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O. Introduction 

All the rings and algebras considered in this paper will be commutative, with 
identity elements and ring-homomorphisms will be unital. If A is a ring, 
then dim A will denote the (Krull) dimension of A, that is, the supremum 
of lengths of chains of prime ideals of A. An integral domain D is said 
to have valuative dimension n (in short, dim. D = n) if each valuation 
overring of D has dimension at most n and there exists a valuation oven'ing 
of D of dimension n. If no such integer n exists, then D is said to have 
infinite valuative dimension (see [G]). For reader's convenience, recall that 
for any ring A, dim. A = sup{dimv(A/P) I P E Spec(A)}, and that a finite­
dimensional domain D is a Jaffard domain if dimD = dim. D. As the class 
of Jaffard domains is not stable under localization, an integral domain D is 
defined to be a locally Jaffard domain if Dp is a Jaffard domain for each 
prime ideal P of D (see [ABDFK]). Analogous definitions are given in [C) 
for a finite-dimensional ring. 
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. In [S] Sharp proved that if K and L are two extension ·fields of a field k, 

then 
dim(K ®k L) = min(t. d.(K : k), t. d.(L : k)). 

This result provided a natural starting point to explore dimensions of ten­
sor products of somewhat general k-algebras and it was concretized by 
Wadsworth in [WI, where the result of Sharp was extended to AF-domains 
(for "altitude formula"), that is, integral domains A such that 

htP + t.d.(A/P: k) = t.d.(A: k) 

for all prime ideals P of A. He showed that if Al and A2 are AF -domains, 

then 

dim (AI ®k A2) = min(dimAI + t. d.(A2 : k), dimA2 + t.d.(AI : k)). 

He also stated a formula for dim (A ®k R) which holds for an AF-domain A, 
with no restriction on R. At this point, it is worthwhile to recall that an 
AF-domain is a (locally) Jaffard domain [Gi]. 

In [BGK1] we were concerned with AF-rings. A k-algebra A, where k'is a 
field, is said to be an AF-ring provided ht P + t. d.(A/ P : k) = t. d.(Ap : k), 
for all prime ideals P of A (for non domains, t.d.(A) = sup{t.d.(A/P : 
k) I P E Spec (A)}). A tensor product of AF-domains is perhaps the most 
natural example of an AF-ring. We then developed quite general results 
for AF-rings, showing that the results do not extend trivially from integral 
domains to rings with zero-divisors. 

The purpose of this note is to extend all the known results on the di­
mension of tensor products of k-algebras to the general case where k is any 
zero-dimensional ring, denoted by R. The most remarkable outcome is per­
haps that dim(AI ®n A2), where Al and A2 are two R-algebras, depends 
on a subtle relation which intertwines their two R-module structures. Such 
phenomenon does not hold in the field case since any k-algebra (# 0) con­
tains k. Thus, our investigation relies on a mild new assumption that keeps 
under control most results involving the ideal structures of Al ®n A 2 • 

In the first section we extend, in a natural way, the definition of the 
transcendence degree over a field as well as some basic Wadsworth's results to 
the zero-dimensional ring case. In the same regard, Section 2 and 3 establish 
adequate analogues of all the results stated in [BGK1] for AF-rings. Some 
examples throw more light on the new phenomenon (cited above). 

1. Background and preliminaries on tensor products of algebras 
over a zero-dimensional ring 

Throughout this paper R denotes a zero-dimensional ring. We. denote by 
(A, AA) an R-algebra A and its associated ring homomorphism AA : R ---> A; 
we denote by AA the associated spectral map Spec(A) ---> Spec(R). 
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If P is a prime ideal of A, \4 1 (P) is a maximal ideal of R; so we can 
consider the transcendence degree of the integral domain AlP over the field 
R/AA,I (P); we put: 

teA :AA R) = sup{t. d. (A/P: R/AA,I (P)) I P E Spec (A)) 

= sup{t.d. (A/P: R/\41 (P)) I P E Min (A)} 

and we say that teA :AA R) is the transcendence degree of the R-algebra A 
over R; we write teA : R) as an abbreviation for teA :AA R), when there is 
no ambiguity. All along this note we consider only R-algebras (A, AA) such 
that teA :AA R) < 00. This, of course, ensures that dim A < 00. If A is an 
integral domain, PA denotes ker AA' 

First of all we note that the transcendence degree of an R-algebra A 
depends on its R-module structnre, as it is shown by the next example: 

Example 1. Let R = k (X) x k and A = k (X), where k is a field. Let 
Al : R --+ A be the ring homomorphism defined by Al (x, y) = x, and 
A2 : R --+ A be the ring homomorphism defined by A2(X, y) = y. We have 
teA :A, R) = t. d. «k(X) : k(X)) = 0 and teA :A, R) = t. d.(k(X) : k) = 1. 
Thus teA :A, R) # teA :A, R). 

We begin by giving a simple generalization of a well-known result [ZSJ for 
algebras over a field. 

Lemma 1.1. Let (A, AA) be an R-algebra and P E Spec(A). Then 

ht P + teAl P : R) ::; t(Ap : R). 

Proof. Clearly, t(A/P : R) = t.d.(A/P : R/AA,I(p)). If pi E Spec(A) and 
pi ~ P, then for the prime ideal P/ pi of the R/AA,I(P)-algebra A/P', by 
[ZS, p.1O], we get 

ht(P/ Pi) + t. d.(A/ P : R/ AA,I(P)) ::; t. d.(A/ pi : R/ AA,I(p)) 

= t.d.(Ap/P'Ap : R/AA,I(pl)). 

The result then follows. 0 

The following elementary properties will be used frequently. These state­
·ments admit routine proofs. 

Lemma 1.2. Let (A, AA) be an R-algebra. 

(1) If P is a prime ideal of A and p = AA,I (P) I then 

ht P = ht(P/pA) and t(Ap : R) = t«A/pA)P/pA : R). 

(2) If P is a prime ideal of A and p = AA,I(p), then for each n 2: 1 

htP[Xi>'" ,Xn ] =ht(P/pA)[X1,,,. ,Xn ]. 
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(3) JfAis a locally' Jaffard'ring; then A/pAis a locally Jaffard ring for 
each prime ideal p of R such that pA i' A. 

Let (AI! Ad and (A2' A2) be R-algebras. For i = 1,2, we denote by Iti : 
Ai ..... Al ®R A2 the canonical A;-algebra homomorphism. The R-algebra 
Al ®R A2, when not specifically indicated, has AA1®RA, = Itl 0 Al = 1t2 0 A2 
as its associated ring homomorphism. If Pi E Spec(A,), i = 1,2, j, denotes 
the inclusion of Pi into Ai' tp, denotes the transcendence degree of the local 
ring Aip, over Rand kePi) denotes the residue field of A.P1 ' At last, we 
set r(AI' A2) = {(Pt, P2) I Pt E Spec(AI), P2 E Spec(A2) and Aj'I(PI) = 
A2'I(P2)}. 

A tensor product of R-algebras may be zero. We are interested in R­
algebras (Al> AI) and (A2' A2) such that Al ®R A2 i' 0, and say that such 
algebras are tensorially compatible. The next result provides some elemen­
tary and useful characterizations of tensorially compatible R-algebras. For 
a more general result, we refer the reader to [GO, Corollary 3.2.7.1]. 

Proposition 1.3. Let (AI, AI) and (A2' A2) be R-algebras. The following 
conditions are equivalent: 

(1) (AI' AI) and (A2' A2) are tensorially compatible. 
(2) Ai(Spec(AI)) n A;(Spec(A2)) i' 0. 
(3) There exists a prime ideal PI of Al such that Aj'I(PilA2 i' A2. 
(4) There exists a prime ideal P2 of A2 such that A2'1 (P2)AI i' AI' 
(5) There exists a prime ideal p of R such that pAl i' Al and pA2 i' A2. 
(6) ker Al + ker A2 i' R. 

Proof. (1) ==> (2). If (1) holds, then there exists a prime ideal Q of Al ®R 
A2i therefore 1tj'I(Q) E Spec(AI) and 1t2'I(Q) E Spec(A2) are such that 
Aj'I(ltj'I(Q)) = A2'I(lt2'I(Q)), and hence, Ai(Spec(AI)) n A;(Spec(A2)) i' 0. 

(2) ==> (3). Let PI be a prime ideal of Al and P2 a prime ideal of A2 such 
that Aj'I(PI) ~ A2'I(P2) i then Aj'I(PI)A2 ~ P2 and so Aj'I(PI)A2 i' A2. 

The implications (3) ==> (4), (4) ==> (5) and (5) ==> (6) are apparent. 
Finally, assume (6). Since ker Al + ker A2 i' R, there exists a prime ideal 

p of R such that ker Al + ker A2 ~ Pi this ensures that there exist a prime 
idealPI of Al and a prime ideal P2 of A2 such that Aj'I(Ptl = A2'I(P2) = p. 
Then 

(AI ®R A2)/ (Im(jl ® idA,) + Im(idA1 ® h)) S;! (At/PI) ®R (A2/ P2) 
S;! (Ad PI) ®R/v (A2/ P2) i' 0 

and so Al ®R A2 i' O. 0 

By induction, we obtain the following: 
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Proposition 1.4. Let (AI, AI), ... ,(,4,., >.,.) be R,algebras .. Then. the ,fol­
lowing conditions are equivalent: 

(1) AI®R···®RAni'O. 
(2) At(Spec(AI)) n A;(Spec(A2)) n··· n A~(Spec(An)) i' 0. 
(3) There exists a prime ideal p of R such that pA. i' A. for every 

i = 1,2, ... ,n. 

The next result establishes an analogue to [W, Proposition 2.3]. 

Proposition 1.5. Let (AI! AI) and (A2' A2) be R-algebras. Let PI E Spec(Atl 
and P2 E Spec(A2) such that Aj'I(PI) = A2'I(P2) = p. Let 

T = Al ®RA2 and n = {Q E Spec(AI ®RA2) I ltil(Q) = p;, i = 1, 2}. 

Then 

(1) n is lattice isomorphic to Spec(T'), where T' = k(Ptl ®R/v k(P2). 
(2) A prime ideal Q of n is minimal in n if and only if t(T /Q : R) = 

t(AI/Pt: R) +t(A2/P2 : R). 
(3) If Qo E Spec(T) and ltil(Qo) d Pi' i = 1, 2, then there exists Q E n 

such that Q ~ Qo. 

Proof. (1) is an immediate consequence of [GO, Corollary 3.2.7.1(ii)]. The 
proof of (2) and (3) is quite similar to that of Wadsworth. 0 

Proposition 1.5 allows us to extend partially some results of [W] to R­
algebras. 

Corollary 1.6. Let (AI, AI) and (A2' A2) be tensorially compatible R-algebras. 
Let Q E Spec(AI ®R A2). Then 

htQ ~ ht(ltj'I(Q)) + ht(lt2' I (Q)). 

We omit the proof because of its similarity to that of [W, Corollary 2.5]. 

Corollary 1.7. Let (AI' AI) and (A2' A2) be tensorially compatible R-algebras. 
Then 

Consequently, 
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Proof. Let (P" P2) E f(A" A2). Then by Proposition 1.5 there exists a 
prime ideal Q of A, 0n A2 such that t((A,0nA2)/Q: R) = t(A,jP, : 

R) + t(A2/ P2 : R). So 
sup{t(A,jP, : R) + t(A2/P2 : R) I (P" P2) E f(A" A2)} ::; t(AI ~n A2 : R). 

Conversely, let Q be a prime ideal of A, 0 n A2 ; the prime ,deals P, = 
/-b'i'(Q) and P2 = /-b2'(Q) are such that A'i'(P,) = A2'(P2) = p; let T = 
A, 0n A2 ; then, by using [W, Corollary 2.4], we obtain: 

t(T/Q: R) = t.d.(T/Q: R/p) 
= d (T/ (Im(j10 idA,) + Im(idAt 0 j2)) : R/ ) 

as desired. D 

t. . Q/ (Im(j, 0 idA,) + Im(idAt 0 jo)) p 

::; t.d. ((AdP,) 0n/p (A2/P2)) : R/p) 

= t. d.(A,j P, : R/p) + t. d.(A2/ P2 : R/p) 

= t(A,j P, : R) + t(A2/ P2 : R), 

Remark 1. Let (A" AI) and (A2' A2) be tensorially compatible R-algebras. 
Clearly, t(AI 0n A2 : R) = t(A, : R) + t(A2 : R) If and only if there 
exist P, E Spec(A,), and P2 E Spec(A2) such that A'i'(P,) = A2' (P2) and 
t(A, : R) = t(A,jP, : R), t(A2 : R) = t(A2/P2 : R). The second condition 
holds, for instance, if A, and A2 are integral domains or if Spec(R) is reduced 
to only one prime ideal. In general, the equality fails as it is shown in the 
next example. Moreover, when R is a field, we have dim(AI 0n A2) 2: 
dimA, + dimA2 [W, Corollary 2.5]. This is not, in general, true in the 
zero-dinlensional case. The next example deals with these matters. 

Example 2. There exist two tensorially compatible R-algebras (A" AI) and 

(A2' A2) with 
t(A, 0n A2 : R) < t(A, : R) + t(A2 : R) 

and 

Let R = IR x IR, A, = IR and A2 = IR x IR[X]. Let A, : R --> A, be the 
ring homomorphism defined by A,(X,y) = x and let A2 : R --> A2 be the 
ring homomorphism defined by A2(X,y) = (x,y). Then 

t(A, :At R) = t(IR :At R) = t. d.(IR : IR) = 0 

and 

t(A2 :A, R) = t(IR x IR[X] :A, R) = sup{t.d.(IR: IR), t.d.(IR[X]: IR)} = 1 

and so 
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Moreover, by Corollary 1. 7, . . . .' ';"" .. 
t(A,0nA2: R) = sup{t(A,jP,: R)+t(A2: P2 : R) I (P"P2) E f(A

"
A2)} = 

t(A, :At R) + t(A.j((O) x IR[X]) : R) = t.d.(IR: IR) + t.d.(IR: IR) = O. 
Further 

dim(A, 0n A2 : R) ::; t(A, 0n A2 : R) = 0 < dim A, + dim A2 = 1. D 

2. Tensor products of AF-rings 

Definition 2.8. An R-algebra (A, AA) is an AF-ring if for every P E Spec(A) 

htP +t(AjP: R) = t(Ap : R). 

Remark 2. The AF-ring concept does not depend on the structure of 
algebra over R defined by the associated ring homomorphism. 

Indeed, let A be a ring and let A and X be two ring homomorphisms 
defining two different structures of algebra over R on A. Let P E Spec( A). 
Let 7r : A -t A/ P be the natural ring homomorphism. Let p = ker( 7r 0 A) = 

A-'(P) and q = ker(7roX) = X-,(P). We can view R/p and R/q as subfields 
ofA/P. Letk=R/pnR/q. We have: 

t(A/ P :A R) = t. d.(A/ P : R/p) = t. d.(Aj P : k) - t. d.(R/p : k) 

and 

t(A/P :>:R) = t.d.(A/P: R/q) = t.d.(A/P: k) -t.d.(R/q: k). 

On the other hand 

t(Ap :A R) = sup{t.d.(A/Q: R/p) I Q E Spec(A) and Q S;; P} 

= sup{t(AjQ: k) I Q E Spec(A) and Q S;; P} - t. d.(R/p: k) 

and 

t(Ap :>: R) = sup{t. d.(AjQ : R/q) I Q E Spec(A) and Q S;; P} 

= sup{t(A/Q: k) I Q E Spec(A) and Q S;; P} - t. d.(R/q : k). 

Therefore t(Aj P :A R) - t. d.(Ap :A k) = t(A/ ~ :>: R) - t(Ap :>: R). Conse-
9uently, (A, A) is an AF-ring if and only if (A, A) is an AF;ring. 

Let n be the class of R-algebras that are AF-rings. Since R[X" . .. ,Xn ] 

satisfies the first chain condition for prime ideals [G, Corollary 31.17], any 
finitely generated R-algebra 01' any integral extension of such an algebra is 
an AF-ring. Moreover the class n is stable under localization and direct 
product. 

The next result presents some properties of the class n, and our proof of 
Proposition 2.3 uses the following lemma. 
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Lemma 2.9. Let (A, AA) be an R-algebra. Then A is an AF-ring if and 
only if A/pA is an AF-ring over the field R/p, for each prime ideal p of R 
such that pA # A. 

Proof. Let P be a prime ideal of A and let p = \41(P). According to Lemma 
1.2, ht P = httP/pAl and t(Ap : R) = t. d.((A/pA)p/pA : R/p). 

Assume that A is an AF -ring and let p be a prime ideal of R such that 
pA # A. Let P be a prime ideal of A containing pAj then 

httP/pAl + t. d.((A/pA)/(P/pA) : R/p) = htP +t(A/P: R) 

= t(Ap: R) 

= t. d.((A/pA)p/pA : R/p). 

Conversely, let P be a prime ideal of A and let p = A;;:I(p). Then pA # Aj 
so by hypothesis A/pA is an AF-ring over R/p, hence 

htP +t(A/P: R) = httP/pAl + t.d.(A/P: R/p) = 

= httP/pAl + t. d.((A/pA)/(P/pA) : R/p) 

= t. d.((A/pA)p/pA : R/p) = t(Ap : R). 0 

Proposition 2.10. The class n satisfies the following properties: 

(1) Let (AI, AI), ... ,(An> An) be tensorially compatible R-algebras. If 
AI>' .. ,An are AF-rings, then AI ®R ... ®R An is an AF-ring. 

(2) Let A be an AF-ring. Then the polynomial ring A [X] is an AF-ring 
and for each prime ideal P of A, ht P = ht P [X]. 

(3) An AF-ring A is a locally Jaffard ring. 

Proof. (1) By 'induction, it suffices to consider the case n = 2. Let (AI' Ad 
and (A2' A2) be tensorially compatible AF-rings. Let p be a prime ideal 
of R such that p(AI ®R A2) # AI ®R A2. By Lemma 2.2 AI/pAl and 
A2/pA2 are AF-rings over the field R/p j hence by [W, Proposition 3.1] 
(At/pAl) ®R/p (Az/pA2) is an AF-ring over R/p, so that (AI ®nA2)/p(AI ®R 
A 2) ~ (At/pAd ®R/p (Az/pA2) is an AF-ring over R/p. The proof is com­
plete via Lemma 2:2. 

(2) Since A [X] ~ A ®n R [X], the result follows from (1). Let P be any 
prime ideal of Aj so 

htP ~ htPA[X] 

= t (A [X]PAIXI : R) -t (A [X]/PA [X] : R) 

:::; t(Ap [X] : R) - t ((A/ P) [X] : R) 

= htP. 
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(3) Let A be an AF-ring. By (2) we obtain that for any prime ideal P of 
A and for each positive integer n, ht P = ht P[Xl' ... ,Xn]. Hence, by [C, 
p.127], A is a locally Jaffard ring. 0 

. In the same regard, this section establishes adequate analogues of the 
main results stated in [BGK1] on the dimension of tensor products of AF­
rings over a field. Let us consider for R-algebras the following functions 
(introduced in [WI for k-algebras) : let (AI> AI) and (A2' A2) be tensorially 
compatible R-algebrasj let PI E Spec(AI) and P2 E Spec(A2) such that 
Al l (P1) = Ai l (P2). Set 

8(PI,P2) =sup{htQ I Q E Spec(AI ®RA2) andflil(Q) = Pi, i = 1, 2}. 

One may easily check that 

dim(AI ®n A2) = sup{8(P1 ,P2) I (PI,P2) E f(A I,A2)}, 

and 
8(P1 , P2) = 8(Pt/pA1 , P2/pAz), 

where p = Al l (P1) = Ail(PZ)' 

Let (A, AA) be an R-algebra, P E Spec(A) and d and s integers with 
0:::; d:::; s. Set 

6(s, d, P) = ht PA[X!> ... , X,] + mints, d + t(A/ P : R)), 

D(s,d,A) = sup{6(s,d,P) I P E Spec(A)}. 

Next we provide a formula for the dimension of the tensor product A®RB, 
where A is an AF-ring and B is any ring. 

Theorem 2.11. Let (A, AA) be an AF-ring and (B, AB) be any R-algebra 
such that A ®R B # o. Let (P, I) E f(A, B). Then 

8(P,I) = 6(tp, ht P,I) 

where tp = t(Ap : R), and consequently 
dim (A ®R B) = sup{D(tp,htP,B/pB) I P E Spec(A), p = A;;:I(p) and 
pB#B} 
= sup{htI[XI, ... ,X'p] + min(tp, htP +t(B/I: R)) I (P, I) E f(A, B)}. 

Proof. Let P E Spec(A), IE Spec(B) such that A;;:I(p) = Ai/(I) = p. As 
noted previously, 8(P,I) = 8(P/pA,I/pB)j moreover, by Lemma 2.2, A/pA 
is an AF-ring over the field R/pj so we can apply Theorem 1.4 from [BGK1] 
to the (R/p)-algebras A/pA and B/pB, obtaining that 

8(P/pA, I/pB) = D. (tp, ht(P/pa) , I/pB). 
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By Lemma 1.2, ht(P/pa) = htP and t(Ap :R) = t «A/pA)p/pA : R)). 
Further, for any n ~ 1, ht I [XI> ... , Xn] = ht(I/pB)[XI, ... , Xn]. Hence 

8(P/pA,I/pB) = ~(tp,htP,1). 

It follows that 8(P, I) = ~(tp, ht P, I), as asserted. Consequently, using the 
definitions of 8, ~ and D and the stated condition on 8(P, I), yields 
dim(A®nB) = sup{8(P, 1) 1 (P,I) E r(A, B)} = sup{~(tp, ht P,I) 1 (P, I) E 
r(A, Bn = sup{D(tp, htP, B/pB) 1 P E Spec(A), p = A::iI(P) and pB # 
B} = sup{htI [XI, ... , Xtp]+min(tp, ht P+t(B/I : R» 1 (P,1) E r(A, B)} 
as we wished to show. 0 

It is worthwhile to note that dim(A ®n B) depends on the R-module 
structure of A and B. The next example i11ustrates this fact: 

Example 3. Let (A,AA) and (B,AB) be R-algebras such that Ais an AF­
ring and A ®n B # O. Let p be a prime ideal of R and let '11' : R --+ R/p 
be the canonical ring homomorphism. Let Al : R x R x R --+ R/p x A 
and A2 : R x R x R --+ R/p x B be the ring homomorphisms defined 
respectively by AI(X,y,Z) = ('11'(X),AA(y)) and A2(X,y,Z) = ('11'(X),AB(Z», It 
is an easy matter to verify that r(R/p x A, R/p x B) = {«OJ x A, (0) x 
B)}. Hence via Theorem 2.4, it is easy to check that the dimension of 
the tensor product of «R/p x A), AI) and «R/p x B), A2) is zero. On the 
other hand, let A2 : R x R x R --+ R/p x B be the ring homomorphism 
defined by A2(X, y, z) = ('11'(x), AB(Y»j now by Theorem 2.4 we obtain that 
the dimension of the tensor product of «R/p x A), AI) and «R/p x B), A2) 
is equal to dim(A ®n B). Thus, it suffices to choose A and B such that 
dim(A®nB) > 0 (for instance, when R isa field and A, B are non trivial R­
algebras). Therefore the two values are different according to the (RxRxR)­
module structure of R/p x A and R/p x B. 

With the further assumption that A is an AF-domain, we obtain the 

following: 

Corollary 2.12. Let (A, AA) be an AF-domain and let (B, AB) be any R­
algebra such that A ®n B # O. Then 

dim(A ®n B) = D (t(A: R), dim A, B/PAB) 

where PA = ker AA' Furthermore, if B is an integral domain, then 

dim(A®nB) = D(t(A: R),dimA,B). 

Proof. Since A is an integral domain, for . any prime.ideal P of A, A::iI(P) = 
PA and t(Ap : R) = t(A : R)j so Theorem 2.4 implies that dim(A <8In 
B) = sup{D(t(A : R),htP,B/PAB) 1 P E Spec(A)}. Since D(s,d,A) is 
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a non decreasing function of the second argument, then dim( A 181 n B) = 
D(t(A: R), dim A, B/PAB), as asserted. 0 

Next, ~e state a. ~echnical result that allows us to determine a necessary 
and ~ufficl6nt conditIOn under which the dimension of the tensor product of 
AF-rmgs over a zero-dimensional ring satisfies the formula of Wadsworth's 
Theorem 3.8. 

~roPoTslhtion 2.13. Let (AI, AI),'" , (An, An) be tensorially compatible AF-
rtngs. en 
dim (AI ®n ... <8In An) = 
sup{min(htMI+tM,+···+tMn , tM,+htM2+···+tM ... tM + + 
tMn _, +htMn) 1 M j E Max(A.) and A11(MI) = A2'I(M2)::"'':' A~I(M~)}. 

T~:ote~ 2(.~4 .. Let (AI> Ad, ... , ~An> An) be tensorially compatible AF-rings 
WI j - t t. R) and dt = dlmA j • Then dim(AI <8In ••• ®R An} = 
~I + ... + tn - maxi t; -d; 1 1 :$ i :$ n} if and only if there exist maximal 
~~~a~ ~\' ... , Mn belonging r:spectively to AI, ... ,An such that A11 (MI) = 

- An. (Mn), and there eXists r E {1, ... , n} such that htMr = dr and 
for any J E {1, ... ,n} - {r}, tM, = tj and t(Aj/Mj : R) :$ t(Ar/Mr : R). 

Proof. It is deduced from the fact that dim(A <81 ••• <81 A) = 
sup{ dim «At/pAl) .<8In/p (A2 /pA2) ®n/p ... ®:/P t~n/PA:)) nl p E Spec(R) 
and pAl # A;, for I = 1,2, ... ,n} and [BGK1, Theorem 1.8]. 0 

~orollary 2.15. Let (AI; AI)," . , (An> An) betensorially compatible AF­
r:ngs -:nlth t; = t(A; : R) and dt = dim At. If one of the following conditions 
IS satisfied: . . 

(1) There exist maximal ideals MI, ... ,Mn belonging respectively to 
AI>'" , An such that A11(MI) = ... = A-I(M ) and htM - d· 
t t" n n j - " 
Mi= iJorz=1,2, ... ,n. 

(2) If MI, ... , Mn are maximal ideals belonging respectively to 
:t~ ... , An such that '\11(MI) = ... = A;;-I(Mn)' then tM, = t; for 
z - 1, ... ,no 
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(3) IfP" "",Pn are minimal prime ideals belonging respectively to 
A" ... ,An such that Ai'(P,) = ... = A;;-'(Pn), then t(A;/P;: R) = 
ti , for i = 1, ... ,n. 

(4) A" ... ,An are equicodimensional. 

then 

dim (A, Q9R'" Q9R An) = t, + ... + tn - max{t, - d, 11 ::; i::; n}. 

The proofs of (1), (2), (3) and (4) are similar to those of [BGK1, Corollaries 
1.10, 1.11, 1.13, and 1.14J, respectively. 

Corollary 2.16. Let (A" Ad, ... ,(An, An) be tensorially compatible AF­
domains with t, = t(Ai : R) and d, = dim(A,). Then 

dim(A, Q9R''' Q9R An) = t, + ... + tn - max{t, -d, 11 ::; i::; n}. 

Proof. Since A, Q9R ... Q9R An :f. 0, by Proposition 1.4 we have PAl = PA, = 
... = PAR = pj then A, Q9R ... Q9R An ~ A, Q9R/p ... Q9R/p An. The result 
follows from [W, Theorem 3.8J. 0 

Now we consider the special case in which (A" AI) = (A2' A2)' 

Corollary 2.17. Let (A,AA) be an AF-ring. Then dim (A Q9R A) = dimA+ 
t(A : R) if and only if there exist maximal ideals M and N in A such that 
A;;'(M) = A;;'(N), htM = dimA, t(AN: R) = t(A: R) and t(A/N: R) ::; 
t(AfM: R). 

3. The valuative dimension of tensor products and Jaft'ard rings 

[BGK1, Theorem 2.1J establishes that if A is an AF-ring over a field k and 
B is a locally Jaffard ring, then A Q9k B is a locally Jaffard ring. We next 
extend this result to AF-rings over a zero-dimensional ring. 

Theorem 3.18. Let (A, AA) be an AF-ring and (B, AB) a locally Jaffard 
ring such that A Q9R B :f. O. Then A <Z>R B is a locally Jaffard ring. 

Proof. It is sufficient to prove that for each prime ideal Q of A Q9 R Band 
for each nonnegative integer n, ht Q[X" . .. ,XnJ = ht Q (see [ABDFKJ and 
[CJ). Let P = M;;'(Q),I = J.LI/(Q) and p = A;;~RB(Q)j according to Lemma 
2.2, A/pA is an AF-ring over the field R/pj moreover, by Lemma 1.2 B/pB is 
a locally Jaffard ringj so we can apply Theorem 2.1 of [BGK1J to the (R/p)­
algebras A/pA and B/pB obtaining that (A/pA) Q9R/p (B/pB) is a locally 
Jaffard ring. Since (A/pA) Q9R/p B/pB ~ (AQ9R B)/p(AQ9R B), then for 
each nonnegative integer n, it results that ht((Q/p(AQ9RB))[X" ... ,X"J) = 
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ht (Q/p(A Q9R B))j so according to Lemma 1.2,ht.Q= htQ[X, •.... , Xn], as 
desired. 0 

Remark 3. Let (A, AA) be an AF-ring and (B, AB) any R-algebra such that 
A Q9R B :f. O. Let Q E Spec(A Q9R B), P = f.t;;'(Q) and I = M'B'(Q). We 
obtain from [BGK 1, Lemma 2.2J the following result: 

htQ + t((AQ9R B)/Q: R) = tp +htI[X
" 

... ,X'vJ + t(B/I: R). 

Let us recall that the valuative dimension of tensor products of algebras 
over a field does not seem to be effectively computable in general. However, 
[Gi, Proposition 3.1J states that provided A, and A2 are two algebras over 
a field k, then 

dimv(A, Q9k A2) ::; min (dimv A, + t. d.(A2 : k),t. d.(A, : k) + dimv A2) . 

The next result establishes the analogue of this result for the zero-dimensio­
nal case. 

Proposition 3.19. Let (A" AI) and (A2' A2) be tensorially compatible R­
algebras. Then 

dimv(A, Q9R A2) ::; min (dimv A, + t(A2 : R), t(A, : R) + dimv A2). 

Proof. Let Q be any prime ideal of A, Q9RA2j let P, = f.ti'(Q), P2 = M2 ' (Q) 
and p = Ai'(p, ) = A2' (P2). Let T = A, Q9R A2. Then 

dimv (T/Q) ::; dimv (T/ (Im(j, Q9 idA,) + Im(idAt Q9 j,))). 

Moreover, using the canonical isomorphism 

T/(Im(j, Q9 idA,) + Im(idAt Q9 j,)) ~ (A,f PI) Q9R/p (A2/ P2) 

and [Gi, Proposition 3.1J, yields 

dimv (T/Q) ::; dimv ((A,fP, ) Q9R/p (A2/P2)) 
::; min (dimv A,f P, + t(A2/ P2 : R), dimv A2/ P2 + t(A,f P, : R)) 
::; min (dimv A, + t(A2 : R), dimv A2 + t(A, : R)). 0 

The next result handles the case where one of two R-algebras is an AF­
ring. 

Proposition 3.20. Let (A, AA) and (B, AB) be tensorially compatible R­
algebras and A an AF-ring. Then, for any r 2: dimv B-1, 
dimv(A Q9R B) = 
sup{D(tp +r, ht P + r, B/pB) 1 P E Spec(A), p = A;;'(p) and pB :f. B} -
r= 
sup{htI [X" ... ,XrJ + min (tp, htP + t(B/I: R)) 1 (P, I) E r(A, Bn. 
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Proof.' ,Let r;::dimvB -1. Then, by[C, Proposition 1, ii)],B [Xl, ... ,Xr ] is 
a locally Jaffard ring. So, according to Theorem 3.1, A 0n B [Xl, ... , X r ] is 
a locally Jaffard ring and hence a JaffaI'd ring. Therefore, by Corollary 2.5, 
dimv (A 0n B [Xl, ... , XrD = dim(A 0n B [Xl! ... , XrD = 
sup{D(tp, htP, (BlpB) [Xl!'" 'XrDI P E Spec(A) with ><:il(P) = p and 
pB ;6 B}. Hence, according to [BGK1, Lemma 2.3], 
dimv(A 0n B) = 
sup{D(tp + r, htP + r, BlpB) I P E Spec(A) with A;;l(p) = p and pB ;6 
B}-r= 
sup{htI [Xl, ... , X r ] + min(tp, htP +t(BII: R)) I (P, I) E rCA, Bn. 0 

We conclude this section with two results on AF-domains. 

Corollary 3.21. Let (A, AA) be an AF-domain and B any R-algebra such 
that A 0n B ;6 O. Then for any r ;:: dimv B-1 
dimv(A 0n B) = D(t +r, d + r, BlpAB) - r = sup{ht Q [Xl!'" X r] + 
min(t, d + t(BII: R)) I I E Spec(B) and AS1(I) = PA}, 
where t = t(A: R) and d = dimA. 

Corollary 3.22. Let (A, AA) and (B, A8) be R-algebras such that A is an 
AF-domain and A <8>n B ;6 O. If dimv B :0; teA : R) + 1, then A 0n B is a 
Jaffard ring. 

Remark 4. We thank the Referee for the following observation. Let Ared 
be the reduced ring associated to a ring A. Then teA : R) = teAred : Reed) 
for any R-algebra (A, AA)j moreover, if (Al! Ad and (A2' A2) are R-aJgebras, 
then (Al 0n A2)red = ((Al)red 0n". (A2)red)red [GD, Corollary 4.5.12]. One 
may therefore assume that R is absolutely flat and (Al' Al), (A2' A2) are 
reduced R-algebras. 
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