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ABSTRACT. This paper contributes to the study of the prime spectrum and dimension
theory of symbolic Rees algebra over Noetherian domains. We first establish some general
results on the prime ideal structure of subalgebras of affine domains, which actually arise,
in the Noetherian context, as domains between a domain A and A[a−1]. We then examine
closely the special context of symbolic Rees algebras (which yielded the first counter-
example to the Zariski-Hilbert problem). One of the results states that if A is a Noetherian
domain and p a maximal ideal of A, then the Rees algebra of p inherits the Noetherian-like
behavior of being a stably strong S-domain. We also investigate graded rings associated
with symbolic Rees algebras of prime ideals p such that Ap is a rank-one DVR and close
with an application related to Hochster’s result on the coincidence of the ordinary and
symbolic powers of a prime ideal.

1. INTRODUCTION

All rings considered in this paper are integral domains and all ring homomorphisms
are unital. Examples of finite-dimensional non-Noetherian Krull (or factorial) domains are
scarce in the literature. One of these stems from the generalized fourteenth problem of
Hilbert (also called Zariski-Hilbert problem). Let k be a field of characteristic zero and
let T be a normal affine domain over k. Let F be a subfield of the field of fractions of T .
Set R := F ∩T . The Hilbert-Zariski problem asks whether R is an affine domain over k.
Counterexamples on this problem were constructed by Rees [27], Nagata [24] and Roberts
[28, 29]. In 1958, Rees constructed the first counter-example giving rise to (what is now
called) Rees algebras. In 1970, based on Rees’ work, Eakin and Heinzer constructed in
[11] a first example of a 3-dimensional non-Noetherian Krull domain which arose as a
symbolic Rees algebra. In 1973, Hochster studied in [17] criteria for the ordinary and
symbolic powers of a prime ideal to coincide (i.e., the Rees and symbolic Rees algebras
are equal) within Noetherian contexts. Since then, these special graded algebras has been
capturing the interest of many commutative algebraists and geometers.

In this line, Anderson, Dobbs, Eakin, and Heinzer [2] asked whether R and its local-
izations inherit from T the Noetherian-like main behavior of having Krull and valuative
dimensions coincide (i.e., R is a Jaffard domain). This can be viewed in the larger context
of Bouvier’s conjecture about whether finite-dimensional non-Noetherian Krull domains
are Jaffard [7, 14]. In [5], we showed that while most examples existing in the literature
are (locally) Jaffard, the question about those arising as symbolic Rees algebras is still
open. This lies behind our motivation to contribute to the study of the prime ideal structure
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of this construction. We examine contexts where it inherits the (locally) Jaffard property
and hence compute its Krull and valuative dimensions.

A finite-dimensional domain R is said to be Jaffard if dim(R[X1, · · · ,Xn]) = n+dim(R)
for all n ≥ 1 or, equivalently, if dim(R) = dimv(R), where dim(R) denotes the (Krull)
dimension of R and dimv(R) its valuative dimension (i.e., the supremum of dimensions of
the valuation overrings of R). As this notion does not carry over to localizations, R is said
to be locally Jaffard if Rp is a Jaffard domain for each prime ideal p of R (equiv., S−1R is
a Jaffard domain for each multiplicative subset S of R).

In order to study Noetherian domains and Prüfer domains in a unified manner, Kaplan-
sky [21] introduced the notions of S-domain and strong S-ring. A domain R is called an
S-domain if, for each height-one prime ideal p of R, the extension p[X ] to the polynomial
ring in one variable also has height 1. A ring R is said to be a strong S-ring if R

p is an
S-domain for each p∈ Spec(R). While R[X ] is always an S-domain for any domain R [13],
R[X ] need not be a strong S-ring even when R is a strong S-ring. Thus, R is said to be a
stably (or universally) strong S-ring if the polynomial ring R[X1, · · · ,Xn] is a strong S-ring
for each positive integer n [19, 20, 22]. A stably strong S-domain is locally Jaffard [1, 19].
An example of a strong S-domain which is not a stably strong S-domain was constructed
in [8]. We assume familiarity with these concepts, as in [1, 3, 6, 7, 10, 18, 19, 20, 22].

In Figure 1, a diagram of implications indicates how the classes of Noetherian domains,
Prüfer domains, UFDs, Krull domains, and PVMDs [16] interact with the notion of Jaffard
domain as well as with the S-properties.
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FIGURE 1. Diagram of Implications

Let A be a domain, a 6= 0 ∈ A, and (In)n≥0 an a-filtration of A. Section 2 of this
paper provides some general results on the prime ideal structure of the graded ring R :=
∑n≥0 a−nIn. In particular, we prove that p ∈ Spec(A) with a ∈ p is the contraction of a
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prime ideal of R if and only if a−n pIn∩A = p for each n. Moreover, if any one condition
holds, then p ⊇ I1 ⊇ I2, · · · (Corollary 2.4). Section 3 examines closely the special con-
struction of symbolic Rees algebra. One of the main results (Theorem 3.2) reveals the fact
that three or more prime ideals of the symbolic Rees algebra may contract on the same
prime ideal in the base ring. Also we show that if A is a Noetherian domain and p a maxi-
mal ideal of A, then the Rees algebra of p is a stably strong S-domain hence locally Jaffard
(Theorem 3.5). Section 4 investigates the dimension of graded rings associated with sym-
bolic Rees algebras of prime ideals p such that Ap is a rank-one DVR and closes with an
application related to Hochster’s study of criteria that force the coincidence of the ordinary
and symbolic powers of a prime ideal.

2. THE GENERAL CONTEXT

Recall that an affine domain over a ring A is a finitely generated A-algebra that is a
domain [25, p. 127]. In light of the developments described in [5, Section 3], in order to
investigate the prime ideal structure of subalgebras of affine domains over a Noetherian
domain, we are reduced to those domains R between a Noetherian domain A and its lo-
calization A[a−1] for a nonzero element a of A. For this purpose, we use the language of
filtrations.

From [4, 23], a filtration of a ring A is a descending chain (In)n of ideals of A such that
A = I0 ⊇ I1 ⊇ ·· · ⊇ In ⊇ ·· · and InIm ⊆ In+m for all n,m. The associated graded ring of A
with respect to the filtration (In)n is given by gr(A) :=

⊕
n

In
In+1

. The filtration (In)n is said
to be an I-filtration, for a given ideal I of A, if IIn ⊆ In+1 for each integer n≥ 0.

Let A be a domain and a a nonzero element of A. Let (In)n be an a-filtration of A and
R := A+a−1I1 +a−2I2 + · · ·= ∑n≥0 a−nIn. Clearly, R is a domain, which is an ascending
union of the fractional ideals (a−nIn)n, such that A⊆ R⊆ A[a−1]. The converse is also true
as shown below.

Lemma 2.1. Let A be a domain and a 6= 0 ∈ A. Then R is a domain such that A ⊆ R ⊆
A[a−1] if and only if R := A+a−1I1 +a−2I2 + · · ·= ∑n≥0 a−nIn for some a-filtration (In)n≥0
of A.

Proof. We only need to prove necessity. Let In := {x∈ A | x
an ∈ R} for each positive integer

n. It is fairly easy to see that In is an ideal of A for each integer n. Now, let x ∈ In+1. Then
x

an+1 ∈ R, so that a x
an+1 = x

an ∈ R. Thus x ∈ In. Also, observe that aIn ⊆ In+1 for each n. It
follows that (In)n is an a-filtration of A, as desired. �

Lemma 2.2. Let A be a domain, a 6= 0 ∈ A, and (In)n≥0 an a-filtration of A. Let R :=
∑n≥0 a−nIn. Then the prime ideals of R which don’t contain a are in one-to-one correspon-
dence with the prime ideals of A which don’t contain a.

Proof. This follows from the fact that S−1A = S−1R, where S is the multiplicatively closed
subset of A defined by S := {an | n ∈ N}. Moreover, if P ∈ Spec(R) with a /∈ P and p :=
P∩A, then

P = S−1 p∩R = p[a−1]∩R = ∑
n≥0

a−n(p∩ In).

�

The question which naturally arises is under what conditions a chain q⊂ p in Spec(A)
with a∈ prq lifts to a chain in Spec(R). This is handled by the main result of this section.
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Theorem 2.3. Let A be a domain, a 6= 0 ∈ A, (In)n≥0 an a-filtration of A, and R :=
∑n≥0 a−nIn. Let q ⊂ p ∈ Spec(A) such that a ∈ pr q and let Q := q[a−1]∩ R. Then
the following assertions are equivalent:

(1) There exists P ∈ Spec(R) such that Q⊂ P and P∩A = p;
(2) a−n(pIn +q∩ In)∩A = p, for each n≥ 0.

Proof. Recall first that Q := q[a−1]∩R = ∑n≥0 a−n(q∩ In) is the unique prime ideal of R
lying over q in A (Lemma 2.2).

(1) =⇒ (2) Suppose there exists P ∈ Spec(R) such that Q ⊂ P and P∩A = p. It is
worth noting that Rp = ∑n≥0 a−nInAp is associated with the a-filtration (InAp)n of Ap and
Qp = ∑n≥0 a−n(qAp ∩ InAp) is the unique prime ideal of Rp lying over qAp in Ap. Also
pR+Q = ∑n≥0 a−n(pIn +q∩ In) and hence pRp +Qp = ∑n≥0 a−n(pInAp +qAp∩ InAp) =⋃

n≥0 a−n(pInAp +qAp∩ InAp), an ascending union of fractional ideals of Rp. Now pRp +
Qp is a proper ideal of Rp. Therefore, for each n, an 6∈ pInAp + qAp ∩ InAp. Hence san 6∈
pIn + q∩ In for every s ∈ A \ p, whence (a−n(pIn + q∩ In)∩A)∩ (Ar p) = /0. It follows
that a−n(pIn +q∩ In)∩A = p for each n≥ 0.

(2) =⇒ (1) Suppose a−n(pIn + q∩ In)∩A = p for each n ≥ 0. Then (pR + Q)∩A =⋃
n≥0
(
a−n(pIn + q∩ In)∩A

)
= p. Therefore [4, Proposition 3.16] applied to the ring ho-

momorphism A
q ↪→ R

Q leads to the conclusion. �

The special case where q = 0 yields a necessary and sufficient condition for a prime
ideal of A containing a to lift to a prime ideal of R.

Corollary 2.4. Let A be a domain, a 6= 0 ∈ A, (In)n≥0 an a-filtration of A, and R :=
∑n≥0 a−nIn. Let p ∈ Spec(A) such that a ∈ p. Then p is the contraction of a prime ideal
of R if and only if a−n pIn ∩A = p for each n. Moreover, if any one condition holds, then
p⊇ I1.

Proof. The equivalence is ensured by the above theorem with q = 0. Moreover, a ∈ p
yields I1 ⊆ a−1 pI1∩A = p, as desired. �

Now it is legitimate to ask whether there may exist a chain of prime ideals of R of
length ≥ 2 lying over a given prime ideal p of A containing a. Ahead, Corollary 3.3 gives
an affirmative answer to this question.

3. THE CASE OF SYMBOLIC REES ALGEBRAS

Here we will focus on the special case of symbolic Rees algebras. In 1958, Rees con-
structed in [27] a first counter-example to the Zariski-Hilbert problem (initially posed at
the Second International Congress of Mathematicians at Paris in 1900). His construction
gave rise to (what is now called) Rees algebras. Since then, these special graded alge-
bras have been capturing the interest of many mathematicians, particularly in the fields of
commutative algebra and algebraic geometry.

Let A be a domain, t an indeterminate over A, and p ∈ Spec(A). For each n ∈ Z, set
p(n) := pnAp ∩A, the nth symbolic power of p, with p(n) = A for each n ≤ 0. Notice that
p = p(1) and pn ⊆ p(n) for all n≥ 2. We recall the following definitions:
•
⊕

n∈Z pntn = A[t−1, pt, · · · , pntn, · · · ] is the Rees algebra of p.
•
⊕

n∈Z p(n)tn = A[t−1, p(1)t, · · · , p(n)tn, · · · ] is the symbolic Rees algebra of p.
In 1970, based on Rees’ work, Eakin and Heinzer constructed in [11] the first example

of a 3-dimensional non-Noetherian Krull domain. It arose as a symbolic Rees algebra.
This enhances our interest for these constructions. In this section, we wish to push further
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the analysis of the prime deal structure of symbolic Rees algebras. Precisely, we plan to
investigates the lifting of prime ideals of A[t−1] in the symbolic Rees algebra R. We prove
that any prime ideal of A[t−1] lifts to a prime ideal in R. We also examine the length of
chains of prime ideals of R lying over a prime ideal of A[t−1].

Let us fix the notation for the rest of this section. Let A be a domain and t an indetermi-
nate over A. Let p ∈ Spec(A) and let

R := A[t−1, pt, p(2)t2, · · · , p(n)tn, · · · ]

be the symbolic Rees algebra of p. Consider the t−1-filtration (In)n≥0 of A[t−1], where
I0 = A[t−1], I1 = p[t−1]+ t−1A[t−1], and for n≥ 2

In := p(n)[t−1]+ t−1 p(n−1)[t−1]+ · · ·+ t−(n−1) p[t−1]+ t−nA[t−1].

One can easily check that

A[t−1]⊆ R⊆ A[t−1, t] and R = ∑
n≥0

Intn =
⋃
n≥0

Intn.

Finally, for q⊇ p in Spec(A), set

G(A) :=
⊕
n≥0

p(n)

p(n+1) and G(Aq) :=
⊕
n≥0

pA(n)
q

pA(n+1)
q

.

The first result examines the transfer of the Jaffard property.

Proposition 3.1. Assume A to be a Jaffard domain. Then R is a Jaffard domain with
dim(R) = 1+dim(A).

Proof. Notice that A[t−1] ⊆ R ⊆ A[t−1, t]. By [1, Lemma 1.15], dimv(R) = dimv(A[t−1]).
On the other hand, the equality R[t] = A[t−1, t] combined with [1, Proposition 1.14] yields
dim(A[t−1])≤ dim(R). Now A is Jaffard and then so is A[t−1] [1, Proposition 1.2]. Conse-
quently, dim(R) = dimv(R) = 1+dim(A), as desired. �

Next, we investigate the prime ideals of A[t−1] that lift in the symbolic Rees algebra
R. In view of Lemma 2.2, one has to narrow the focus to the prime ideals which con-
tain t−1. Moreover, by Corollary 2.4, these primes must necessarily contain I1 = (p, t−1).
Consequently, we reduce the study to the prime ideals of A[t−1] of the form (q, t−1) where
q⊇ p ∈ Spec(A).

Theorem 3.2. Let q be a prime ideal of A containing p. Then the following lattice isomor-
phisms hold:

(1)
{

Q ∈ Spec(R) | Q∩A[t−1] = (q, t−1)
}
' Spec

 G(Aq)
qAq
pAq

G(Aq)

.

(2)
{

P ∈ Spec(R) | P∩A[t−1] = (p, t−1)
}
' Spec

(
G(Ap)

)
.

Proof. (1) Let G(q) :=
A
q
⊕ p

p(2) +qp
⊕ p(2)

p(3) +qp(2) ⊕·· ·. We claim that

R
(q, t−1)R

∼= G(q)∼=
G(A)

(q/p)G(A)
.
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Indeed, notice the following:

R = A[t−1]⊕ pt⊕ p(2)t2⊕·· ·⊕ p(n)tn⊕·· ·

t−1R = (p, t−1)⊕ p(2)t⊕·· ·⊕ p(n+1)tn⊕·· ·

qR = q[t−1]⊕qpt⊕qp(2)t2⊕·· ·⊕qp(n)tn⊕·· ·

(q, t−1)R = (q, t−1)⊕ (p(2) +qp)t⊕·· ·⊕ (p(n+1) +qp(n))tn⊕·· ·

Then it is easily seen that
R

t−1R
∼= G(A) and

R
(q, t−1)R

∼= G(q). Moreover,

G(q) ∼=
A/p
q/p
⊕ p/p(2)

(q/p)(p/p(2))
⊕·· ·⊕ p(n)/p(n+1)

(q/p)(p(n)/p(n+1))
⊕·· ·

∼=
G(A)

(q/p)G(A)
.

Now, observe that Rq = Aq[t−1, pA(1)
q t, · · · , pA(n)

q tn, · · · ] is the symbolic Rees algebra of
pAq. This is due to the fact that p(n)Aq = pnAp∩Aq = pA(n)

q for each n≥ 0. We obtain

Rq

(q, t−1)Rq
=

Rq

(qAq, t−1)Rq
∼=

G(Aq)
qAq
pAq

G(Aq)
.

Hence the set of prime ideals of R lying over (q, t−1) in A[t−1] is lattice isomorphic to the
spectrum of G(Aq)

(qAq/pAq)G(Aq) .
(2) Take q := p in (1), completing the proof of the theorem. �

We deduce the following result in the Noetherian case. It shows, in particular, that there
may exist a chain of prime ideals of R of length ≥ 2 lying over (p, t−1) in A[t−1].

Corollary 3.3. Assume that A is Noetherian and let n := ht(p). Then the set
{

P∈ Spec(R) |
P∩A[t−1] = (p, t−1)

}
is lattice isomorphic to the spectrum of an n-dimensional finitely

generated algebra over the field
Ap

pAp
.

Proof. Let y1, · · · ,yr ∈ A such that pAp = (y1, · · · ,yr)Ap and let e1, · · · ,er denote their

respective images in
pAp

p2Ap
. By Theorem 3.2,

Rp

(p, t−1)Rp
∼= G(Ap). Note that Rp coincides

with the Rees algebra of pAp (since pnAp = p(n)Ap for all n≥ 1). It follows that

G(Ap) = gr(Ap) =
Ap

pAp
[e1, · · · ,er] (cf. [23, p. 93]).

On the other hand, by [23, Theorem 15.7], dim(gr(Ap)) = dim(Ap) = n, completing the
proof. �

Notice at this point that t−1R = (p, t−1)R (see the proof of Theorem 3.2). This translates
into the fact that prime ideals of R containing t−1 contain necessarily p[t−1] (stated in
Corollary 2.4). Given a prime ideal q of A, we next exhibit particular prime ideals of R that
lie over q.

Proposition 3.4. Let q ∈ Spec(A). The following hold:
(1) Assume p ⊆ q. Then Q := (q, t−1)⊕ pt⊕ p(2)t2⊕·· · is a prime ideal of R lying

over (q, t−1) in A[t−1] and Q is maximal with this property.



ON THE PRIME IDEAL STRUCTURE OF SYMBOLIC REES ALGEBRAS 7

(2) q[t−1, t]∩R = q[t−1]⊕ (p∩q)t⊕ (p(2)∩q)t2⊕·· · is the unique prime ideal of R
lying over q[t−1] in A[t−1].

Proof. (1) Assume p⊆ q. It is easily seen that
R
Q
∼=

A
q

. It follows that Q is a prime ideal of

R and Q∩A[t−1] = (q, t−1). Now Rq is the symbolic Rees algebra of pAq with
Rq

QRq
∼=

Aq

qAq
,

a field. Therefore Q is maximal among the prime ideals of R lying over (q, t−1).
(2) By Lemma 2.2, the unique prime ideal of R lying over q[t−1] is q[t−1, t]∩R. Further

observe that q[t−1, t] = q[t−1]⊕ qt⊕ qt2⊕ ·· · . So that q[t−1, t]∩R = q[t−1]⊕ (p∩ q)t⊕
(p(2)∩q)t2⊕·· · , as claimed. �

Theorem 3.5. Assume that A is Noetherian and p ∈Max(A). Then R is a stably strong
S-domain (hence locally Jaffard).

Proof. Let T := A[t−1, pt, p2t2, · · · , pntn, · · · ] be the Rees algebra of p. Let n be a positive
integer. Consider the natural injective ring homomorphism:
T [X1, · · · ,Xn] ↪→ R[X1, · · · ,Xn]. This induces the following map

f : Spec(R[X1, · · · ,Xn])−→ Spec(T [X1, · · · ,Xn])

defined by f (P) = P∩ T [X1, · · · ,Xn]. We claim that f is an order-preserving bijection.
Indeed, let Q be a prime ideal of T [X1, · · · ,Xn]. If t−1 6∈ Q, then Q survives in

A[t−1, t,X1, · · · ,Xn] = R[t,X1, · · · ,Xn] = T [t,X1, · · · ,Xn].

Therefore P := QA[t−1, t,X1, · · · ,Xn]∩R[X1, · · · ,Xn]. Hence P is the unique prime ideal
of R[X1, · · · ,Xn] such that f (P) = Q. Now, let t−1 ∈ Q. Then (p, t−1) ⊆ Q∩A[t−1] by
Corollary 2.4, whence p = Q∩A as p is maximal in A. Moreover recall that Rp = Tp.
Therefore Q survives in Tp[X1, · · · ,Xn] = Rp[X1, · · · ,Xn] and hence P := QRp[X1, · · · ,Xn]∩
R[X1, · · · ,Xn] is the unique prime ideal of R[X1, · · · ,Xn] such that f (P) = Q. It follows that f
is bijective. Obviously, it also preserves the inclusion order. Now assume p = (a1, · · · ,ar).
One can easily check that T = A[t−1,a1t, · · · ,art], so that T is Noetherian and thus a stably
strong S-domain. It follows that T [X1, · · · ,Xn] is a strong S-domain and so is R[X1, · · · ,Xn],
as desired. �

Remark 3.6. It is worth noting that the proof of the above theorem is still valid if we
weaken the assumption “A is Noetherian” to “A is a stably strong S-domain and p is finitely
generated” since the concept of strong S-domain is stable under quotient ring.

4. ASSOCIATED GRADED RINGS AND APPLICATIONS

This section investigates the dimension theory of graded rings associated with special
symbolic Rees algebras. Recall that the Krull dimension of the graded ring associated with
the (ordinary) Rees algebra of an ideal I of a Noetherian domain A is given by the formula
(cf. [12, Exercise 13.8]):

dim(grI(A)) = max{ht(q) | q ∈ Spec(A) and I ⊆ q}.
Let us fix the notation for this section. Throughout A will denote a Noetherian domain

and p a prime ideal of A such that Ap is a rank-one DVR. Thus, any height-one prime ideal
of an integrally closed Noetherian domain falls within the scope of this study. Let R, G(A),
and gr(A) denote the symbolic Rees algebra of p, the associated graded ring of A with
respect to the filtration (p(n))n, and the associated graded ring of p, respectively. That is,

R := A[t−1, pt, p(2)t2, · · · , p(n)tn, · · · ],
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G(A) :=
⊕
n≥0

p(n)

p(n+1) ,

gr(A) :=
⊕
n≥0

pn

pn+1 .

Finally, let u ∈ p such that pAp = uAp and v := u be the image of u in p/p(2).

Lemma 4.1. For each n≥ 0, let En := (A :Ap un) = {x ∈ Ap | xun ∈ A} and Fn := En be the
image of En in K := Ap/pAp. Then:

(1) (En)n≥0 is an ascending sequence of fractional ideals of A such that A⊆ En ⊆ Ap

and p(n) = Enun, for each n.

(2) (Fn)n≥0 is an ascending sequence of fractional ideals of
A
p

such that
A
p
⊆ Fn ⊆ K

and
p(n)

p(n+1) = Fnvn, for each n.

(3) G(A) =
⊕

n≥0 Fnvn.

Proof. Clearly, (En)n is an ascending sequence of fractional ideals of A. Fix n ≥ 0. We
have x ∈ p(n) if and only if x ∈ unAp and x ∈ A if and only if there exists y ∈ Ap such that
x = yun ∈ A if and only if x ∈ Enun. This proves (1). Assertion (2) is a consequence of (1)
and the proof is left to the reader. Also (3) is trivial from (2). �

Next, we announce the main result of this section.

Theorem 4.2. Let D :=
⋃

n≥0 Fn and X an indeterminate over D. Then:
(1) G(A) is a Jaffard domain and dim(G(A)) = 1+dim(A/p).
(2) dim(G(A)/vG(A)) = dim(A/p) and dim(G(A)[v−1]) = dim(D[X ]).

Proof. We first prove the following claims.

Claim 1. D is an overring of
A
p

and v is transcendental over D.

It is fairly easy to see that FnFm ⊆ Fn+m for any n and m. It follows that D is an overring

of
A
p

contained in K. Let P = b0 + b1X + · · ·+ bnXn ∈ A
p
[X ] such that P(v) = 0 = b0 +

b1v+ · · ·+bnvn. Let i ∈ {0,1, · · · ,n}. Since bivi ∈ Fivi, bivi = 0 by Lemma 4.1. So bi = ai

(mod pAp), for some ai ∈ Ei, and aiui ∈ piAp∩A = p(i). Therefore aiui = 0 in
p(i)

p(i+1) , that

is, aiui ∈ p(i+1). Hence ai ∈ pAp, whence bi = 0. Consequently, P = 0, proving that v is
transcendental over D.

Claim 2.
A
p
[v]⊆ G(A)⊆ D[v].

This follows from the facts that
A
p
⊆ Fn ⊆ D for each n≥ 0 and G(A) =

⊕
n≥0 Fnvn by

Lemma 4.1.

Claim 3. S−1 G(A) = D[v,v−1], where S := {vn | n≥ 0}.

Clearly, S−1 G(A) ⊆ D[v,v−1]. Also note that D ⊆ S−1 G(A) since Fn = (Fnvn)v−n ⊆
S−1 G(A) for each positive integer n. Hence D[v,v−1]⊆ S−1 G(A)⊆ D[v,v−1] establishing
the desired equality.
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(1) In view of Claim 2, we get dimv(G(A)) ≤ 1+dimv(A/p) = 1+dim(A/p). On
the other hand, notice that, for each prime ideal q of A containing p, the ideal Q :=
q
p
⊕ p

p(2) ⊕
p(2)

p(3)⊕·· · ∈ Spec(G(A)) with
G(A)

Q
∼=

A
q

. So dim(G(A)) ≥ 1+dim(A/p) as

G(A) is a domain. Thus dim(G(A)) = dimv(G(A)) = 1+dim(A/p).
(2) First notice that

ht(vG(A))+dim(G(A)/vG(A))≤ dim(G(A)) = 1+dim(A/p).

Then dim(G(A)/vG(A)) ≤ dim(A/p). Consider the prime ideal of G(A) given by P :=
F1v⊕F2v2⊕·· · and p ⊂ p1 ⊂ p2 ⊂ ·· · ⊂ ph ∈ Spec(A) with h := dim(A/p). We get the
following chain of prime ideals of G(A) containing the ideal vG(A)

vG(A)⊂ P⊂ p1

p
⊕P⊂ p2

p
⊕P⊂ ·· · ⊂ ph

p
⊕P.

It follows that dim(G(A)/vG(A)) = dim(A/p). Moreover, Claims 1 and 3 yield

dim(S−1 G(A)) = dim(D[v,v−1]) = dim(D[X ])

completing the proof of the theorem. �

Let B :=
⋃

n≥0 En =
⋃

n≥0 u−n p(n). Notice that B is an overring of A contained in Ap and
B := B

pAp∩B = D. The next result investigates some properties of B and its relation with D,
in view of the fact that an essential part of the spectrum of G(A) (and hence that of R) is
strongly linked to D.

Proposition 4.3. Let B :=
⋃

n≥0 u−n p(n). Then:
(1) pB = uB is a height-one prime ideal of B and it is the unique prime ideal of B lying

over p in A.

(2)
B

uB
= D.

(3) B = Ap∩A[u−1]. Then, if A is a Krull domain, so is B.
(4) B is locally Jaffard if and only if so is D.

Proof. (1) Let z ∈ pAp ∩B. Then z = a
s = x

un for some positive integer n, with x ∈ p(n),
a ∈ p and s ∈ Ar p. Then sx = aun ∈ pn+1 which means that x ∈ p(n+1). Hence z =
u x

un+1 ∈ u p(n+1)

un+1 ⊆ uB. Therefore pAp∩B = uB = pB, whence pB∈ Spec(B) with pB∩A =
p. Moreover, observe that Bp :=

⋃
n≥0 u−n p(n)Ap =

⋃
n≥0 u−n pnAp = Ap is a rank-one

DVR. Then ht(pB) = ht(pBp) = ht(pAp) = 1 and pB is the unique prime ideal of B lying
over p in A.

(2) It is straightforward from (1) and the fact that B :=
B

pAp∩B
= D.

(3) It is clear that B ⊆ Ap ∩A[u−1]. Let z ∈ Ap ∩A[u−1]. Then z = x
un = a

s for some
positive integer n, and x,a ∈ A and s ∈ Ar p. So xs = aun ∈ pn. Hence x ∈ p(n) which
means that z ∈ p(n)

un ⊆ B. Then the desired equality holds.
(4) Applying (1), one can check that the following diagram is cartesian:

B −→ D
↓ ↓
Ap −→ K,

which allows the transfer of the locally Jaffard property between B and D (recall that Ap is
a rank-one DVR). �
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In [17], Hochster investigated when the symbolic power p(n) of a given prime ideal p
of a Noetherian domain A coincides with the ordinary power pn for any n ≥ 0. His main
theorem gives sufficient conditions guaranteeing this equality. Applying this theorem, he
proves that the Cohen-Macaulayness of A/p has nothing to do with the coincidence of the
symbolic and ordinary powers, by providing a polynomial ring in four indeterminates A
such that A/p is not Cohen-Macaulay while p(n) = pn for any positive integer n. In this
vein, we recall Northcott’s Example [26, Example 3, p. 29] in which p is the defining
ideal of a curve (so that its residue class ring is Cohen-Macaulay) while p(2) 6= p2. Other
examples appeared in the literature of Noetherian domains A for which there exists a prime
ideal p of A such that p(n) 6= pn for some positive integer n, especially in works dealing
with the Noetherian property of symbolic Rees algebras.

From Theorem 4.2 we deduce a necessary condition for the symbolic and ordinary
powers to coincide for a height-one prime ideal p of a Noetherian domain A. This will
allow us to provide a bunch of original and new examples of Noetherian domains for which
there exists a prime ideal p such that p(n) 6= pn for some positive integer n.

Corollary 4.4. Let A be a local Noetherian domain and p a prime ideal of A such that Ap
is a rank-one DVR. Then:

p(n) = pn,∀n≥ 0 =⇒ dim(A) = 1+dim(A/p).

Proof. Assume p(n) = pn,∀n≥ 0. Then G(A) = gr(A). So a combination of [23, Theorem
15.7] and Theorem 4.2 leads to the conclusion. �

Corollary 4.5. Let A be an integrally closed local Noetherian domain which is not cate-
narian. Then there exists a prime ideal p of A such that p(n) 6= pn for some positive integer
n.

Proof. Let m denote the maximal ideal of A. Since A is not catenarian, there exists a
height-one prime ideal p$m of A such that

1+dim(A/p)� ht(m) = dim(A).

By Corollary 4.4, there exists n≥ 2 such that p(n) 6= pn. �

Next, we exhibit an explicit example of a local Noetherian domain A containing a prime
ideal p such that p(n) 6= pn for some positive integer n. For this purpose, we’ll use Na-
gata’s well-known example of a Noetherian domain which is catenarian but not universally
catenarian [25].

Example 4.6. Let k be a field and X ,Y,Z, t be indeterminates over k. Consider the k-
algebra homomorphism ϕ : k[X ,Y ]→ k[[t]] defined by ϕ(X) = t and ϕ(Y ) = s := ∑n≥1tn!.
Since s is known to be transcendental over k(t), ϕ is injective. This induces an embedding
ϕ : k(X ,Y )→ k((t)) of fields. So B1 := ϕ

−1(k[[t]]) is a rank-one discrete valuation overring
of k[X ,Y ] of the form B1 = k + XB1. Let B2 := k[X ,Y ](X−1,Y ) and B := B1 ∩B2. Then
Max(B) = {M,N} with M = XB1∩B and N = (X −1,Y )B2∩B, and B is Noetherian. Let
C := k+m with m := M∩N. It turns out that C is a 2-dimensional Noetherian domain such
that the polynomial ring C[Z] is not catenarian. So there is an upper Q to m which contains
an upper P to zero such that the chain (0) $ P $ Q is saturated with ht(Q) = 3. Now,
let A := C[Z]Q and p := PC[Z]Q. Then A is a local Noetherian domain and Ap ∼= C[Z]P is
a rank-one DVR with 1 + dim(A/p) = 2 � dim(A) = 3. Consequently, by Corollary 4.4,
there exists n≥ 2 such that p(n) 6= pn. �
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