideals. The
t-class semigroup of R, denoted St(R), is the semigroup under t-multiplication of
fractional t-ideals modulo its subsemigroup of nonzero principal fractional ideals.
One may view St(R) as the t-analogue of S(R), similarly as the (t-)class group Cl(R)
is the t-analogue of the ideal class group C(R). We have the set-theoretic inclusions

C(R) ⊆ Cl(R) ⊆ St(R) ⊆ S(R).

The properties of the class group or class semigroup of a domain can be trans-
lated into ideal-theoretic information on the domain and conversely. If R is a Prüfer
domain, C(R) = Cl(R) and St(R) = S(R); and then R is a Bézout domain if and only
if Cl(R) = 0. If R is a Krull domain, Cl(R) = St(R) equals its usual divisor class
group, and then R is a UFD if and only if Cl(R) = 0 (so that R is a UFD if and only
if every t-ideal of R is principal). Trivially, Dedekind domains (resp., PIDs) have
Clifford (resp., Boolean) class semigroup. In 1994, Zanardo and Zannier proved
that all orders in quadratic fields have Clifford class semigroup, whereas the ring
of all entire functions in the complex plane (which is Bézout) fails to have this
property [59].
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Thus, the natural question arising is to characterize the domains with Clifford
class (resp., t-class) semigroup and, moreover, to describe their idempotent elements
and the structure of their associated constituent groups.

2 Class semigroups of integral domains

A domain is said to be Clifford regular if its class semigroup is a Clifford semigroup.
The first significant example of a Clifford regular domain is a valuation domain. In
fact, in [9], Salce and the first named author proved that the class semigroup of
any valuation domain is a Clifford semigroup whose constituent groups are either
trivial or groups associated to the idempotent prime ideals of R. Next, the investi-
gation was carried over for the class of Prüfer domains of finite character, that is,
the Prüfer domains such that every nonzero ideal is contained in only finitely many
maximal ideals. In [5], the first named author proved that if R is a Prüfer domain of
finite character, then R is a Clifford regular domain and moreover, in [6] and [7] a
description of the idempotent elements of S(R) and of their associated groups was
given.

A complete characterization of the class of integrally closed Clifford regular do-
mains was achieved in [8] where it is proved that it coincides with the class of
the Prüfer domains of finite character. Moreover, [8] explores the relation between
Clifford regularity, stability and finite stability. Recall that an ideal of a commuta-
tive ring is said to be stable if it is projective over its endomorphism ring and a ring
R is said to be stable if every ideal of R is stable. The notion of stability was first
introduced in the Noetherian case with various different definitions which turned
out to be equivalent in the case of a local Noetherian ring (cf. [51]). Olberding has
described the structural properties of an arbitrary stable domain. In [51] and [50]
he proves that a domain is stable if and only if it is of finite character and locally
stable. Rush, in [52] considered the class of finitely stable rings, that is, rings with
the property that every finitely generated ideal is stable and proved that the integral
closure of such rings is a Prüfer ring.

In [8], it is shown that the class of Clifford regular domains is properly interme-
diate between the class of finitely stable domains and the class of stable domains.
In particular, the integral closure of a Clifford regular domain is a Prüfer domain.
Moreover, this implies that a Noetherian domain is Clifford regular if and only if it
is a stable domain. Thus, [8] provides for a characterization of the class of Clifford
regular domains in the classical cases of Noetherian and of integrally closed do-
mains. In the general case, the question of determining whether Clifford regularity
always implies finite character is still open.

In [8], was also outlined a relation between Clifford regularity and the local in-
vertibility property. A domain is said to have the local invertibility property if every
locally invertible ideal is invertible. In [5] and again in [8] the question of decid-
ing if a Prüfer domain with the local invertibility property is necessarily of finite
character was proposed as a conjecture. The question was of a interest on its own
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independently of Clifford regularity and it attracted the interest of many authors.
Recently the validity of the conjecture has been proved by Holland, Martinez,
McGovern and Tesemma [36]. They translated the problem into a statement on the
lattice ordered group of the invertible fractional ideals of a Prüfer domain and then
used classical results by Conrad [17] on lattice ordered groups.

2.1 Preliminaries and notations

Let S be a commutative multiplicative semigroup. The subsemigroup E of the idem-
potent elements of S has a natural partial order defined by e≤ f if and only if e f = e,
for every e, f ∈ E. Clearly, e∧ f = e f and thus E is a ∧-semilattice under this order.
An element a of a semigroup S is von Neumann regular if a = a2x for some x ∈ S.

Definition 2.1. A commutative semigroup S is a Clifford semigroup if every element
of S is regular.

By [16] a Clifford semigroup S is the disjoint union of the family of groups {Ge |
e ∈ E}, where Ge is the largest subgroup of S containing the idempotent element e,
that is:

Ge = {ae | abe = e for some b ∈ S}.
In fact, if a∈ S and a = a2x, x∈ S, then e = ax is the unique idempotent element such
that a ∈ Ge. We say that e = ax is the idempotent associated to a. The groups Ge are
called the constituent groups of S. If e ≤ f are idempotent elements, that is f e = e,
the multiplication by e induces a group homomorphism φ f

e : G f → Ge called the
bonding homomorphism between G f and Ge. Moreover, the set S∗ of the regular
elements of a commutative semigroup S is a Clifford subsemigroup of S. In fact,
if a2x = a and e = ax, then also a2xe = a and xe is a regular element of S, since
(xe)2a = xe.

Throughout this section R will denote a domain and Q its field of quotients. For
R-submodules A and B of Q, (A : B) is defined as follows:

(A : B) = {q ∈ Q | qB ⊆ A}.

A fractional ideal F of R is an R-submodule of Q such that (R : F) 	= 0. By an
overring of R is meant any ring between R and Q. We say that a domain R is of finite
character if every nonzero ideal of R is contained only in a finite number of maximal
ideals. If (P) is any property, we say that a fractional ideal F of R satisfies (P) locally
if each localization FRm of F at a maximal ideal m of R satisfies (P).

Let F(R) be the semigroup of the nonzero fractional ideals of R and let P(R) be
the subsemigroup of the nonzero principal fractional ideals of the domain R. The
factor semigroup F(R)/P(R) is denoted by S(R) and called the class semigroup
of R. For every nonzero ideal I of R, [I] will denote the isomorphism class of I.

Definition 2.2. A domain R is said to be Clifford regular if the class semigroup S(R)
of R is a Clifford semigroup.
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2.2 Basic properties of regular elements of S(R) and of Clifford
regular domains

If R is a domain and I is a nonzero ideal of R, [I] is a regular element of S(R)
if and only if I = I2X for some fractional ideal X of R. Let E(I) = (I : I) be the
endomorphism ring of the ideal I of R. The homomorphisms from I to E(I) are
multiplication by elements of (E(I) : I) = (I : I2). The trace ideal of I in E(I) is the
sum of the images of the homomorphisms of I into E(I), namely I(I : I2). Thus, we
have the following basic properties of regular elements of S(R).

Proposition 2.3 ([8, Lemma 1.1, Proposition 1.2]). Let I be a nonzero ideal of a
domain R with endomorphism ring E = (I : I) and let T = I(E : I) be the trace ideal
of I in E. Assume that [I] is a regular element of S(R), that is, I = I2X for some
fractional ideal X of R. The following hold:

(1) I = I2(I : I2).
(2) IX = T and [T ] is an idempotent of S(R) associated to [I].
(3) T is an idempotent ideal of E and IT = I.
(4) E = (T : T ) = (E : T )

Proof. (1) By assumption X ⊆ (I : I2) and so I = I2X ⊆ I2(I : I2) ⊆ I implies I =
I2(I : I2).

(2) and (3). Since (I : I2) = (E : I), part (1) implies IX = I2(E : I)X = I(E : I),
hence T = IX is an idempotent ideal of E and IT = I .

(4) We have E ⊆ (E : T ) = (I : IT ) = E and E ⊆ (T : T ) ⊆ (E : T ).

Recall that a nonzero ideal of a domain is said to be stable if it is projective,
or equivalently invertible, as an ideal of its endomorphism ring and R is said to be
(finitely) stable if every nonzero (finitely generated) ideal of R is stable.

An ideal I of a domain R is said to be L-stable (here L stands for Lipman) if RI :=
⋃

n≥1(In : In) = (I : I), and R is called L-stable if every nonzero ideal is L-stable.
Lipman introduced the notion of stability in the specific setting of one-dimensional
commutative semi-local Noetherian rings in order to give a characterization of Arf
rings; in this context, L-stability coincides with Boole regularity [46].

The next proposition illustrates the relation between the notions of (finite) sta-
bility, L-stability and Clifford regularity. A preliminary key observation is furnished
by the following lemma.

Lemma 2.4 ([8, Lemma 2.1]). Let I be a nonzero finitely generated ideal of a
domain R. Then [I] is a regular element of S(R) if and only if I is a stable ideal.

Proposition 2.5 ([8, Propositions 2.2 and 2.3, Lemma 2.6]).

(1) A stable domain is Clifford regular.
(2) A Clifford regular domain is finitely stable.
(3) A Clifford regular domain is L-stable.
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In order to better understand the situation, it is convenient to recall some properties
of finitely stable and stable domains.

Theorem 2.6 ([52, Proposition 2.1] and [51, Theorem 3.3]).

(1) The integral closure of a finitely stable domain is a Prüfer domain.
(2) A domain is stable if and only if it has finite character and every localization

at a maximal ideal is a stable domain.

It is also useful to state properties of Clifford regular domains relative to localization
and overrings. To this end we can state:

Lemma 2.7 ([8, Lemmas 2.14 and 2.5]).

(1) A fractional overring of a Clifford regular domain is Clifford regular.
(2) If R is a Clifford regular domain and S is a multiplicatively closed subset of R,

then RS is a Clifford regular domain.

Recall that an overring T of a domain R is fractional if T is a fractional ideal of R.
The next result is useful in reducing the problem of the characterization of a Clifford
regular domain to the local case: it states that a domain is Clifford regular if and only
if it is locally Clifford regular and the trace of any ideal in its endomorphism ring
localizes. In this vein, recall that [58] contributes to the classification of Clifford
regular local domains.

Proposition 2.8 ([8, Proposition 2.8]). Let R be a domain. The following are equiv-
alent:

(1) R is a Clifford regular domain;
(2) For every maximal ideal m of R, Rm is a Clifford regular domain and for every

ideal I of R, (I(I : I2))m = Im(Im : I2
m), i.e., the trace of the localization Im in

its endomorphism ring coincides with the localization at m of the trace of I in
its endomorphism ring.

In case the Clifford regular domain R is stable or integrally closed, a better result
can be proved.

Lemma 2.9. Let R be a stable or an integrally closed Clifford regular domain. If I
is any ideal of R and m is any maximal ideal of R, then the following hold:

(1) (I : I)m = (Im : Im).
(2) (I : I2)m = (Im : I2

m).

The connection between Clifford regularity and stability stated by Proposition 2.5
is better illustrated by the concepts of local stability and local invertibility in the
way that we are going to indicate.

Definition 2.10. A domain R is said to have the local invertibility property (resp.,
local stability property) if every locally invertible (resp., locally stable) ideal is
invertible (resp., stable).
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The next result is a consequence of Proposition 2.8 and the fact that a locally
invertible ideal of a domain is cancellative.

Proposition 2.11 ([8, Lemmas 4.2 and 5.7]). A Clifford regular domain has the
local invertibility property and the local stability property.

The preceding result together with the observation that stable domains are of finite
character, prompts one to ask if a Clifford regular domain is necessarily of finite
type. The question has a positive answer if the Clifford regular domain is Noetherian
or integrally closed as we are going to show in the next two sections.

2.3 The Noetherian case

From Proposition 2.5, the characterization of the Clifford regular Noetherian do-
mains is immediate.

Theorem 2.12 ([8, Theorem 3.1]). A Noetherian domain is Clifford regular if and
only if it is stable.

The Noetherian stable rings have been extensively studied by Sally and Vascon-
celos in the two papers [53] and [54]. We list some of their results.

(a) A stable Noetherian ring has Krull dimension at most 1.

(b) If every ideal of a domain R is two-generated (i.e., generated by at most two
elements), then R is stable.

(c) If R is a Noetherian domain and the integral closure R̄ of R is a finitely generated
R-module, then R is stable if and only if every ideal of R is two-generated.

(d) Ferrand and Raynaud [24, Proposition 3.1] constructed an example of a local
Noetherian stable domain admitting non two-generated ideals. This domain is not
Gorenstein.

(e) A local Noetherian Gorenstein domain is Clifford regular if and only if every
ideal is two-generated. ([8, Theorem 3.2])

It is not difficult to describe the idempotent elements of the class semigroup of a
Noetherian domain and the groups associated to them.

Proposition 2.13 ([8, Proposition 3.4 and Corollary 3.5]). Let R be a Noetherian
domain. The following hold:

(1) The idempotent elements of S(R) are the isomorphy classes of the fractional
overrings of R and the groups associated to them are the ideal class groups of
the fractional overrings of R.

(2) If R is also a Clifford regular domain, then the class semigroup S(R) of R is the
disjoint union of the ideal class groups of the fractional overrings of R and the
bonding homomorphisms between the groups are induced by extending ideals
to overrings.



54 Silvana Bazzoni and Salah-Eddine Kabbaj

2.4 The integrally closed case

The starting point for the study of integrally closed Clifford regular domains is the
following fact.

Proposition 2.14 ([59, Proposition 3]). An integrally closed Clifford regular do-
main is a Prüfer domain.

In [9], it was proved that any valuation domain is Clifford regular and in [5] the
result was extended by proving that a Prüfer domain of finite character is a Clifford
regular domain. Finally, in [8] it was proved that an integrally closed Clifford regular
domain is of finite character.

While trying to prove the finite character property for a Clifford regular Prüfer
domain, a more general problem arose and in the papers [7] and [8] the follow-
ing conjecture was posed. Its interest goes beyond the Clifford regularity of Prüfer
domains.

Conjecture. If R is a Prüfer domain with the local invertibility property, then R is of
finite character.

In [8], the conjecture was established in the affirmative for the class of Prüfer
domains satisfying a particular condition. To state the condition we need to recall
a notion on prime ideals: a prime ideal P of a Prüfer domain is branched if there
exists a prime ideal Q properly contained in P and such that there are no other prime
ideals properly between Q and P.

Theorem 2.15 ([8, Theorem 4.4]). Let R be a Prüfer domain with the local in-
vertibility property. If the endomorphism ring of every branched prime ideal of R
satisfies the local invertibility property, then R is of finite character.

Theorem 2.15 together with Proposition 2.11 and the fact that every fractional
overring of a Clifford regular domain is again Clifford regular, imply the character-
ization of integrally closed Clifford regular domains.

Theorem 2.16 ([8, Theorem 4.5]). An integrally closed domain is Clifford regular
if and only if it is a Prüfer domain of finite character.

We wish to talk a little about the conjecture mentioned above. It attracted the
interest of many authors and its validity has been proved recently. In [36], Holland,
Martinez, McGovern, and Tesemma proved that the conjecture is true by translating
the problem into a statement on lattice ordered groups. In fact, as shown by Brewer
and Klingler in [14], the group G of invertible fractional ideals of a Prüfer domain
endowed with the reverse inclusion, is a latticed ordered group and the four authors
noticed that both the property of finite character and the local invertibility property
of a Prüfer domain can be translated into statements on prime subgroups of the
group G and filters on the positive cone of G.

Then, they used a crucial result by Conrad [17] on lattice ordered groups with
finite basis to prove that the two statements translating the finite character and
the local invertibility property are equivalent, so that the validity of the conjecture
follows.
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Subsequently, McGovern [47] has provided a ring theoretic proof of the
conjecture by translating from the language of lattice ordered groups to the lan-
guage of ring theory the techniques used in [36]. At one point it was necessary to
introduce a suitable localization of the domain in order to translate the notion of the
kernel of a lattice homomorphism on the lattice ordered group.

Independently, almost at the same time, Halter-Koch [35] proved the validity of
the conjecture by using the language of ideal systems on cancellative commutative
monoids and he proved that an r-Prüfer monoid with the local invertibility property
is a monoid of Krull type (see [33, Theorem 22.4]).

2.5 The structure of the class semigroup of an integrally closed
Clifford regular domain

In order to understand the structure of the class semigroup S(R) of a Clifford reg-
ular domain it is necessary to describe the idempotent elements, the constituent
groups associated to them and the bonding homomorphisms between those groups.
Complete information is available for the case of integrally closed Clifford regular
domains, that is, the class of Prüfer domains of finite character.

In [9], Salce and the first named author proved that the class semigroup of a
valuation domain R is a Clifford semigroup with idempotent elements of two types:
they are represented either by fractional overrings of R, that is, localizations RP at
prime ideals P, or by nonzero idempotent prime ideals. The groups corresponding
to localizations are trivial and the group associated to a nonzero idempotent prime
ideal P is described as a quotient of the form Γ /Γ , where Γ is the value group of
the localization RP and Γ is the completion of Γ in the order topology. This group is
also called the archimedean group of the localizations RP and denoted by ArchRP.

If I is a nonzero ideal of R, [I] belongs to ArchRP if and only if RP is the endo-
morphism ring of I and I is not principal as an RP-ideal. Note that the endomorphism
ring of an ideal I of a valuation domain R is the localization of R at the prime ideal P
associated to I defined by P = {r ∈ R | rI � I} (cf. [29, II p. 69]).

The idempotent elements, the constituent groups and the bonding homomor-
phisms of the class semigroup of a Prüfer domain of finite character have been
characterized by the first named author in [6] and [7].

If S(R) is a Clifford semigroup and I is a nonzero ideal of R, then by
Proposition 2.3, the unique idempotent of S(R) associated to [I] is the trace ideal T
of I in its endomorphism ring, that is, T = I(I : I2). Moreover, every idempotent of
S(R) is of this form. The next two propositions describe the subsemigroup E(R) of
the idempotent elements of S(R)

Proposition 2.17 ([6, Theorem 3.1 and Proposition 3.2]). Assume that R is a
Prüfer domain of finite character. Let I be a nonzero ideal of R such that [I] is
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an idempotent element of S(R). Then there exists a unique nonzero idempotent
fractional ideal L isomorphic to I such that

L = P1 ·P2 · · · · ·PnD n ≥ 0

with uniquely determined factors satisfying the following conditions:

(1) D = (L : L) is a fractional overring of R;
(2) The Pi are pairwise incomparable idempotent prime ideals of R;
(3) Each PiD is a maximal ideal of D;
(4) D ⊇ End(Pi).

The preceding result shows that the semigroup E(R) of the idempotent elements
of S(R) is generated by the classes [P] and [D] where P vary among the nonzero
idempotent prime ideals of R and D are arbitrary overrings of R. Moreover, every
element of E(R) has a unique representation as a finite product of these classes
provided they satisfy the conditions of Proposition 2.17.

For each nonzero idempotent fractional ideal L, denote by GL the constituent
group of S(R) associated to the idempotent element [L] of E(R), as defined in
Section 2.1. The properties and the structure of the groups GL have been investi-
gated in [7].

We recall some useful information on ideals of a Prüfer domain of finite
character.

Lemma 2.18 ([7, Lemma 3.1]). Let I and J be locally isomorphic ideals of a Prüfer
domain of finite character R. Then there exists a finitely generated fractional ideal
B of D = End(I) such that I = BJ. In particular, if R is also a Bézout domain, then
I ∼= J.

A key observation in order to describe the constituent groups of the class semi-
group of a Prüfer domain of finite character R is to note that, for each nonzero
idempotent prime ideal P of R, there is a relation between GP and the archimedean
group ArchRP of the valuation domain RP (cf. [7, Proposition 3.3]). In fact, the
correspondence

[I] �→ [IRP], [I] ∈ GP

induces an epimorphism of Abelian groups

ψ : GP → ArchRP

such that Kerψ = {[CP] |C is a finitely generated ideal of End(P)}. In particular,
Kerψ ∼= C(End(P)) and ψ is injective if and only if End(P) is a Bézout domain.

The preceding remark can be extended to each group GL in the class semi-
group S(R).

Theorem 2.19 ([7, Theorem 3.5]). Assume that R is a Prüfer domain of finite char-
acter. Let L = P1 ·P2 · · · · ·PnD be a nonzero idempotent fractional ideal of R satisfying
the conditions of Proposition 2.17. For every nonzero ideal I of R such that [I] ∈ GL,



Class semigroups and t-class semigroups of integral domains 57

consider the diagonal map π([I]) = ([IRP1 ], . . . , [IRPn ]). Then the group GL fits in the
short exact sequence:

1 → C(D) → GL
π→ ArchRP1 ×·· ·×ArchRPn → 1.

If R is a Bézout domain, then so is every overring D of R, hence the ideal class
groups C(D) are all trivial. The constituent groups are then built up by means of the
groups associated to the idempotent prime ideals of R and the structure of the class
semigroup S(R) is simpler, precisely we can state the following:

Proposition 2.20 ([7, Proposition 4.4]). If R is a Bézout domain of finite character,
then the constituent groups associated to every idempotent element of S(R) are iso-
morphic to a finite direct product of archimedean groups ArchRP of the valuation
domain RP, where P is a nonzero idempotent prime ideal of R.

It remains to describe the partial order on the semigroup E(R) of the idempotent
elements and the bonding homomorphisms between the constituent groups of S(R).

Recalling that if P and Q are two idempotent prime ideals of a domain R, P ⊆ Q
if and only if PQ = P and if D and S are overrings of R, then S ⊆ D if and only if
SD = D, then the partial order on E(R) is induced by the inclusion between prime
ideals and the reverse inclusion between fractional overrings. Moreover, we have:

Proposition 2.21 ([7, Proposition 4.1]). Assume that R is a Prüfer domain of finite
character. Let L = P1 ·P2 · · · · ·PnD, H = Q1 ·Q2 · · · · ·QkS be nonzero idempotent
fractional ideals of R satisfying the conditions of Proposition 2.17. Then [L] ≤ [H]
if and only if

(1) S ⊆ D,
(2) For every 1≤ j ≤ k either QjD = D or there exists 1≤ i ≤ n such that Q j = Pi.

To describe the bonding homomorphisms between the constituent groups of the
class semigroup S(R) it is convenient to consider the properties of two special types
of such homomorphisms, that is, those induced by multiplication by a fractional
overring of R or by an idempotent prime ideal of R.

Lemma 2.22 ([7, Lemma 4.2]). Let P, Q be nonzero idempotent prime ideals of the
Prüfer domain of finite character R and let D and S be overrings of R such that
S ⊆ D. Then:

(1) The maps
φS

D : GS → GD and φP
PD : GP → GPD

are surjective homomorphisms induced by multiplication by D.
(2) Assume that D ⊇ End(QP) and that P, Q are non-comparable, then:

φD
PD : GD → GPD and φQD

QPD : GQD → GQPD

are injective homomorphisms induced by multiplication by P.
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The bonding homomorphisms are then described by the following proposition.

Proposition 2.23 ([7, Proposition 4.3]). Assume that R is a Prüfer domain of fi-
nite character. Let L = P1 ·P2 · · · · ·PnD, H = Q1 ·Q2 · · · · ·QkS be nonzero idem-
potent fractional ideals of R satisfying the conditions of Proposition 2.17 and
such that [L] ≤ [H]. Let K = Q1 ·Q2 · · · · ·QkD, then the bonding homomorphism
φH

L : GH → GL is the composition of the bonding epimorphism φH
K and the bonding

monomorphism φK
L , namely φH

L = φK
L ◦φH

K .

The results on the structure of the Clifford semigroup of a Prüfer domain of
finite character have been generalized by Fuchs [28] by considering an arbitrary
Prüfer domain R and restricting considerations to the subsemigroup S′(R) of S(R)
consisting of the isomorphy classes of ideals containing at least one element of finite
character.

2.6 Boole regular domains

Recall that a semigroup S (with 1) is said to be Boolean if for each x ∈ S, x = x2.
This subsection seeks ring-theoretic conditions of a domain R that reflects in the
Boolean property of its class semigroup S(R). Precisely, it characterizes integrally
closed domains with Boolean class semigroup; in this case, S(R) happens to iden-
tify with the Boolean semigroup formed of all fractional overrings of R. It also treats
Noetherian-like settings where the Clifford and Boolean properties of S(R) coincide
with stability conditions; a main feature is that the Clifford property forces t-locally
Noetherian domains to be one-dimensional Noetherian domains. It closes with a
study of the transfer of the Clifford and Boolean properties to various pullback con-
structions. These results lead to new families of domains with Clifford or Boolean
class semigroup, moving therefore beyond the contexts of integrally closed domains
or Noetherian domains.

By analogy with Clifford regularity, we define Boole regularity as follows:

Definition 2.24 ([38]). A domain R is Boole regular if S(R) is a Boolean semigroup.

Clearly, a PID is Boole regular and a Boole regular domain is Clifford regular.
The integral closure of a Clifford regular domain is Prüfer [8,59]. The next result is
an analogue for Boole regularity.

Proposition 2.25 ([38, Proposition 2.3]). The integral closure of a Boole regular
domain is Bézout.

A first application characterizes almost Krull domains subject to Clifford or
Boole regularity as shown below:

Corollary 2.26 ([38, Corollary 2.4]). A domain R is almost Krull and Boole (resp.,
Clifford) regular if and only if R is a PID (resp., Dedekind).
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A second application handles the transfer to polynomial rings:

Corollary 2.27 ([38, Corollary 2.5]). Let R be a domain and X an indeterminate
over R. Then:

R is a field ⇐⇒ R[X ] is Boole regular ⇐⇒ R[X ] is Clifford regular

One of the aims is to establish sufficient conditions for Boole regularity in
integrally closed domains. One needs first to examine the valuation case. For this
purpose, recall first a stability condition that best suits Boole regularity:

Definition 2.28. A domain R is strongly stable if each nonzero ideal I of R is prin-
cipal in its endomorphism ring (I : I).

Note that for a domain R, the set FOV (R) of fractional overrings of R is a Boolean
semigroup with identity equal to R. Recall that a domain R is said to be strongly
discrete if P2 � P for every nonzero prime ideal P of R [26].

Theorem 2.29 ([38,39, Theorem 3.2]). Let R be an integrally closed domain. Then
R is a strongly discrete Bézout domain of finite character if and only if R is strongly
stable. Moreover, when any one condition holds, R is Boole regular with S(R) ∼=
FOV (R).

The proof lies partially on the following lemmas.

Lemma 2.30. Let R be a domain. Then:

R is stable Boole regular ⇐⇒ R is strongly stable.

Lemma 2.31. Let R be an integrally closed domain. Then:

R is strongly discrete Clifford regular ⇐⇒ R is stable.

Lemma 2.32. Let V be a valuation domain. The following are equivalent:

(1) VP is a divisorial domain, for each nonzero prime ideal P of R;
(2) V is a stable domain;
(3) V is a strongly discrete valuation domain.

Moreover, when any one condition holds, V is Boole regular.

This lemma gives rise to a large class of Boole regular domains that are not PIDs.
For example, any strongly discrete valuation domain of dimension ≥ 2 (cf. [27]) is
a Boole regular domain which is not Noetherian. The rest of this subsection stud-
ies the class semigroups for two large classes of Noetherian-like domains, that is,
t-locally Noetherian domains and Mori domains. Precisely, it examines conditions
under which stability and strong stability characterize Clifford regularity and Boole
regularity, respectively.

Next, we review some terminology related to the w-operation. For a nonzero frac-
tional ideal I of R, Iw :=

⋃
(I : J) where the union is taken over all finitely generated

ideals J of R with J−1 = R. We say that I is a w-ideal if Iw = I. The domain R is
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said to be Mori if it satisfies the ascending chain condition on divisorial ideals [3]
and strong Mori if it satisfies the ascending chain condition on w-ideals [23, 48].
Trivially, a Noetherian domain is strong Mori and a strong Mori domain is Mori.
Finally, we say that R is t-locally Noetherian if RM is Noetherian for each t-maximal
ideal M of R [43]. Recall that strong Mori domains are t-locally Noetherian [23,
Theorem 1.9].

The next result handles the t-locally Noetherian setting.

Theorem 2.33 ([38, Theorem 4.2]). Let R be a t-locally Noetherian domain. Then
R is Clifford (resp., Boole) regular if and only if R is stable (resp., strongly stable).
Moreover, when any one condition holds, R is either a field or a one-dimensional
Noetherian domain.

The proof relies partially on the next lemma.

Lemma 2.34. Let R be a Clifford regular domain. Then It � R for each nonzero
proper ideal I of R. In particular, every maximal ideal of R is a t-ideal.

The above theorem asserts that a strong Mori Clifford regular domain is nec-
essarily Noetherian. Here, Clifford regularity forces the w-operation to be trivial
(see also [48, Proposition 1.3]). Also noteworthy is that while a t-locally Noethe-
rian stable domain is necessarily a one-dimensional L-stable domain, the converse
does not hold in general. For instance, consider an almost Dedekind domain which
is not Dedekind and appeal to Corollary 2.26. However, the equivalence holds for
Noetherian domains [8, Theorem 2.1] and [1, Proposition 2.4].

Corollary 2.35 ([38, Corollary 4.4]). Let R be a local Noetherian domain such
that the extension R ⊆ R is maximal, where R denotes the integral closure of R. The
following are equivalent:

(1) R is Boole regular;
(2) R is strongly stable;
(3) R is stable and R is a PID.

This result generates new families of Boole regular domains beyond the class of
integrally closed domains.

Example 2.36. Let R := k[X2,X3](X2,X3) where k is a field and X an indeterminate

over k. Clearly, R = k[X ]R\(X2,X3) is a PID and the extension R ⊆ R is maximal.
Further, R is a Noetherian Warfield domain, hence stable (cf. [10]). Consequently,
R is a one-dimensional non-integrally closed local Noetherian domain that is Boole
regular.

The next results handle the Mori setting. In what follows, we shall use R and R∗
to denote the integral closure and complete integral closure, respectively, of a
domain R.
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Theorem 2.37 ([38, Theorem 4.7]). Let R be a Mori domain. Then the following
are equivalent:

(1) R is one-dimensional Clifford (resp., Boole) regular and R∗ is Mori;
(2) R is stable (resp., strongly stable).

It is worth recalling that for a Noetherian domain R we have dim(R) = 1 ⇔
dim(R∗) = 1 ⇔ R∗ is Dedekind since here R∗ = R. The same result holds if R is
a Mori domain such that (R : R∗) 	= 0 [4, Corollary 3.4(1) and Corollary 3.5(1)].
Also, it was stated that the “only if” assertion holds for seminormal Mori domains
[4, Corollary 3.4(2)]. However, beyond these contexts, the problem remains open.
This explains the cohabitation of “dim(R) = 1” and “R∗ is Mori” assumptions in the
above theorem. In this vein, we set the following open question:
“Let R be a local Mori Clifford regular domain is it true that:

dim(R) = 1 ⇐⇒ R∗ is Dedekind?”

The next result partly draws on the above theorem and treats two well-studied
large classes of Mori domains [3]. Recall that a domain R is seminormal if x ∈ R
whenever x ∈ K and x2,x3 ∈ R.

Theorem 2.38 ([38, Theorem 4.9]). Let R be a Mori domain. Consider the follow-
ing statements:

(1) The conductor (R : R∗) 	= 0,
(2) R is seminormal,
(3) The extension R ⊆ R∗ has at most one proper intermediate ring.

Assume that either (1), (2), or (3) holds. Then R is Clifford (resp., Boole) regular if
and only if R is stable (resp., strongly stable).

2.7 Pullbacks

The purpose here is to examine Clifford regularity and Boole regularity in pullback
constructions. This allows for the construction of new families of domains with
Clifford or Boolean class semigroup, beyond the contexts of integrally closed or
Noetherian domains.

Let us fix the notation for the rest of this subsection. Let T be a domain, M a
maximal ideal of T , K its residue field, φ : T −→ K the canonical surjection, D a
proper subring of K with quotient field k. Let R := φ−1(D) be the pullback issued
from the following diagram of canonical homomorphisms:

R −→ D
↓ ↓
T

φ−→ K = T/M

Next, we announce the first theorem which provides a necessary and sufficient
condition for a pseudo-valuation domain (i.e., PVD) to inherit Clifford or Boole
regularity.
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Theorem 2.39 ([38, Theorem 5.1]).

(1) If R is Clifford (resp., Boole) regular, then so are T and D, and [K : k] ≤ 2.
(2) Assume D = k and T is a valuation (resp., strongly discrete valuation) domain.

Then R is Clifford (resp., Boole) regular if and only if [K : k] = 2.

The following example shows that this theorem does not hold in general, and
hence nor does the converse of (1).

Example 2.40. Let Z and Q denote the ring of integers and field of rational numbers,
respectively, and let X and Y be indeterminates over Q. Set V := Q(

√
2,
√

3)[[X ]],
M := XQ(

√
2,
√

3)[[X ]], T := Q(
√

2)+M, and R := Q+M. Both T and R are one-
dimensional local Noetherian domains arising from the DVR V , with T = V and
R = T . By the above theorem, T is Clifford (actually, Boole) regular, whereas
R is not. More specifically, the isomorphy class of the ideal I := X(Q +

√
2Q +√

3Q+ M) is not regular in S(R).

Now, one can build original example using the above theorem as follows:

Example 2.41. Let n be an integer ≥ 1. Let R be a PVD associated with a non-
Noetherian n-dimensional valuation (resp., strongly discrete valuation) domain
(V,M) with [V/M : R/M] = 2. Then R is an n-dimensional local Clifford (resp.,
Boole) regular domain that is neither integrally closed nor Noetherian.

Recall that a domain A is said to be conducive if the conductor (A : B) is nonzero
for each overring B of A other than its quotient field. Examples of conducive do-
mains include arbitrary pullbacks of the form R := D+ M arising from a valuation
domain V := K +M [19, Propositions 2.1 and 2.2]. We are now able to announce the
last theorem of this subsection. It treats Clifford regularity, for the remaining case
“k = K”, for pullbacks R := φ−1(D) where D is a conducive domain.

Theorem 2.42 ([38, Theorem 5.6]). Under the same notation as above, consider
the following statements:

(1) T is a valuation domain and R := φ−1(D),
(2) T := K[X ] and R := D+ XK[X ], where X is an indeterminate over K.

Assume that D is a semilocal conducive domain with quotient field k = K and either
(1) or (2) holds. Then R is Clifford regular if and only if so is D.

Now a combination of Theorems 2.39 and 2.42 generates new families of
examples of Clifford regular domains, as shown by the following construction [38,
Example 5.8]:

Example 2.43. For every positive integer n ≥ 2, there exists an example of a do-
main R satisfying the following conditions:

(1) dim(R) = n,
(2) R is neither integrally closed nor Noetherian,
(3) R is Clifford regular,
(4) Each overring of R is Clifford regular,
(5) R has infinitely many maximal ideals.
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2.8 Open problems

By Proposition 2.5 the class of Clifford regular domains contains the class of stable
domains and is contained in the class of finitely stable domains. Both inclusions are
proper. In fact, every Prüfer domain is finitely stable, but only the Prüfer domains of
finite character are Clifford regular. Moreover, a Prüfer domain is stable if and only
if it is of finite character and strongly discrete, that is, every nonzero prime ideal is
not idempotent (cf. [49, Theorem 4.6]), hence there exists a large class of nonsta-
ble integrally closed Clifford regular domains. The classification of stable domains
obtained by B. Olberding in [50], shows that there are stable domains which are
neither Noetherian nor integrally closed. Furthermore, there is an example of a non-
coherent stable domain ([50, Section 5]), hence there exist non-coherent Clifford
regular domains.

There are also examples of Clifford regular domains which are neither stable nor
integrally closed, as illustrated by [8, Example 6.1].

Example 2.44. Let k0 be a field and let K be an extension field of k0 such that
[K : k0] = 2. Consider a valuation domain V of the form K + M where M is the
maximal ideal of V and assume M2 = M. Let R be the domain k0 + M. The ideals
of R can be easily described: they are either ideals of V or principal ideals of R.
Thus, R is Clifford regular, but it is not stable, since M is an idempotent ideal of R;
moreover the integral closure of R is V .

There are still many questions related to the problem of characterizing the class
of Clifford regular domains in general. Note that if a domain R is stable, then R is of
finite character and every overring of R is again stable ([51, Theorems 3.3 and 5.1]).
If R is an integrally closed Clifford regular domain, then R is a Prüfer domain of
finite character (Theorem 2.16) and thus the same holds for every overring of R.
Hence, the two subclasses of Clifford regular domains consisting of the stable do-
mains and of the integrally closed domains are closed for overrings and their mem-
bers are domains of finite character. We may ask the following major questions
concerning Clifford regular domains:

Question 2.45 Is every Clifford regular domain of finite character?

Question 2.46 (a) Is every overring of a Clifford regular domain again Clifford
regular?

(b) In particular, is the integral closure of a Clifford regular domain a Clifford
regular domain?

In [56], Sega gives partial answers to part (a) of this question. In particular, he
proves that if R is a Clifford regular domain such that the integral closure of R is
a fractional overring, then every overring of R is Clifford regular. An affirmative
answer to part (b) would imply that a Clifford regular domain is necessarily of finite
character, since the integral closure of a Clifford regular domain is a Prüfer domain.

In view of the validity of the conjecture about the finite character of Prüfer
domains with the local invertibility property proved in [36], Question 2.46 (b) may
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be weakened by asking if the integral closure of a Clifford regular domain satisfies
the local invertibility property. More generally we may ask:

Question 2.47 If a finitely stable domain satisfies the local invertibility property, is
it true that its integral closure satisfies the same property?

A positive answer to the above question would imply that a finitely stable domain
satisfying the local invertibility property has finite character.

Another interesting problem is to characterize the local Clifford regular domains.
The next example shows that not every finitely stable local domain is Clifford
regular.

Example 2.48. Let A be a DVR with quotient field Q and let B be the ring
Q[[X2,X3]]. Denote by P the maximal ideal of B and let R = A + P. By [50,
Proposition 3.6], R is finitely stable but it is not L-stable. In fact, J = Q+AX +P is
a fractional ideal of R, since JP ⊆ P ⊆ R and (J : J) = R, but J2 = Q[[X ]]. Thus, by
Proposition 2.5, R is not Clifford regular.

However, the following result holds.

Proposition 2.49 ([8, Corollary 5.6]). Let R be a local Clifford regular domain with
principal maximal ideal. Then R is a valuation domain.

In the case of a Clifford regular domain R of finite character a description of the
idempotent elements of S(R) is available. It generalizes the situation illustrated in
Proposition 2.17 for Clifford regular Prüfer domains.

Lemma 2.50. Let R be a Clifford regular domain of finite character and let T be a
nonzero idempotent fractional ideal of R. If E = End(T ), then either T = E or T is
a product of idempotent maximal ideals of E.

We end this subsection by recalling a partial result regarding the finite character
of Clifford regular domains. We denote by T(R) the set of maximal ideals m of R
for which there exists a finitely generated ideal with the property that m is the only
maximal ideal containing it.

Proposition 2.51. Let R be a finitely stable domain satisfying the local stability
property. Then every nonzero element of R is contained in at most a finite number
of maximal ideals of T(R). In particular the result holds for every Clifford regular
domain.

3 t-Class semigroups of integral domains

A domain R is called a PVMD (for Prüfer v-multiplication domain) if the v-finite
v-ideals form a group under the t-multiplication; equivalently, if RM is a valuation
domain for each t-maximal ideal M of R. Ideal t-multiplication converts ring notions
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such as PID, Dedekind, Bézout, Prüfer, and integrality to UFD, Krull, GCD, PVMD,
and pseudo-integrality, respectively. The pseudo-integrality (i.e., t-integrality) was
introduced and studied in 1991 by D. F. Anderson, Houston, and Zafrullah [2].

The t-class semigroup of R is defined by

St(R) := Ft(R)/P(R)

where P(R) is the subsemigroup of Ft(R) consisting of nonzero principal frac-
tional ideals of R. Thus, St(R) stands as the t-analogue of S(R), the class semigroup
of R. For the reader’s convenience we recall from the introduction the set-theoretic
inclusions:

C(R) ⊆ Cl(R) ⊆ St(R) ⊆ S(R).

By analogy with Clifford regularity and Boole regularity (Section 2), we define
t-regularity as follows:

Definition 3.1 ([40]). A domain R is Clifford (resp., Boole) t-regular if St(R) is a
Clifford (resp., Boolean) semigroup.

This section reviews recent works that examine ring-theoretic conditions of a
domain R that reflect reciprocally in semigroup-theoretic properties of its t-class
semigroup St(R). Contexts that suit best t-regularity are studied in [40–42] in an
attempt to parallel analogous developments and generalize the results on class semi-
groups (reviewed in Section 2).

Namely, [40] treats the case of PVMDs extending Bazzoni’s results on Prüfer
domains [5, 8]; [41] describes the idempotents of St(R) and the structure of their
associated groups recovering well-known results on class semigroups of valuation
domains [9] and Prüfer domains [6, 7]; and [42] studies the t-class semigroup of a
Noetherian domain. All results are illustrated by original examples distinguishing
between the two concepts of class semigroup and t-class semigroup. Notice that in
Prüfer domains, the t- and trivial operations (and hence the t-class and class semi-
groups) coincide.

3.1 Basic results on t-regularity

Here, we discuss t-analogues of basic results on t-regularity. First we notice that
Krull domains and UFDs are Clifford and Boole t-regular, respectively. These two
classes of domains serve as a starting ground for t-regularity as Dedekind domains
and PIDs do for regularity. Also, we will see that t-regularity stands as a default
measure for some classes of Krull-like domains, e.g., “UFD = Krull + Boole
t-regular.” Moreover, while an integrally closed Clifford regular domain is Prüfer
(Proposition 2.14), an integrally closed Clifford t-regular domain need not be a
PVMD. An example is built to this end, as an application of the main theorem
of this subsection, which examines the transfer of t-regularity to pseudo-valuation
domains.
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The first result displays necessary and/or sufficient ideal-theoretic conditions for
the isomorphy class of an ideal to be regular in the t-class semigroup.

Lemma 3.2 ([40, Lemma 2.1]). Let I be a t-ideal of a domain R. Then

(1) [I] is regular in St(R) if and only if I = (I2(I : I2))t .
(2) If I is t-invertible, then [I] is regular in St(R).

A domain R is Krull if every t-ideal of R is t-invertible. From the lemma one
can obviously see that a Krull domain is Clifford t-regular. Recall that a domain R
is t-almost Dedekind if RM is a rank-one DVR for each t-maximal ideal M of R;
t-almost Dedekind domains lie strictly between Krull domains and general PVMDs
[43]. A domain R is said to be strongly t-discrete if it has no t-idempotent t-prime
ideals (i.e., for every t-prime ideal P, (P2)t � P) [22]. The next results (cf. [40,
Proposition 2.3]) show that t-regularity measures how far some Krull-like domains
are from being Krull or UFDs.

Proposition 3.3. Let R be a domain. The following are equivalent:

(1) R is Krull;
(2) R is t-almost Dedekind and Clifford t-regular;
(3) R is strongly t-discrete, completely integrally closed, and Clifford t-regular.

Proposition 3.4. Let R be a domain. The following are equivalent:

(1) R is a UFD;
(2) R is Krull and Boole t-regular;
(3) R is t-almost Dedekind and Boole t-regular;
(4) R is strongly t-discrete, completely integrally closed, and Boole t-regular.

Note that the assumptions in the previous results are not superfluous. For, the
(Bézout) ring of all entire functions in the complex plane is strongly (t-)discrete [26,
Corollary 8.1.6] and completely integrally closed, but it is not (t-)almost Dedekind
(since it has an infinite Krull dimension). Also, a non-discrete rank-one valuation
domain is completely integrally closed and Clifford (t-)regular [9], but it is not Krull.

The t-regularity transfers to polynomial rings and factor rings providing more
examples of Clifford or Boole t-regular domains, as shown in the next result. Recall
that Clifford regularity of R[X ] forces R to be a field (Corollary 2.27).

Proposition 3.5 ([40, Propositions 2.4 and 2.5]). Let R be a domain, X an indeter-
minate over R, and S a multiplicative subset of R.

(1) Assume R is integrally closed. Then R is Clifford (resp., Boole) t-regular if and
only if so is R[X ].

(2) If R is Clifford (resp., Boole) t-regular, then so is RS.

Now, one needs to examine the integrally closed setting. At this point, recall
that an integrally closed Clifford (resp., Boole) regular domain is necessarily Prüfer
(resp., Bézout) [38,59]. This fact does not hold for t-regularity; namely, an integrally
closed Clifford (or Boole) t-regular domain need not be a PVMD (i.e., t-Prüfer).
Examples stem from the following theorem on the inheritance of t-regularity by
PVDs (for pseudo-valuation domains).
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Theorem 3.6 ([40, Theorem 2.7]). Let R be a PVD issued from a valuation domain
V . Then:

(1) R is Clifford t-regular.
(2) R is Boole t-regular if and only if V is Boole regular.

Contrast this result with Theorem 2.39 about regularity; which asserts that if R
is a PVD issued from a valuation (resp., strongly discrete valuation) domain (V,M),
then R is a Clifford (resp., Boole) regular domain if and only if [V/M : R/M] = 2.

Now, using Theorem 3.6, one can build integrally closed Boole (hence Clifford)
t-regular domains which are not PVMDs. For instance, let k be a field and X ,Y two
indeterminates over k. Let R := k + M be the PVD associated to the rank-one DVR
V := k(X)[[Y ]] = k(X)+M, where M = YV . Clearly, R is an integrally closed Boole
t-regular domain but not a PVMD [25, Theorem 4.1].

3.2 The PVMD case

A domain R is of finite t-character if each proper t-ideal is contained in only
finitely many t-maximal ideals. It is worthwhile recalling that the PVMDs of finite
t-character are exactly the Krull-type domains introduced and studied by Griffin in
1967–1968 [31, 32]. This subsection discusses the t-analogue for Bazzoni’s result
that “an integrally closed domain is Clifford regular if and only if it is a Prüfer
domain of finite character” (Theorem 2.16).

Recall from [2] that the pseudo-integral closure of a domain R is defined as R̃ =
⋃

(It : It), where I ranges over the set of finitely generated ideals of R; and R is
said to be pseudo-integrally closed if R = R̃. This is equivalent to saying that R is
a v-domain, i.e. a domain such that (Iv : Iv) = R for each nonzero finitely generated
ideal I of R. A domain with this property is called in Bourbaki’s language regularly
integrally closed [11, Chap. VII, Exercise 30]. Clearly R ⊆ R̃ ⊆ R�, where R and R�

are respectively the integral closure and the complete integral closure of R. In view
of the example provided in the previous subsection, one has to elevate the “integrally
closed” assumption in Bazzoni’s result to “pseudo-integrally closed.” Accordingly,
in [40, Conjecture 3.1], the authors sustained the following:

Conjecture 3.7. A pseudo-integrally closed domain (i.e., v-domain) is Clifford
t-regular if and only if it is a PVMD of finite t-character.

The next result presented a crucial step towards a satisfactory t-analogue.

Theorem 3.8 ([40, Theorem 3.2]). A PVMD is Clifford t-regular if and only if it is
a Krull-type domain.

Since in Prüfer domains the t- and trivial operations coincide, this theorem re-
covers Bazzoni’s result (mentioned above) and also uncovers the fact that in the
class of PVMDs, Clifford t-regularity coincides with the finite t-character condition.
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The proof involves several preliminary lemmas, some of which are of independent
interest and their proofs differ in form from their respective analogues – if any – for
the trivial operation. These lemmas are listed below.

Lemma 3.9. Let R be a PVMD and I a nonzero fractional ideal of R. Then for every
t-prime ideal P of R, ItRP = IRP.

Lemma 3.10. Let R be a PVMD which is Clifford t-regular and I a nonzero frac-
tional ideal of R. Then I is t-invertible if and only if I is t-locally principal.

Lemma 3.11. Let R be a PVMD which is Clifford t-regular and let P � Q be two
t-prime ideals of R. Then there exists a finitely generated ideal I of R such that
P � It ⊆ Q.

Lemma 3.12. Let R be a PVMD which is Clifford t-regular and P a t-prime ideal of
R. Then (P : P) is a PVMD which is Clifford t-regular and P is a t-maximal ideal of
(P : P).

Lemma 3.13. Let R be a PVMD which is Clifford t-regular and Q a t-prime ideal of
R. Suppose there is a nonzero prime ideal P of R such that P � Q and ht(Q/P) = 1.
Then there exists a finitely generated subideal I of Q such that Maxt(R, I) =
Maxt(R,Q), where Maxt(R, I) consists of t-maximal ideals containing I.

As a consequence of Theorem 3.8, the next result handles the context of strongly
t-discrete domains.

Corollary 3.14 ([40, Corollary 3.12]). Assume R is a strongly t-discrete domain.
Then R is a pseudo-integrally closed Clifford t-regular domain if and only if R is a
PVMD of finite t-character.

Recently, Halter-Koch solved Conjecture 3.7 by using the language of
ideal systems on cancellative commutative monoids. Precisely, he proved that
“every t-Clifford regular v-domain is a Krull-type domain” [35, Propositions 6.11
and 6.12]. This result combined with the “if” statement of Theorem 3.8 provides a
t-analogue for Bazzoni’s result (mentioned above):

Theorem 3.15. A v-domain is Clifford t-regular if and only if it is a Krull-type
domain.

The rest of this subsection is devoted to generating examples. For this purpose,
two results will handle the possible transfer of the PVMD notion endowed with
the finite t-character condition to pullbacks and polynomial rings, respectively. This
will allow for the construction of original families of Clifford t-regular domains via
PVMDs.

Proposition 3.16 ([40, Proposition 4.1]). Let T be a domain, M a maximal ideal
of T , K its residue field, φ : T −→ K the canonical surjection, and D a proper
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subring of K. Let R = φ−1(D) be the pullback issued from the following diagram of
canonical homomorphisms:

R −→ D
↓ ↓
T

φ−→ K = T/M

Then R is a PVMD of finite t-character if and only if D is a semilocal Bézout domain
with quotient field K and T is a Krull-type domain such that TM is a valuation
domain.

Proposition 3.17 ([40, Proposition 4.2]). Let R be an integrally closed domain and
X an indeterminate over R. Then R has finite t-character if and only if so does R[X ].

Note that the “integrally closed” condition is unnecessary in the above result, as
pointed out recently in [30]. Now one can build new families of Clifford t-regular
domains originating from the class of PVMDs via a combination of the two previous
results and Theorem 3.8 (cf. [40, Example 4.3]).

Example 3.18. For each integer n ≥ 2, there exists a PVMD Rn subject to the fol-
lowing conditions:

(1) dim(Rn) = n.
(2) Rn is Clifford t-regular.
(3) Rn is not Clifford regular.
(4) Rn is not Krull.

Here are two ways to realize this. Let V0 be a rank-one valuation domain with quo-
tient field K. Let V = K + N be a rank-one non-strongly discrete valuation domain
(cf. [21, Remark 6(b)]). Take Rn = V [X1, . . . ,Xn−1].

For n ≥ 4, the classical D + M construction provides more examples. Indeed,
consider an increasing sequence of valuation domains V = V1 ⊂ V2 ⊂, . . . ,⊂ Vn−2

such that, for each i ∈ {2, . . . ,n−2}, dim(Vi) = i and Vi/Mi = V/N = K, where Mi

denotes the maximal ideal of Vi. Set T = Vn−2[X ] and M = (Mn−2,X). Therefore
Rn = V0 + M is the desired example.

3.3 The structure of the t-class semigroup of a Krull-type domain

This subsection extends Bazzoni and Salce’s study of groups in the class semi-
group of a valuation domain [9] and recovers Bazzoni’s results on the constituents
groups of the class semigroup of a Prüfer domain of finite character [6,7] to a larger
class of domains. Precisely, it describes the idempotents of St(R) and the struc-
ture of their associated groups when R is a Krull-type domain (i.e., PVMD of finite
t-character). Indeed, it states that there are two types of idempotents in St(R): those
represented by fractional overrings of R and those represented by finite intersections
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of t-maximal ideals of fractional overrings of R. Further, it shows that the group
associated with an idempotent of the first type equals the class group of the fractional
overring, and characterizes the elements of the group associated with an idempotent
of the second type in terms of their localizations at t-prime ideals.

In any attempt to extend classical results on Prüfer domains to PVMDs (via
t-closure), the t-linked notion plays a crucial role in order to make the t-move pos-
sible. An overring T of a domain R is t-linked over R if, for each finitely generated
ideal I of R, I−1 = R⇒ (T : IT ) = T [2,45]. In Prüfer domains, the t-linked property
coincides with the notion of overring (since every finitely generated proper ideal is
invertible and then its inverse is a fortiori different from R). Recall also that an over-
ring T of R is fractional if T is a fractional ideal of R. Of significant importance
too for the study of t-class semigroups is the notion of t-idempotence; namely, a
t-ideal I is t-idempotent if (I2)t = I.

Let R be a PVMD. Note that T is a t-linked overring of R if and only if T is a
subintersection of R, that is, T =

⋂
RP, where P ranges over some set of t-prime

ideals of R [44, Theorem 3.8] or [15, p. 206]. Further, every t-linked overring of R
is a PVMD [44, Corollary 3.9]; in fact, this condition characterizes the notion of
PVMD [20, Theorem 2.10 ]. Finally, let I be a t-ideal of R. Then (I : I) is a fractional
t-linked overring of R and hence a PVMD.

Theorem 3.8 asserts that if R is a Krull-type domain, then St(R) is Clifford and
hence a disjoint union of subgroups G[J], where [J] ranges over the set of idempo-
tents of St(R) and G[J] is the largest subgroup of St(R) with unit [J]. At this point, it
is worthwhile recalling Bazzoni-Salce’s result that valuation domains have Clifford
class semigroup [9]. To the main result of this subsection:

Theorem 3.19 ([41, Theorem 2.1]). Let R be a Krull-type domain and I a t-ideal
of R. Set T := (I : I) and Γ (I) := {finite intersections of t-idempotent t-maximal
ideals of T}. Then [I] is an idempotent of St(R) if and only if there exists a unique
J ∈ {T}∪Γ (I) such that [I] = [J]. Moreover,
(1) If J = T , then G[J]

∼= Cl(T );
(2) If J =

⋂
1≤i≤r Qi ∈ Γ (I), then the sequence

0 −→ Cl(T )
φ−→ G[J]

ψ−→ ∏
1≤i≤r

G[QiTQi
] −→ 0

of natural group homomorphisms is exact, where G[QiTQi ]
denotes the constituent

group of the Clifford semigroup S(TQi) associated with [QiTQi ].

The proof of the theorem draws partially on the following lemmas, which are of
independent interest.

Lemma 3.20. Let R be a PVMD. Let T be a t-linked overring of R and Q a t-prime
ideal of T . Then P := Q∩R is a t-prime ideal of R with RP = TQ. If, in addition, Q
is t-idempotent in T , then so is P in R.

Lemma 3.21. Let R be a PVMD and T a t-linked overring of R. Let J be a common
(fractional) ideal of R and T . Then:
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(1) Jt1 = Jt , where t1 denotes the t-operation with respect to T .
(2) J is a t-idempotent t-ideal of R ⇐⇒ J is a t-idempotent t-ideal of T .

Lemma 3.22. Let R be a PVMD, I a t-ideal of R, and T := (I : I). Let J :=
⋂

1≤i≤r Qi,
where each Qi is a t-idempotent t-maximal ideal of T . Then J is a fractional
t-idempotent t-ideal of R.

Lemma 3.23. Let R be a PVMD, I a t-idempotent t-ideal of R, and M ⊇ I a
t-maximal ideal of R. Then IRM is an idempotent (prime) ideal of RM.

Lemma 3.24. Let R be a Krull-type domain, L a t-ideal of R, and J a t-idempotent
t-ideal of R. Then:

[L] ∈ G[J] ⇐⇒ (L : L) = (J : J) and (JL(L : L2))t = (L(L : L2))t = J.

Lemma 3.25. Let R be a PVMD and I a t-ideal of R. Then:

(1) I is a t-ideal of (I : I).
(2) If R is Clifford t-regular, then so is (I : I).

Since in a Prüfer domain the t-operation collapses to the trivial operation,
Theorem 3.19 recovers Bazzoni’s results on Prüfer domains of finite character
(Proposition 2.17 and Theorem 2.19). Moreover, there is the following consequence:

Corollary 3.26 ([41, Corollary 2.9]). Let R be a Krull-type domain which is
strongly t-discrete. Then St(R) is a disjoint union of subgroups Cl(T ), where T
ranges over the set of fractional t-linked overrings of R.

Now one can develop numerous illustrative examples via Theorem 3.19 and
Corollary 3.26. Two families of such examples can be provided by means of poly-
nomial rings over valuation domains. First, the following lemma investigates this
setting:

Lemma 3.27 ([41, Lemma 3.1]). Let V be a nontrivial valuation domain and X an
indeterminate over V . Then:

(1) R := V [X ] is a Krull-type domain which is not Prüfer.
(2) Every fractional t-linked overring of R has the form Vp[X ] for some nonzero

prime ideal p of V .
(3) Every t-idempotent t-prime ideal of R has the form p[X ] for some idempotent

prime ideal p of V .

Example 3.28. Let n be an integer ≥ 1. Let V be an n-dimensional strongly discrete
valuation domain and let (0) ⊂ p1 ⊂ p2 ⊂ ... ⊂ pn denote the chain of its prime
ideals. Let R := V [X ], a Krull-type domain. A combination of Lemma 3.27 and
Corollary 3.26 yields

St(R) = {Vp1[X ],Vp2 [X ], ...,Vpn [X ]}
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where, for each i, the class [Vpi [X ]] in St(R) is identified with Vpi[X ] (due to the
uniqueness stated by the main theorem).

Example 3.29. Let V be a one-dimensional valuation domain with idempotent
maximal ideal M and R := V [X ], a Krull-type domain. By Theorem 3.19 and
Lemma 3.27, we have:

St(R) = {[R]}∪{[I] | I t-ideal of R with (II−1)t = M[X ]}.

3.4 The Noetherian case

A domain R is called strong Mori if R satisfies the ascending chain condition on
w-ideals (cf. Section 2.6). Recall that the t-dimension of R, abbreviated t-dim(R), is
by definition equal to the length of the longest chain of t-prime ideals of R.

This subsection discusses t-regularity in Noetherian and Noetherian-like do-
mains. Precisely, it studies conditions under which t-stability (see definition below)
characterizes t-regularity. Unlike regularity, t-regularity over Noetherian domains
does not force the t-dimension to be one. However, Noetherian strong t-stable do-
mains happen to have t-dimension 1.

Recall that an ideal I of a domain R is said to be L-stable if RI :=
⋃

n≥1(In : In)
= (I : I).

The next result compares Clifford t-regularity to two forms of stability.

Theorem 3.30 ([42, Theorem 2.2]). Let R be a Noetherian domain and consider
the following:

(1) R is Clifford t-regular,
(2) Each t-ideal I of R is t-invertible in (I : I),
(3) Each t-ideal is L-stable.

Then (1) ⇒ (2) ⇒ (3). If t-dim(R) = 1, then the 3 conditions are equivalent.

Recall that an ideal I of a domain R is said to be stable (resp., strongly stable)
if I is invertible (resp., principal) in (I : I), and R is called a stable (resp., strongly
stable) domain provided each nonzero ideal of R is stable (resp., strongly stable).
A stable domain is L-stable [1, Lemma 2.1]. By analogy, t-stability is defined in
[42] as follows:

Definition 3.31. A domain R is t-stable if each t-ideal of R is stable, and R is
strongly t-stable if each t-ideal of R is strongly stable.

Recall that a Noetherian domain R is Clifford regular if and only if R is stable if
and only if R is L-stable and dim(R) = 1 [8, Theorem 2.1] and [38, Corollary 4.3].
Unlike Clifford regularity, Clifford (or even Boole) t-regularity does not force a
Noetherian domain R to be of t-dimension one. In order to illustrate this fact with
an example, a result first establishes the transfer of Boole t-regularity to pullbacks
issued from local Noetherian domains.
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Proposition 3.32 ([42, Proposition 2.3]). Let (T,M) be a local Noetherian domain
with residue field K and φ : T −→ K the canonical surjection. Let k be a proper
subfield of K and R := φ−1(k) the pullback issued from the following diagram of
canonical homomorphisms:

R −→ k
↓ ↓
T

φ−→ K = T/M

Then R is Boole t-regular if and only if T is Boole t-regular.

Now the next example provides a Boole t-regular Noetherian domain with
t-dimension � 1.

Example 3.33. Let K be a field, X and Y two indeterminates over K, and k a proper
subfield of K. Let T := K[[X ,Y ]] = K + M and R := k + M where M := (X ,Y ).
Since T is a UFD, then T is Boole t-regular (Proposition 3.4). Further, R is a Boole
t-regular Noetherian domain by the above proposition. Further M is a v-ideal of R,
so that t-dim(R) = dim(R) = 2, as desired.

Next, the main result of this subsection presents a t-analogue for Boole regularity
as stated in Theorem 2.33.

Theorem 3.34 ([42, Theorem 2.6]). Let R be a Noetherian domain. Then:

R is strongly t-stable ⇐⇒ R is Boole t-regular and t-dim(R) = 1.

An analogue of this result does not hold for Clifford t-regularity. For, there ex-
ists a Noetherian Clifford t-regular domain with t-dim(R) = 1 such that R is not
t-stable. Indeed, recall first that a domain R is said to be pseudo-Dedekind [43] (or
generalized Dedekind [57]) if every v-ideal is invertible. In [55], P. Samuel gave an
example of a Noetherian UFD R for which R[[X ]] is not a UFD. In [43], Kang noted
that R[[X ]] is a Noetherian Krull domain which is not pseudo-Dedekind (otherwise,
Cl(R[[X ]]) = Cl(R) = 0 forces R[[X ]] to be a UFD, absurd). Moreover, R[[X ]] is a
Clifford t-regular domain with t-dimension 1 (since Krull). But R[[X ]] not being
a UFD translates into the existence of a v-ideal of R[[X ]] that is not invertible, as
desired.

The next result extends the above theorem to the larger class of strong Mori
domains.

Theorem 3.35 ([42, Theorem 2.10]). Let R be a strong Mori domain. Then:

R is strongly t-stable ⇐⇒ R is Boole t-regular and t-dim(R) = 1.

Unlike Clifford regularity, Clifford (or even Boole) t-regularity does not force a
strong Mori domain to be Noetherian. Indeed, it suffices to consider a UFD which is
not Noetherian. We close with the following discussion about the limits and possible
extensions of the above results.
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Remark 3.36. (1) It is not known whether the assumption “t-dim(R) = 1” in
Theorem 3.30 can be omitted.

(2) Following Proposition 2.25, the integral closure R of a Noetherian Boole regular
domain R is a PID. By analogy, it is not known if R is a UFD in the case of Boole
t-regularity. (It is the case if the conductor (R : R) 	= 0.)

(3) It is not known if the assumption “R strongly t-discrete, i.e., R has no
t-idempotent t-prime ideals” forces a Clifford t-regular Noetherian domain to
be of t-dimension one.

Acknowledgment. We thank the reviewers for their comments that helped im-
prove the quality of this paper.
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22. El Baghdadi, S.: On a class of Prüfer v-multiplication domains. Comm. Algebra 30,

3723–3742 (2002)
23. Fangui, W., McCasland, R.L.: On strong Mori domains. J. Pure Appl. Algebra 135, 155–165

(1999)
24. Ferrand, D., Raynaud, M.: Fibres formelles d’un anneau local Noétherien. Ann. Scient. Éc.
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