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a b s t r a c t

This paper deals with well-known extensions of the Prüfer domain concept to arbitrary
commutative rings. We investigate the transfer of these notions in trivial ring extensions
(also called idealizations) of commutative rings by modules and then generate original
families of rings with zero-divisors subject to various Prüfer conditions. The new examples
give further evidence for the validity of the Bazzoni–Glaz conjecture on the weak global
dimension of Gaussian rings. Moreover, trivial ring extensions allow us to widen the scope
of validity of Kaplansky–Tsang conjecture on the content ideal of Gaussian polynomials.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

All rings considered in this paper are commutative with identity elements and all modules are unital. In 1932, Prüfer
introduced and studied integral domains in which every non-zero finitely generated ideal is invertible [24]. In 1936,
Krull [20] named these rings after H. Prüfer and stated equivalent conditions for a ring to be a Prüfer domain. Since then,
‘‘Prüfer domains have assumed a central role in the development of multiplicative ideal theory through numeral equivalent
forms. These touched onmany areas of commutative algebra, e.g., valuation theory, arithmetic relations on the set of ideals,
∗-operations, and polynomial rings; in addition to several homological characterizations’’ (Gilmer [9]).
The extension of this concept to rings with zero-divisors gives rise to five classes of Prüfer-like rings featuring some

homological aspects (Bazzoni–Glaz [2] and Glaz [10]). At this point, we make the following definition:

Definition 1.1. Let R be a commutative ring.
(1) R is called semi-hereditary if every finitely generated ideal of R is projective [5].
(2) R is said to have weak global dimension≤ 1 (w. gl. dim(R) ≤ 1) if every finitely generated ideal of R is flat [11,12].
(3) R is called an arithmetical ring if the lattice formed by its ideals is distributive [6].
(4) R is called a Gaussian ring if for every f , g ∈ R[X], one has the content ideal equation c(fg) = c(f )c(g) [26].
(5) R is called a Prüfer ring if every finitely generated regular ideal of R is invertible [4,15].

In the domain context, all these forms coincidewith the definition of a Prüfer domain. Glaz [10] provides exampleswhich
show that all these notions are distinct in the context of arbitrary rings. The following diagram of implications summarizes
the relations between them [2,3,12,10,21,22,26]:

Semi-hereditary ⇒ weak global dimension ≤ 1⇒ Arithmetical ⇒ Gaussian ⇒ Prüfer
In this paper, we investigate the transfer of the five Prüfer conditions in trivial ring extensions, which are defined below.
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Definition 1.2. Let A be a ring and E an A-module. The trivial ring extension of A by E (also called the idealization of E over
A) is the ring R := A ∝ E whose underlying group is A× E with multiplication given by (a, e)(a′, e′) = (aa′, ae′ + a′e).

For the reader’s convenience, recall that if I is an ideal of A and E ′ is a submodule of E such that IE ⊆ E ′, then J := I ∝ E ′
is an ideal of R; ideals of R need not be of this form [19, Example 2.5]. However, prime (resp., maximal) ideals of R have
the form p ∝ E, where p is a prime (resp., maximal) ideal of A [17, Theorem 25.1(3)]. Suitable background on commutative
trivial ring extensions is [11,17].
It is notable that original examples, for each one of the above classes, are rare in the literature. This paper investigates the

transfer of the aforementioned Prüfer conditions to trivial ring extensions. Our results generate new examples which enrich
the current literature with new families of Prüfer-like rings with zero-divisors. In particular, we obtain further evidence for
the validity of Bazzoni–Glaz conjecture sustaining that ‘‘the weak global dimension of a Gaussian ring is 0, 1, or∞’’ [3].
Moreover, trivial ring extensions offer the possibility to widen the scope of validity of the content conjecture of Kaplansky
and Tsangwhichwas extended to investigate ringswhere ‘‘every Gaussian polynomial has locally principal content ideal’’ [1,
2,14,16,21,22,26]. Notice that both conjectures share the common context of rings with zero-divisors. This very fact lies
behind our motivation for studying the Gaussian condition and related concepts in trivial ring extensions.
Section 2 deals with trivial ring extensions of the form R := A ∝ B, where A ⊆ B is an extension of integral domains. The

main result asserts that ‘‘R is Gaussian (resp., Arithmetical) if and only if A is Prüferwith K ⊆ B (resp., K = B).’’ This generates
new examples of non-arithmetical Gaussian rings as well as arithmetical rings with weak global dimension strictly greater
than one. Recall that classical examples of non-semi-hereditary arithmetical rings stem from Jensen’s 1966 result [18] as
non-reduced principal rings, e.g., Z/n2Z for any integer n ≥ 2. In this respect, we provide a new family of examples of
non-finite conductor arithmetical rings, hence quite far from being principal. We also establish a result on the weak global
dimension of these constructions which happens to corroborate the Bazzoni–Glaz conjecture (cited above).
In their recent paper devoted to Gaussian properties, Bazzoni and Glaz have proved that a Prüfer ring satisfies any of the

other four Prüfer conditions if and only if its total ring of quotients satisfies that same condition [3, Theorems 3.3 & 3.6 & 3.7
& 3.12]. This fact narrows the scope of study to the class of total rings of quotients. Section 3 investigates Prüfer conditions
in a special class of total rings of quotients; namely, those arising as trivial ring extensions of local rings by vector spaces
over the residue fields. The main result establishes that if (A,M) is a non-trivial local ring and E a nonzero AM -vector space,
then R := A ∝ E is a non-arithmetical total ring of quotients. Moreover, R is a Gaussian ring if and only if A is a Gaussian
ring. This enables us to build new examples of non-arithmetical Gaussian total rings of quotients or non-Gaussian total rings
of quotients (which are necessarily Prüfer). Furthermore, the weak global dimension of these constructions turns out to be
infinite whenM admits a minimal generating set.
A problem initially associated with Kaplansky and his student Tsang [1,2,14,22,26] and also termed as Tsang–Glaz–

Vasconcelos conjecture in [16] sustained that ‘‘every nonzero Gaussian polynomial over a domain has an invertible (or,
equivalently, locally principal) content ideal.’’ It is well-known that a polynomial over any ring is Gaussian if its content
ideal is locally principal. The converse is precisely the object of Kaplansky–Tsang–Glaz–Vasconcelos conjecture extended to
those rings where ‘‘every Gaussian polynomial has locally principal content ideal. The objective of Section 4 is to validate
this conjecture in a large family of rings distinct from the three classes of arithmetical rings, of locally domains, and of locally
approximately Gorenstein rings, where the conjecture holds so far. This is made possible by the main result which states
that a trivial ring extension of a domain by its quotient field satisfies the condition that ‘‘every Gaussian polynomial has
locally principal content ideal.’’ We end upwith a conjecture that equates the latter condition with the local irreducibility of
the zero ideal. This would offer an optimal solution to the Kaplansky–Tsang–Glaz–Vasconcelos conjecture that recovers all
previous results. The section closes with a discussion –backedwith examples– which attempts to rationalize this statement.

2. Extensions of domains

This section explores trivial ring extensions of the form R := A ∝ B, where A ⊆ B is an extension of integral domains.
Notice in this context that (a, b) ∈ R is regular if and only if a 6= 0. The main result (Theorem 2.1) examines the transfer of
Prüfer conditions to R and hence generates new examples of non-arithmetical Gaussian rings and of arithmetical rings with
weak global dimension � 1.
In 1969, Osofsky proved that theweak global dimension of an arithmetical ring is either≤ 1 or infinite [23]. In 2005, Glaz

proved Osofsky’s result in the class of coherent Gaussian rings [12, Theorem 3.3]. Recently, Bazzoni and Glaz conjectured
that ‘‘the weak global dimension of a Gaussian ring is 0, 1, or∞’’ [3]. Theorem 2.1 validates this conjecture for the class of
all Gaussian rings emanating from these constructions. Moreover, Example 2.7 widens its scope of validity beyond coherent
Gaussian rings.

Theorem 2.1. Let A ⊆ B be an extension of domains and K := qf(A). Let R := A ∝ B be the trivial ring extension of A by B.
Then:

(1) R is Gaussian if and only if R is Prüfer if and only if A is Prüfer with K ⊆ B.
(2) R is arithmetical if and only if A is Prüfer with K = B.
(3) w. gl. dim(R) = ∞.
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The proof of the theorem involves the following lemmas of independent interest.

Lemma 2.2. Let A be a ring, E an nonzero A-module, and R := A ∝ E. If R is Gaussian (resp., arithmetical), then so is A.

Proof. Straightforward since the arithmetical and Gaussian properties are stable under factor rings (here A ∼= R
0∝E ). �

Notice that Lemma 2.2 does not hold for the Prüfer property as shown by Example 2.8.

Lemma 2.3. Let K be a field, E a nonzero K-vector space, and R := K ∝ E. Thenw. gl. dim(R) = ∞.

Proof. Let {fi}i∈I be a basis of the K -vector space E and let J := 0 ∝ E. Consider the R-map R(I) u
→ J defined by u((ai, ei)i∈I)

= (0,
∑
i∈I aifi). Clearly, Ker(u) = 0 ∝ E

(I). Here we are identifying R(I) with A(I)
∝ E(I) as R-modules. We have the exact

sequence of R-modules:

0→ 0 ∝ E(I)
→ R(I) u

→ J → 0.

We claim that J is not flat. Otherwise, by [25, Theorem 3.55], we obtain

0 ∝ E(I)
= J (I) = JR(I)

= (0 ∝ E(I)) ∩ JR(I)
= (0 ∝ E(I))J = 0,

a contradiction. Therefore the above exact sequence yields

fd(J) = fd(J (I)) ≤ fd(J)− 1.

This forces the flat dimension of J and hence the weak global dimension of R to be infinite. �

Proof of Theorem 2.1. (1) We need only prove the following implications:

R Prüfer ⇒ A Prüfer with K ⊆ B⇒ R Gaussian.

Assume R is a Prüfer ring. We wish to show first that K ⊆ B in the case when A is local. Let x 6= 0 ∈ A and let
I := ((x, 0), (x, 1))R, a finitely generated regular ideal of R. Then I is invertible and hence principal (since R is local too).Write
I = (a, b)R for some a ∈ A and b ∈ B. Clearly, a = ux for some invertible element u in A, hence I = (ux, b)R = (x, u−1b)R.
Further (x, 0) ∈ I yields u−1b = b′x for some b′ ∈ B. It follows that I = (x, b′x)R = (x, 0)(1, b′)R = (x, 0)R since (1, b′) is
invertible. But (x, 1) ∈ I yields 1 = xb′′ for some b′′ ∈ B. Therefore K ⊆ B. Next suppose A is not necessarily local and let
q ∈ Spec(B) and p := q∩ A. Clearly, S := (A \ p)× 0 is a multiplicatively closed subset of Rwith the feature that r1 is regular
in S−1R if and only if r is regular in R. So finitely generated regular ideals of S−1R originate from finitely generated regular
ideals of R. Hence Ap ∝ Bp = S−1R is a Prüfer ring. Whence K = qf(Ap) ⊆ Bp ⊆ Bq. It follows that K ⊆ B =

⋂
Bq, where q

ranges over Spec(B), as desired. Now, one can easily check that K ⊆ B implies K ∝ B = Q (R), the total ring of quotients of R.
Moreover, let f =

∑
(ki, bi)xi and g =

∑
(k′j, b

′

j)x
j be two polynomials in Q (R)[x]. If there is i or j such that ki 6= 0 or k′j 6= 0,

then (ki, bi) or (k′j, b
′

j) is invertible, hence c(f ) = Q (R) or c(g) = Q (R), whence c(fg) = c(f )c(g) (this is Gauss lemma
which asserts that a polynomial with unit content is Gaussian). If ki = k′j = 0 for all i and j, then c(fg) = 0 = c(f )c(g).
Consequently, Q (R) is a Gaussian ring and so is R by [3, Theorem 3.3]. By Lemma 2.2, A is a Prüfer domain, completing the
proof of the first implication.
Assume A is a Prüfer domain with K ⊆ B. Let I be a nonzero finitely generated ideal of R minimally generated by

(a1, b1), . . . , (an, bn). For any a 6= 0 ∈ A and any b, b′ ∈ B, we have (0, b′) = (a, b)(0, a−1b′). So minimality forces either
ai = 0 for each i or ai 6= 0 for each i. In the first case, I2 = 0 and hence I is not a regular ideal. Next assume ai 6= 0 for each
i. It follows that I = (

∑
Aai) ∝ B since (ai, b) = (ai, bi)(1, a−1i (b− bi)) for each i and any b ∈ B. Since A is a Prüfer domain,

J :=
∑
Aai is invertible and aJ−1 is an ideal of A for some a 6= 0 ∈ A. We obtain

(a, 0)−1(aJ−1 ∝ B)I = (a, 0)−1(aJ−1 ∝ B)(J ∝ B)
= (a, 0)−1(aJ−1J ∝ B)
= (a, 0)−1(aA ∝ B)
= R.

Consequently, R is a Prüfer ring and hence Gaussian by [3, Theorem 3.3], completing the proof of (1).
(2) Assume R is an arithmetical ring. By (1), A is Prüfer with K ⊆ B. So K ∝ B = Q (R) is arithmetical since it is a

localization of R. Let b 6= 0 ∈ B. Then I := ((0, 1), (0, b))Q (R) is principal and hence I := (0, b′)Q (R) for some b′ 6= 0 ∈ B.
Further (0, b) ∈ I yields b = kb′ for some some k 6= 0 ∈ K , and then I := (0, k−1b)Q (R). Moreover (0, 1) ∈ I yields
1 = k′k−1b for some k′ 6= 0 ∈ K . It follows that b ∈ K and thus K = B. Conversely, assume A is Prüfer with K = B. By (1),
R = A ∝ K is Gaussian. Moreover Q (R) = K ∝ K is a principal ring (a fortiori arithmetical) since it has a unique nonzero
proper idealM := 0 ∝ K = T (0, 1). By [3, Theorem 3.5], R is arithmetical, completing the proof of (2).
(3) Let S := A\{0}. So T := S×0 is amultiplicatively closed subset of R. By Lemma2.3,w. gl. dim(T−1R) = w. gl. dim(K ∝

KB) = ∞. So w. gl. dim(R) = ∞. This completes the proof of the theorem. �
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The following corollary is an immediate consequence of Theorem 2.1.

Corollary 2.4. Let D be a domain, K := qf(D), and R := D ∝ K. Then the following statements are equivalent:

(1) D is a Prüfer domain;
(2) R is an arithmetical ring;
(3) R is a Gaussian ring;
(4) R is a Prüfer ring. �

Recall Jensen’s 1966 result: ‘‘for a ring R, w. gl. dim(R) ≤ 1 if and only if R is arithmetical and reduced’’ [18]. Classical
examples of arithmetical rings with weak global dimension 	 1 stem from Jensen’s result as non-reduced principal rings,
e.g.,Z/n2Z for any integer n ≥ 2. In this vein, Theorem2.1 generates a new family of examples quite far frombeing principal,
as shown below. For this purpose, recall that a ring R is a finite conductor ring if aR ∩ bR and (0 : c) are finitely generated
for any a, b, c ∈ R [13]. The class of finite conductor rings properly contains the class of coherent (a fortiori, Noetherian and
hence principal) rings [13,19].

Example 2.5. Let D be any Prüfer domain which is not a field and K := qf(D). Then R := D ∝ K is an arithmetical ring with
w. gl. dim(R) = ∞. Moreover, R is not a finite conductor ring by [19, Thoerem 2.8] and hence not coherent.

Also, Theorem 2.1 enriches the literature with new examples of non-arithmetical Gaussian rings, as shown below.

Example 2.6. Let K $ L be a field extension. Then R := K ∝ L is a Gaussian ring which is not arithmetical.

The next example shows that Theorem 2.1 widens the scope of validity of Bazzoni–Glaz conjecture beyond the class of
coherent Gaussian rings.

Example 2.7. Let Z and R denote the ring of integers and field of real numbers, respectively. Then R := Z(2) ∝ R satisfies
the following statements:

(1) R is a Gaussian ring,
(2) R is not an arithmetical ring,
(3) R is not a coherent ring,
(4) w. gl. dim(R) = ∞.

Proof. Assertions (1), (2), and (4) hold by direct application of Theorem 2.1. It remains to prove (3). Indeed, consider the
following exact sequence over R

0→ 0 ∝ R→ R
u
→ R(0, 1) = 0 ∝ Z(2) → 0

where u is defined by u(a, b) = (a, b)(0, 1) = (0, a). Now 0 ∝ R is not finitely generated as an R-module (otherwise R
would be finitely generated as a Z(2)-module). Hence 0 ∝ Z(2) is a finitely generated ideal of R that is not finitely presented.
Whence R is not coherent, as desired. �

The next example illustrates the failure of Theorem 2.1, in general, beyond the context of domain extensions.

Example 2.8. Let (A,M) be a non-valuation local domain, E a nonzero A-module with ME = 0, and B := A ∝ E. Then
R := A ∝ B is a Prüfer ring which is not Gaussian.

Proof. Indeed, one can easily check that R is a total ring of quotients and hence a Prüfer ring. By Lemma 2.2, R is not
Gaussian. �

3. A class of total rings of quotients

In a recent paper devoted to Gaussian properties, Bazzoni and Glaz have proved that a Prüfer ring satisfies any of
the other four Prüfer conditions (mentioned above) if and only if its total ring of quotients satisfies that same condition
[3, Theorems 3.3 & 3.6 & 3.7 & 3.12]. This fact narrows the scope of study to the class of total rings of quotients.
This section investigates Prüfer conditions in a particular class of total rings of quotients; namely, those arising as trivial

ring extensions of local rings by vector spaces over the residue fields. The main result (Theorem 3.1) enriches the literature
with original examples of non-arithmetical Gaussian total rings of quotients as well as non-Gaussian total rings of quotients
(which are necessarily Prüfer).

Theorem 3.1. Let (A,M) be a local ring and E a nonzero AM -vector space. Let R := A ∝ E be the trivial ring extension of A by E.
Then:

(1) R is a total ring of quotients and hence a Prüfer ring.
(2) R is Gaussian if and only if A is Gaussian.
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(3) R is arithmetical if and only if A := K is a field and dimK E = 1.
(4) w. gl. dim(R) � 1. If M admits a minimal generating set, thenw. gl. dim(R) = ∞.

Proof. (1) Straightforward.
(2) By Lemma 2.2, only the sufficiency has to be proved. Assume A is a Gaussian ring and let F =

∑
(ai, ei)xi be a

polynomial in R[x]. If ai 6∈ M for some i, then (ai, ei) is invertible in R, hence F is Gaussian. Now assume ai ∈ M for each
i and let G =

∑
(a′j, e

′

j)x
j
∈ R[x]. We may suppose, without loss of generality, that a′j ∈ M for each j. Let f =

∑
aixi and

g =
∑
a′jx
j in A[x]. One can easily check thatME = 0 yields the following

c(FG) = c(fg) ∝ c(fg)E
= c(fg) ∝ 0
= c(f )c(g) ∝ 0
= c(F)c(G).

Therefore F is Gaussian, as desired.
(3) Sufficiency is clear since K ∝ K is a principal ring. Next assume R is an arithmetical ring. We claim that A is a field.

Deny and let a 6= 0 ∈ M and e 6= 0 ∈ E. Therefore the ideal I := R(a, 0) + R(0, e) is principal in R (since R is local). So
I = R(a′, e′) for some (a′, e′) ∈ R. Clearly, (a, 0) ∈ I forces a′ to be nonzero and belong to M . Further, (0, e) ∈ I yields
ba′ = 0 and e = be′ for some b ∈ A. Necessarily, b ∈ M since a′ 6= 0. It follows that e = be′ = 0, the desired contradiction.
Now, let e, e′ be two nonzero vectors in E. Then I = R(0, e)+ R(0, e′) is a principal ideal of R. Similar arguments used in the
proof of Theorem 2.1(2) yield e = ke′ for some k ∈ K . So that dimK E = 1.
(4) Let J := 0 ∝ E and let {(fi)}i∈I be a basis of the (A/M)-vector space E. Consider the exact sequence of R-modules:

0→ Ker(u)→ R(I) u
→ J → 0 (1)

where u((ai, ei)i∈I) = (0,
∑
i∈I aifi). Hence, Ker(u) = (M ∝ E)(I). As in the proof of Lemma 2.3, we identify R(I) with

A(I)
∝ E(I) as R-modules. We claim that J is not flat. Otherwise, by [25, Theorem 3.55], we obtain J (I) = (M ∝ E)(I) ∩ JR(I)

=

J(M ∝ E)(I) = 0, absurd. By [25, Theorem 2.4], w. gl. dim(R) � 1. Next assume that M admits a minimal generating set.
Then one can easily check that M ∝ E admits a minimal generating set too. Let (bi, gi)i∈L denote a minimal generating set
ofM ∝ E and consider the exact sequence of R-modules:

0→ Ker(v)→ R(L) v
→ M ∝ E → 0

where v((ai, ei)i∈L) =
∑
i∈L(ai, ei)(bi, gi). The minimality assumption yields (see the proof of [25, Lemma 4.43])

Ker(v) ⊆ (M ∝ E)(L).

It follows that Ker(v) = V ∝ E(L)
= (V ∝ 0)⊕ J (L), where

V :=

{
(ai)i∈L ∈ M(L)

∣∣∣∣∣∑
i∈L

aibi = 0

}
.

We obtain

fd
(
(V ∝ 0)⊕ J (L)

)
≤ fd(M ∝ E). (2)

On the other hand, from the exact sequence in (1) we get

fd(M ∝ E) = fd(M ∝ E)(I) ≤ fd(J)− 1. (3)

A combination of (2) and (3) yields fd(J) ≤ fd(J) − 1. Consequently, the flat dimension of J (and a fortiori the weak global
dimension of R) has to be infinite, completing the proof of the theorem. �

Theorem 3.1 generates new and original examples of rings with zero-divisors subject to Prüfer conditions as shown
below.

Example 3.2. Let (V ,M) be a non-trivial valuation domain. Then R := V ∝ V
M is a non-arithmetical Gaussian total ring of

quotients.

Example 3.3. Let K be a field and E a K -vector space with dimK E ≥ 2. Then R := K ∝ E is a non-arithmetical Gaussian
total ring of quotients.

Example 3.4. Let (A,M) be a non-valuation local domain. Then R := A ∝ A
M is a non-Gaussian total ring of quotients.
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Recently, Bazzoni and Glaz proved that a Gaussian ring, with a maximal ideal M such that the nilradical of RM is non-
null and nilpotent, has infinite weak global dimension [3, Theorem 6.4]. The next example widens the scope of validity of
Bazzoni–Glaz conjecture as well as illustrates the setting of this result beyond coherent Gaussian rings.

Example 3.5. Let R denote the field of real numbers and x an indeterminate over R. Then R := R ∝ R[x] satisfies the
following statements:

(1) R is a Gaussian ring,
(2) R is not an arithmetical ring,
(3) R is not a coherent ring,
(4) R is local with nonzero nilpotent maximal ideal,
(5) w. gl. dim(R) = ∞.

Proof. Assertions (1) and (2) hold by direct application of Theorem 3.1. Assertion (3) is handled by [19, Theorem 2.6(2)].
Clearly, (4) holds since the maximal ideal of R is M := 0 ∝ R[x] (by [17, Theorem 25.1(3)]) with M2 = 0. Finally, (5) is
satisfied by Theorem 3.1(4), [3, Proposition 6.3], or [3, Theorem 6.4]. �

4. Kaplansky–Tsang–Glaz–Vasconcelos conjecture

Let R be a ring and Q (R) its total ring of quotients. An ideal I of R is said to be invertible if II−1 = R, where I−1 := {x ∈
Q (R)|xI ⊆ R}. A nonzero ideal is invertible if and only if it is regular, finitely generated, and locally principal. In particular,
for finitely generated ideals of domains, invertibility coincides with the locally principal condition. A polynomial f over R is
said to be Gaussian if c(fg) = c(f )c(g) holds for any polynomial g over R.
A problem initially associated with Kaplansky and his student Tsang [1,2,14,22,26] and also termed as Tsang–Glaz–

Vasconcelos conjecture in [16] sustained that ‘‘every nonzero Gaussian polynomial over a domain has an invertible (or,
equivalently, locally principal) content ideal.’’ It is well-known that a polynomial over any ring is Gaussian if its content
ideal is locally principal. The converse is precisely the object of Kaplansky–Tsang–Glaz–Vasconcelos conjecture extended to
those rings where ‘‘every Gaussian polynomial has locally principal content ideal.’’
Notice for convenience that the conjecture has a local character since the Gaussian condition is a local property (i.e., a

polynomial is Gaussian over a ring R if and only if its image is Gaussian over RM for each maximal ideal M of R). It is this
very fact that enables a natural extension of the conjecture from domains to rings (recall, for instance, that a Von Neumann
regular ring is locally a field).
Significant progress has been made on this conjecture. Glaz and Vasconcelos proved it for normal Noetherian domains

[14]. Then Heinzer and Huneke established its veracity over locally approximately Gorenstein rings (see definition below)
and over locally Noetherian domains [16, Theorem 1.5 & Corollary 3.4]. Recently, Loper and Roitman settled the conjecture
for (locally) domains [21, Theorem 4], and then Lucas extended their result to arbitrary rings by restricting to polynomials
with regular content [22, Theorem6]. Obviously, the conjecture is true in arithmetical rings.Moreover, trivial ring extensions
offer the possibility to widen the scope of its validity to a large family of rings distinct from the above contexts. This gives
birth to a new class of rings that properly contains the three classes of arithmetical rings, of locally domains, and of locally
approximately Gorenstein rings (see Fig. 1). We term the new concept as follows:

Definition 4.1. A ring R is pseudo-arithmetical if every Gaussian polynomial over R has locally principal content ideal.

We first prove a transfer result (Theorem 4.2) on trivial ring extensions. Then Conjecture 4.5 will equate the pseudo-
arithmetical notion with the local irreducibility of the zero ideal. If true, this conjecture would offer an optimal solution to
the Kaplansky–Tsang–Glaz–Vasconcelos conjecture that recovers all previous results.

Theorem 4.2. (1) Let R := A ∝ K be the trivial ring extension of a domain A by its quotient field K . Then R is a pseudo-
arithmetical ring.

(2) Let A ⊆ B be an extension of rings and R := A ∝ B. If R is a pseudo-arithmetical ring, then so is A.

Proof. (1) Let F :=
∑

(ai, ki)xi be anonzeroGaussianpolynomial inR[x]. Assume ai 6= 0 for some i. Then (ai, ki) is regular inR
and so is c(F) in R. Hence theGaussian property forces F to be regular in R[x]. Then c(F) is locally principal by [22, Theorem6].
Next assume ai = 0 for each i. Let a be a nonzero element of A such that aki ∈ A for each i and set F ′ := (a, 0)F =

∑
(0, aki)xi

in R[x]. We claim that f ′ :=
∑
akixi is a (nonzero) Gaussian polynomial of A[x]. Indeed, consider g =

∑
a′ix
i
∈ A[x] and

set G :=
∑

(a′i, 0)x
i in R[x]. Then 0 ∝ c(f ′g) = c(F ′G) = c(F ′)c(G). Moreover, c(F ′) =

∑
R(0, aki) = 0 ∝ c(f ′) and

c(G) = c(g) ∝ K (see proof of Lemma 2.2). It follows that 0 ∝ c(f ′g) = 0 ∝ c(f ′)c(g) and hence c(f ′g) = c(f ′)c(g).
Whence c(f ′) is locally principal since A is a domain [21]. Let P := p ∝ K ∈ Max(R) for some maximal ideal p of A and set
S := (A \ p)× 0 ⊆ R \ P . Since c(f ′)Ap = a′Ap for some a′ ∈ A, we get

(a, 0)c(F)RP = c(F ′)RP
=
(
0 ∝ c(f ′)

)
RP
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=
(
S−1(0 ∝ c(f ′))

)
RP

=
(
0 ∝ c(f ′)Ap

)
RP

=
(
0 ∝ a′Ap

)
RP

= (0, a′)RP

= (a, 0)
(
0,
a′

a

)
RP .

Consequently, c(F)RP = (0, a
′

a )RP since (a, 0) is regular in R. Thus c(F) is locally principal and therefore R is a pseudo-
arithmetical ring.
(2) Let f =

∑
aixi be aGaussian polynomial overA and set F :=

∑
(0, ai)xi. LetG =

∑
(a′i, bi)x

i
∈ R[x] and set g :=

∑
a′ix
i

in A[x]. Since f is Gaussian, we have c(F)c(G) = (0 ∝ c(f ))c(G) = 0 ∝ c(f )c(g) = 0 ∝ c(fg). On the other hand, one can
see that c(FG) = 0 ∝ c(fg). Therefore, c(FG) = c(F)c(G), hence F is a Gaussian polynomial over R. So c(F) = 0 ∝ I is a
locally principal ideal of R where I := c(f ). Now adapt the proof from the arithmetical statement in Lemma 2.2, to get that
I is locally principal, as desired. �

Obviously, a ring is arithmetical if and only if it is Gaussian and pseudo-arithmetical. In this context, note that
Examples 2.6 and 3.3 illustrate the failure of Theorem 4.2(1) for trivial ring extensions R := A ∝ E with E 6= qf(A).

Example 4.3. Let (A,M) be a local ring which is not a field and E a nonzero vector space over AM . Then R := A ∝ E is a Prüfer
ringwhich is not pseudo-arithmetical. Indeed, Theorem3.1 ensures that R is a non-arithmetical total ring of quotients (hence
Prüfer). We claim that the polynomial f := (a, 0) + (0, e)x, where a 6= 0 ∈ M and e 6= 0 ∈ E, is Gaussian but c(f ) is not
principal in R. To see this, let g ∈ R[x]. If g 6∈ (M × E)[x], then Gauss lemma ensures that c(fg) = c(f )c(g) since R is local
with ideal maximalM ∝ E. Assume g ∈ (M × E)[x]. ThenME = 0 yields

c(f )c(g) = (a, 0)c(g) = c((a, 0)g) = c(fg).

Now adapt the proof of Theorem 3.1(3), to obtain that c(f ) is not principal, and therefore R is not pseudo-arithmetical.

Remark 4.4. (1) Now pick any non-Prüfer domain A with K := qf(A) and consider the trivial extension R := A ∝ K . Then
by Corollary 2.4, R is not a Prüfer ring (a fortiori, R is not arithmetical). Moreover, there are plenty of non-regular Gaussian
polynomials over R, e.g., f :=

∑
(0, ki)xi. However, Theorem 4.2 ensures that every Gaussian polynomial over R has locally

principal content ideal (i.e., R is pseudo-arithmetical).
(2) Next we examine the Noetherian case. From [16], a local ring (R,M) is said to be approximately Gorenstein if R is

Noetherian and for every integer n > 0 there is an ideal I ⊆ Mn such that R/I is Gorenstein (e.g., any local Noetherian ring
(R,M) with the M-adic completion R̂ reduced). Heinzer and Huneke proved that every locally approximately Gorenstein
ring is pseudo-arithmetical [16, Theorem 1.5]. This result combined with [16, Remark 1.6] asserts that Noetherianity has no
direct effect on the pseudo-arithmetical notion even in low dimension, in the sense that non-Gorenstein Artinian local rings
are not pseudo-arithmetical. Finally, notice that the above example R := A ∝ K is not Noetherian since it is not coherent
by [19, Theorem 2.8].
(3) From [12], a ring R is called a PF ring if all principal ideals of R are flat, or, equivalently, if R is locally a domain

[11, Theorem 4.2.2(3)]. A ring R is called a PP ring or a weak Baer ring if all principal ideals of R are projective. In the class of
Gaussian rings, the PP and PF properties coincide, respectively, with the notions of semi-hereditary ring and ring with weak
global dimension at most 1. Clearly, note that the above example R := A ∝ K is not locally a domain.

In view of Example 4.3 and Remark 4.4, Fig. 1 summarizes the relations between all these classes of rings where the
implications are irreversible in general.
From the above discussion, it turns out that the pseudo-arithmetical notion must have a characterization that

accommodates the three disparate classes of arithmetical rings, of locally domains, and of locally approximately Gorenstein
rings (see Fig. 1). This new characterization will offer a ‘‘happy end’’ to the Kaplansky–Tsang–Glaz–Vasconcelos conjecture.
In this vein, we conjecture the following:

Conjecture 4.5. A ring R is pseudo-arithmetical if and only if the zero ideal is locally irreducible.

Remark 4.6. (1) Fuchs, Heinzer and Olberding have recently studied irreducibility in commutative rings [7,8] and noticed
that ‘‘it is readily seen that a ring R is an arithmetical ring if and only if for each proper ideal I of R, IM is an irreducible ideal
of RM for every maximal idealM of R containing I [7].’’
(2) Assume that Conjecture 4.5 is true. If R is locally a domain or locally approximately Gorenstein, then a polynomial

over R is Gaussian if and only if its content is locally principal [21, Theorem 4] & [16, Theorem 1.5]. In particular, a
nonzero polynomial over an integral domain is Gaussian if and only if its content is invertible. Indeed the locally domain
statement follows from the obvious fact that the zero ideal in a domain is irreducible. Next assume R is locally approximately
Gorenstein. Recall that a Gaussian polynomial f :=

∑
aixi over a ring R forces its image f :=

∑
aixi to be Gaussian over
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Fig. 1. Pseudo-arithmetical rings in perspective.

R/I , for every ideal I of R. Using this fact and the fact that the Gaussian condition is a local property, in combination with the
definition of a locally approximately Gorenstein ring, Heinzer and Huneke showed that the proof reduces to the case where
R is a zero-dimensional local Gorenstein ring (see the beginning of the proof of [16, Theorem 1.5]). But in this setting the
zero ideal is irreducible, as desired.
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