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I ] 0. Introduction

‘All the rings and algebras considered in this paper will be commutative, with
i identity elements and ring-homomorphisms will be unital, If A is a ring,
i : , : : then dim A will denote the (Krull) dimension of A, that is, the supremum
i : of lengths of chains of prime ideals of A. An integral domain D is said
to have valuative dimension n (in short, dim, D = n) if each valuation
overring of D has dimension at most n and there exists a valuation overring
L of D of dimension n. If no such integer n exists, then D is said to have
1 ' : infinite valuative dimension (see [G]). For reader’s convenience, recall that
i ' ' ‘ for any ring A, dim, A = sup{dim,{A/P) | P € Spec(A)}, and that a finite-
' dimensional domain D is a Jaffard domain if dim D = dim,, D. As the class
of Jaffard domains is not stable under localization, an integral domain D is
defined to be a locally Jaffard domain if Dp is a Jaffard domain for each
h prime ideal P of D (see [ABDFK]). Analogous definitions are given in [C]
|11e for a finite-dimensional ring.
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- In.{S] Sharp proved that if K and L are two extension fields of a field &,
then
dim(K ® L) = min(t. d.(K : k), t. d.(L : k)).

This result provided a natural starting point to explore dimensions of ten-
sor products of somewhat general k-algebras and it was concretized by
Wadsworth in [W], where the result of Sharp was extended to AF-domains
(for “altitude formula”), that is, integral domains A such that

Wt P+t d.(A/P k) =t.d(A: k)

for all prime ideals P of A. He showed that if A; and A, are AF-domains,
then

dim(4; ® Az) = min(dim A; + t.d.(4 : k), dim As +t.d.(A; : k).

He also stated a formula for dim(A4 ® R) which holds for an AP-domain A4,
with no restriction on R. At this point, it is worthwhile to recall that an
AF-domain is a (locally) Jaffard domain [Gi].

In [BGK1] we were concerned with AF-rings. A k-algebra A, where k'is &
field, is said to be an AF-ring provided ht P + t.d.(A/P 1 k) =t.d.(Ap : k),
for all prime ideals P of A (for non domains, t.d.(A) = sup{t.d.(A/P :
k) | P € Spec(A)}). A tensor product of AF-domains is perhaps the most
natural example of an AF-ring. We then developed quite general results
for AF-rings, showing that the results do not extend trivially from integral
domains to rings with zero-divisors. :

The purpose of this note is to extend all the known results on the di-
mension of tensor products of k-algebres to the genera} cage where k is any
zero-dimensional ring, denoted by R. The most remarkable outcome is per-
haps that dim(A4; ®r 4z), where A, and A, are two R-algebras, depends
on & subtle relation which intertwines their two ‘R-module structures. Such
phenomenon does not hold in the field case since any k-algebra (# 0) con-
tains k. Thus, our investigation relies on & mild new assumption that keeps
under control most results involving the ideal structures of 4; @g As.

In the first section we extend, in a natural way, the definition of the
transcendence degree over a field as well as some basic Wadsworth’s results to
the zero-dimensional ring case. In the same regard, Section 2 and 3 establish
adequate anslogues of all the results stated in [BGK]] for AF-rings. Some
examples throw more light on the new phenomenon (cited above).

1. Background and preliminaries on tensor products of algebras
over a zero-dimensional ring

Throughout this paper R denotes a zero-dimensional ring. We denote by
(A, M4) an R-algebra A and its associated ring homomorphism A4 : R — 4;
we denote by X% the associated spectral map Spec(A) — Spec(R).
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If'P is & prime ideal of 4, A;! (P) is a maximal ideal of R; so we can
conm_dler the transcendence degree of the integral domain A/P over the field
R/A;" (P); we put:

t{A i, R) = sup{t.d.(A/P: R/A;'(P)} | P € Spec(A)}
= sup{t.d.(4/P: R/A;1(P)) | P € Min(A)}

and we say that t(A :\, R) is the transcendence degree of the R-algebra A
over R; we write t(A : R) as an abbreviation for t(A :), R), when there is
no ambiguity. All along this note we consider only R-algebras (A4, A4) such
that t(A :», R) < co. This, of course, ensures that dim A < co. If A is an
integral domain, p,s denotes ker Ay4.

First of all we note that the transcendence degree of an R-algebra A
depends on its R-module structure, as it is shown by the next example:

Example 1. Let B = k(X) x k and A = k(X), where k is a field. Let
AL ¢ R — A be the ring homomorphism defined by Ai{z,%) = =, and
Ag : R — A be the ring homomorphism defined by Aqx(z,y) = y. We have
t(A ia RB) = t.d. ((k(X) : (X)) = 0 and t(4 1y, R) = t.d.(k(X) : k) = 1.
Thus t(A:), R) #t(A:, R).

We begin by giving a simple generalization of a well-known result [ZS] for
algebras over a field. '

Lemma 1.1. Let (A, A4) be an R-algebra and P € Spec(A). Then
ht P+t(A/P:R) <t(Ap: R).

PToof. Clearly, t(A/P : R) = t.d.(A/P : R/);'(P)). If P’ € Spec(A) and
P! C P, then for the prime ideal P/P’ of the R/);'(P)-algebra A/P’, by
[ZS, p.10], we get- ' S
he(P/P') +t.d.(A/P: R/A;Y(P)) < t.d.(A/P': R/AZ(P))
| | = t.d(Ap/P'Ap : R/A;(P')).
The result then follows. O '

The following elementary properties will be used frequénﬂy. These state-
ments admit routine proofs. - : |

Lemma 1.2. Let (A, Aa) be an R-algebra.
(1) If P is a prime ideal of A and p = A3'(P), then
ht P = ht{P/pA) and t(Ap: R) = t((A/pA)p/pAV: R). |
(2) If P is a prime ideal of A and p = A;'(P), then for each n > 1
ht P[X,... , Xa] = Bt(P/pA)[X, ... , Xu]- |
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- (3)If A'is a'locally Jaffard ring; then AlpAisa locally Jaﬁard ring for
each prime idenl p of R such that pA £ A,

Let (Aj, A1) and (As, Ag) be R-algebras. For i = 1,2, we denote by y; :
A, = A; ®r A3 the canonical A;-algebra homomorphism. The R-algebra
A, ®g Az, when not specifically indicated, has Aa,@pds = #1 0 A1 = g 0 Ay
as its associated ring homomorphism. If P, € Spec(A,), i = 1,2, j; denotes
the inclusion of P, into A, tp, denotes the transcendence degree of the local
ring A, over R and k(P;) denotes the residue field of Ay, . At last, we
setlI‘(Al,Ag) = {(P,, R) | P, € Spec(A;), P, € Spec(4) and AT'(P) =
Az (Pa)}

A tensor product of R-algebras may be zero, We are interested in R-
algebras (A1, A1) and (A, A;) such that A; ®p A; # 0, and say that such
algebras are tensorially compatible. The next result provides some elemen-
tary and useful characterizations of tensorially compatible R-algebras. For
a more general result, we refer the reader to {GD, Corollary 3.2.7.1].

Proposition 1.3, Let (41, M) and (As, As) be R-algebras. The following
conditions are eguivalent:

(1) (A, A1) ond (Aa, A) are tensorially compatible.
' (2) M (Spec(4y)) N Aj(Spec(Ay)) # 0.

(3) There esists a prime ideal Py of Ay such that A I(Pl)Ag # As.

(4) There exists a prime ideal Py of Ay such that A;'(Py) Ay # Ay.

(5) There exists a prime ideal p of R such that pA; # A, and pA; # As.
. {6) ker Ay +ker Ay # R.

Proof, (1) == (2). If (1) holds, then there exists a prime ideal @ of A, @r
Ay; therefore u7!(Q) € Spec(4;) and u3'(Q) € Spec(4s) are such that
AT HuT (@) = A5 i H(Q)), and hence, A(Spec(A1)) N A3(Spec(A4,)) # 0.

(2) = (3). Let P1 be a prime ideal of 4; and F; & prlme ideal of A, such
that A;l(Pﬂ = A‘Z (Pz) then All(Pl)Ag - P2 and so )\1 (P1)A2 ffl: Ag

The implications (3) = (4), (4) => (5) and (5) = (6) are apparent.

Finally, assume (6). Since ker Ay + ker A2 # R, there exists a prime ideal
p of R such that ker Ay 4+ ker Ay C p; this ensures that there exist a prime
idealP; of A; and a prime ideal P; of Ay such that A7 (P) = MY P) = p.
Then

(Ay ®r A5)/ (Im{jy ® ida,) +Imlida, ® 72)) = (Ai/Pr) ®r (As/Py)
2 (A1/P1)®psp (A2/P) #0

and so A; ®p A2 £ 0. O

By induction, we obtain the following:
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Proposition 1.4. Let (A1, A1), ...
lowing conditions are equivalent:
(1) A @p--®r A, #* 0.
(2) X5(Spoc(Ar)) N Xa(Bpec(Aa)) A1+ 1 Xs(Spec(A)) # 0.
(3) There e:czsts a pmme ideal p of R such that pA; # Ad for every
i=1,2,.

y (Apy An) be. R:algebras.. Then . the fol-

The next result establishes an analogue to [W, Proposition 2.3].

Proposition 1.5. Let (A, A1) and (Ag, Ap) be R-algebras. Let P; € Spec(A4;)
and P, € Spec(Ag) such that A7 (Py) = A3 (P) = p. Let

T= Al Rg Ag and 1= {Q € Spec(A1 Rpn Ag) l .‘,‘r.‘ I(Q)

Then

(1) Q is lattice isomorphic to Spec(T’), where T' = k(P)) ®pyp k(P2).

(2) A prime ideal Q of Q 4s minimal in Q if and only if t(I'/Q : R) =
t(Ai/P, : R) +t{Ay/P : R).

(3) If Qo € Spec(T") and p7 Qo) 2 Py, i =1, 2, then there exists Q € £
such that Q C Q.

P, i=1,2}.

Proof. (1) is an immediate consequence of [GD, Corollary 3.2.7.1(ii)]. The
proof of (2) and (3) is quite similar to that of Wadsworth. 0O -

Proposition 1.5 allows us to extend partially some results of [W] to R-
algebras,

Corollary 1.6, Let (A, A1) and (A, Ag) be tensomally compatable R-algebras.
Let () € Spec(A; @ Az). Then

ht @ > ht(u(Q)) + ht(p51(Q)).
We omit the proof because of its similarity to that of [W, Corollary 2.5].

Corollary 1.7. Let (Al, A} and (Az, Ag) be tensomally compatible R- algebms.
Then

t(A1 Rr A2 : R) = Sup{t(Al/H . R) +t(A2/P2 H R) | (Pl, Pg) € P(Al,Ag)}.

'Consequently,

t(A1 ®n Az H R) < t(A1 H R) + t(Az H R)




150 _ S e Bouchiba et al.

it .there exists a
Proof. Let (P, P2) € T(A1, As). Then by Proposition 1.5t :
prime ideal @ of A; ®r Ap such that t((A; ®r A2)/Q : R) = t(A/ Py :
R) +t(A2/P2 H R) SO .
Sup{t(A1/P1 : R) + t(Az/Pz : R) | (Pl, Pg) € P(A1, Ag)} < t‘(Al @R Ay R)
Conversely, let @ be a prime ideal of 4; ®r Az the1 prime ideals P, =
pr*(Q) and Py = p3'(Q) are such that MNUP) = A3 () =p; let T =
A; ®p Aqg; then, by using [W, Corollary 2.4], we obtain:

(T/Q:B) = t.d.(I/Q:R/p)
T/ (Im(j; ® ida,) + Im(ida, @ J2)) : R/p)
d (Q/ (Im(f, ® ida,) + Im(ida, ® j2))
t.d. ((A1/Py) ®ryp (A2/ P2)) : R/p)
t.d.(A1/P1 H R/p) + t. d.(Az/Pg . R/p)
t{A;/P, : R) + t(As/ Py : R),

oA

i

as desired. O

Remark 1. Let (A1, A1) and {4z, A;) be tensorially compatible R-a,lngebras.
Clearly, t{A; ®r Az : R} = t(A; : R) + t(Ag : R)_lif and on_lylr if there
exist Py € Spec(A;), and P € Spec(Ay) such that AMHP) = A (Pg)'a:nd
t(Ay : R) = t(41/P1 : R), t{As: R) = t(Ay/P; : R). The second .cond1t1on
holds, for instance, if A, and Aj are integral domains or if Spgc(R) is re:duced
to only one prime ideal. In general, the equality fails as i't is shown in the
next example. Moreover, when R is a field, we h.ave dim(A; ®r “42) >
dim A; + dim A; [W, Corollary 2.5]. This is not, in general, true in the
gero-dimensional case. The next example deals with these matters.

Example 2. There exist two tensorially compatible R-algebras (A3, Ay) and
(Aq, )\2) with ‘ :
: t(z‘h ®r Az R) < t(A1 : R) + t(Az : R)

and '
dim(A1 @R Az H R) < dim A1 + dim A2.

Let R= R x B, A, = R and Ay = R x R{X]. Let A : R — A be the
ring homomorphism defined by M(z,y) = @ and let Ay : B — A be the
ring homomorphism defined by As(z, y) = (x,y). Then

t(Ay i, B) = t(R:, R)=t.d(R: R)=0
and
t{As 12, B) = t(Bx R[X] s, R) = sup{t.d.(R: R), t.d.(R[X]: R)} =1

and so

t(A; i, R) +t(Az2:5, B) = 1.
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Moreover, by Corollary 1.7, o - Co T Ik
t(Al@RAz B R) = sup{t(Al/Pl : R)-Hi(Ag : Pz : R) | (Pl,Pg) € P(Al,Az)} =
t(A; 5, R) + t(A2/((0) x R[X]): R) = t.d.(R: R) + t.d.(R: R) = 0.
Further

dim(A1 ®p Ag H R) < t(A1 Rr Az : R) =< dlII’lA1 +dimA2 =1. O
2. Tensor products of AF-rings

Definition 2.8. An R-algebra (A, A4) is an AF-ring if for every P € Spec{A)
ht P +t(A/P: R) = t(Ap : R).

Remark 2. The AF-ring concept does not depend on the structure of
algebra over R defined by the associated ring homomorphism,

Indeed, let A be a ring and let A and X be two ring homomorphisms
defining two different structures of algebra over R on A. Let P € Spec(A).
Let m : A — A/P be the natural ring homomorphism. Let p = ker(r o A) =

A~Y(P) and g = ker(moX) = X_I(P). We cen view R/p and R/q as subfields
of A/P. Let k= R/pN R/q. We have:

t(A/P:y R) = t.d.(A/P: R/p) = t.d.(A/P : k) — t.d.(R/p : k)
and - ' |
t(A/P iz R) = t.d.(A/P: R/q) = t.d.(A/P : k) — t.d.(R/q : k).

On the other hand _

t(Ap:r B) = sup{t-d(4/Q:R/p)| Q€ Spec(A)and QG P}
= sup{t(4/Q: k) | Q € Spec(A) and Q C P} —t.d.(R/p: k)

and .

t(Ap ;3 R) = sup{t.d.(A/Q: R/q) | @ € Spec(A) and @ C P}

= sup{t{A/Q : k) | Q € Spec(A) and Q@ C P} —t.d.(R/q: k).

Therefore t(A/P :5 R) — t.d.(Ap :» k) = t(A/P 5 R) — t(Ap i3 R). Conse-
quently, (4, A) is an AF-ring if and only if (4, ) is an AF-ring, o

Let R be the class of R-algebras that are AF-rings. Since R[Xy,... ,X,]
satisfies the first chain condition for prime ideals [G, Corollary 31.17], any
finitely generated R-algebra or any integral extension of such an algebra is
an AF-ring. Moreover the class R is stable under localization and direct
product.

The next result presents some properties of the clags R, and our proof of
Proposition 2.3 uses the following lemma.
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Lemma 2.9. Let (A, A4) be an R-algebra. Then A is an AF-ring if and
only if A/pA is an AF-ring over the field R/p, for each prime ideal p of R
such that pA # A.

Proof. Let P be a prime ideal of A and let p = A;!(P). According to Lemma
1.2, ht P = ht(P/pA) and t(Ap : R) = t.d.((A/pA)p/pa : R/p).

Assume that A is an AF-ring and let p be a prime ideal of R such that
pA # A, Let P be a prime ideal of A containing pA; then

ht(P/pA) + t.d.((A/pA)/(P/pA) : Rfp) = htP+t(4/P:R)
‘ = t(Ap:R)
= t.d.((A/pA)p/pa : R/D).
Conversely, let P be a prime ideal of A and let p = A;(P). Then pA # A;
so by hypothesis A/pA is an AF-ring over R/p, hence
ht P+4(A/P:R) = h(P/pA)+t.d.(A/P:R/p)=
= ht(P/pA} +1t.d.((4/pA)/(P/pA)} : R/p)
= t.d.((A/pA)pspa: R/p) =t(Ap: R).. O

Proposition 2.10. The class R satisfies the following properties:
(1) Let (A, A1) y.. 3 (AnyAn) be tensorially compatible R-algebras. If
yeor y An are AF-rings, then Ay ®gr - ®g Ay is an AF-ring.
(2) Let A be an AF-ring. Then the polynomiel ring A[X] is an AF-ring
and for each prime ideal P of A, ht P =ht P [X].
(3) An AF-ring A is a locally Joffard ring.

Proof. (1) By induction, it suffices to consider the case n = 2. Let (A, A;)
and (Asz, A2) be tensorially compatible AF-rings. Let p be a prime ideal
of R such that p(A; ®r Az) # A; ®z A;. By Lemma 2.2 A,/pA; and
Ay /pA, are AF-rings over the field R/p ; hence by [W, Proposition 3.1]
(A1/pA1)®R/p(Az/pAs) is an AF-rmg over R/p, so that (4, ®gA2)/p(A; @R
Ag) = (Al/pAl) ®Ory/p (Az/pAz) is an AF-rmg over R/p. The proof is com-
plete via Lemma 2.2, -

(2) Since A{X] = A®g R[X], the result follows from (1). Let P be any
prime ideal of A; so

hP < hPA[X] |

' t (A[X]pap : B) — 6 (A[X]/PA[X]: R)
t(Ap [X] : R) - t ((A/P) [X] : R)

ht P, S |

A

—
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(3) Let A be an AF-ring. By (2) we obtain that for any prime ideal P of
A and for each positive integer n, ht P = ht P[X,;...,X,]. Hence, by [C,
p.127], A is a locally Jaffard ring. O

In the same regard, this section establishes adequate analogues of the
main results stated in {BGK1] on the dimension of tensor products of AF-
rings over a fleld. Let us consider for R-algebras the following functions
(introduced in [W] for k-algebras) : let (A1, A1) and (Aj, Ag) be tensorially
compatible R—algebras let P, € Spec(Al) and P, € Spec(As) such that
ATHP) = A3 (Py). Set '

6(P1, Py) = sup{ht Q | Q € Spec(4; ®p Az) and ;' (Q) = B, i = 1, 2}.
One may easily check that
dim{A; ®g Az) = sup{6(Fy, o) | (P, Ps) € I'(A4, A2)},

and
6(P1, Py) = 6(P1/pAs, Pz/PAz),

where p = ATH(Py) = A7Y(P).
Let (A, As) be an R-algebra, P € Spec(A) and d and s integers with
0<d<s. Set

A(s,d, P) = ht PA[X1, ...,
D(s,d, A) = sup{A(s,d, P} | P € Spec(4)}.

Next we provide a formula for the dimension of the tensor produét A®grB,
where A is an AF-ring and B is any ring,.

X,] + min(s, d+ t(A/P : R)),

Theorem 2.11. Let (A, A4) be an AF-ring and (B, Ag) be any R-algebra
such that A®r B+#0. Let (P,I) e '(A, B). Then

8(P,I) = A(tp, ht P, I)
where tp = t(Ap : R), and consequently .
dim(A ®g B) = sup{D(tp,ht P,B/pB) | P € Spec(A),

pB # B} |
=sup{ht I [X},...,X,,] + min(tp, t P+ t(B/I: R)) | (P,I) € T(4,B)}.

= \;}(P) and

Proof. Let P € Spec(A), I € Spec(B) such that A\;}(P) = A5'(J) = p. As

- noted previously, §(P, I) = 6(P/pA, I/pB); moreover, by Lemma 2.2, A/pA

is an AF-ring over the field R/p; so we can apply Theorem 1.4 from [BGK]]
to the (R/p)-algebras A/_pA and B/pB, obtaining that

6(P/pA, I/pB) = A (tp,ht(P/pa), I/pB).
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By Lemma 1.2, ht(P/pa) = htP and t(Ap.: R) = t ((A/pA)p/pa: R)).
Further, for any n > 1, ht I[X), ... , Xa] = ht(I/pB)[ X1, ... , Xn). Hence -

5(P/pA,I/pB) = A(tp, ht pI.

It follows that 6(P,I) = Alte, ht P, 1 ), as asserted. Consequently, using the
definitions of §, A and D and the stated condition on §(P, I), yields
dim(A®zB) = sup{6(P, I) | (P, I) € I'(4, B)} = sup{A(tp, ht P, n|(pI)e
T(A, B)} = sup{D(tp,ht P, B/pB) | P € Spec(4), p= A;1(P) and pB #
B} v stp{ht ] [Xsy - - » Xop]+min(sp, ht P+6(B/T: R)) | (P, 1) €T(4, B)}
as we wished to show. O

It is worthwhile to note that dim(A ®r B) depends on the R-module
structure of A and B. The next example illustrates this fact:

Example 8. Let (A, \4) and (B, Az) be R-algebras such that A is an AF-
ying and A®g B # 0. Let p be a prime ideal of R and let 7 : R — R/p
be the canonical ring homomorphism, Let A; ¢ RXRxR— Rfpx A
and Mg : RXRx R — R/p x B be the ring homomorphisms defined
respectively by Ai(2,9,2) = (n(z), Aa(y)) and Aa(a,,2) = (m(z), An(2)). It
is an easy matter to verify that T(R/p x A,R/p x B) = {((0) x A, (0) X
B)}. Hence via Theorem 2.4, it is easy to check that the dimension of
the tensor product of ((R/p x A), M) and ((R/p x B), Aq) is zero. On the
other hand, let My : RXRX R — R/p x B be the ring homomorphism
defined by My(z,y,2) = (n(2), An(y)); now by Theorem 2.4 we obtain that
the dimension of the tensor product of ((R/p % A), M) and ((R/p x B), X3)
is equal to dim(A ®g B). Thus, it suffices to choose A and B such that
dim(A®g B) > 0 (for instance, when R is a field and A, B are non trivial R-
algebras). Therefore the two values are different according to the (RXRX R)-
module structure of R/p x A and R/p x B.

With the further assumption that A is an AF-domain, we obtain the
following :

Corollary 2.12. Let (A,A4) be an AF-domain and let (B, Ag) be any R-
algebra such that A®r B # 0. Then

dim(A®g B) =D (t(A : R),dim A, B/paB)
where pa = ker A4. Purthermore, if B is an integral domain, then

dim(A ®z B) = D (t(4 : R),dim 4, B).

Proof. Since A is an integral domain, for ‘any. prifneidea.l Pof A, M\H{P) =
pa and t(Ap : R) = $(4 : R); so Theorem 2.4 implies that dim{A ®r
B) = sup{D((4 : R),ht P,B/paB) | P € Spec(A)}- Since D(s,d, A) is

T B S e st
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a nondecreasing- function of the second ar ; i
i gument,. then dim(A B) =
D(t(A: R),dim A, B/paB), as asserted. 3 ’ (4 & B)

Next, we state a technical result th ;
; at allows us to determine a necessar
and sufficient condition under which the dimension of the tensor product o);

AF-rings over -di ; : :
Theore%n 3.8. a zero-dimensional ring satisfies the formula of Wadsworth’s

Propositi . | A '
r*inggo;’h;gn 2.18. Let (A1, A1), (An, As) be tensorially compatible AF-

dim{(A1 Rr Qg An) =2
sup{min(ht M; + tag, + -+ + tar,, tag, +ht M.

=, tagy oty oyt
tam._, +ht M) | M; € Max(4;) and A7 (M) = A (M) =+ = Tll(Mn)-l}-.

Proof. It is deduced from the fact that dim{A 7
' ®p+®r Ay =
sup{dim ((41/Py) ®n (42/Py) @n - ®n (An/Po)) | Pr € St
; € Spec(A4 =
L.. T and ATH(P) = M1 (PB) = = )‘Eln({”nﬁ)zl pect ' ) for
:;I:i{d;rln ((Ajll/pAl).@R/p (A2/pA2) rjp -+ ®rjp (An/PAa)) | P € Spec(R),
pA; # A, for i = 1,...,n}; now we conclude via [BGK1, Lemma 1.6

- and Remark 1.7]. O

’fu‘:;;otrerf 2.14. Let (A1, A1), ..., {An, Ay) be tensorially compatible AF: -rz;'ngs
with b = t(A; : R) and d, = dimA;. Then dim(4; ®p ... ®p Ap) =
‘11 : l“ M-('- t, — max{t; ~d¢_ | 1 < i £ n} if and only if there exist mazimal
ideals ... , M,, belonging respectively to A, ... , A, such that A\;''(M,) =
o= A“. (M,), and there exists r € {1,..., n} such that ht M, = d, and
for any j € {1,...,n} = {r}, tas, = t; and t(A;/M; : B) < t(Ar/M, R).

Proof. Tt is deduced from the fact that dim(4, ®-;§ e ®p Ay =

- sup{dim ((A1/pA:1) ®r/p (A2/PA2) ®ryp - a ’
. /o' ®njp (An/PAn)) | p € Spec(R
and pA; # A, fori=1,2,... ,n} and [BGK1, jr’,I‘hecorem 1))8]|p O pec(F)

Corollary 2.15. Let (A1;M),... ,(Anydn) be tensorially compatible AF-

rin ith t, = . =1 .
is ‘Sgcft;:ﬁ f:i :3% t(A; : R) and d; = dim A,. If one of the following conditions

(1) i’here eaj;ilstma:cimal z‘deafs M, ..., M, belonging respectively to
1yeee s An such that AT (My) = - = A 1(M, d htM; = d;
b, =1t fori=1,2,...,n. v (M) an M=o

(2) If My,... , M, are mazimal ideals belonging respectively to

{413 e ,An 3u0h that ’\']._I(Ml) 4 == A;I(Mn), the_n tM — t fOT
i=1,...,n. o e
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- (8) If Py, ..., Py are minimal prime ideals belonging respectively to
Ai,y..., An such that \TH(P) =« - = AJH(P,), then t(Ai/P: R) =
ty, fori=1,...,n.
(4) Ay,...,An are equicodimensional.
then

dim(A1®R~-®RAﬂ)=t1+---+tn——max{t¢—d;|lsis'n,}.

The proofs of (1), (2), (3) and (4) are similar to those of [BGK1, Corollaries
1.10, 1.11, 1,13, and 1.14], respectively.

Corollary 2.16. Let (A1, M1),...,(An, M) be tensorially compatible AF-
domains with t; = t(A; : R) and d; = dim(A;). Then

dim({A; ®g +- ®@p An) =t 4 + to —max{t; —d; | 1 <i<n}

Proof. Since A; ®g +++ ®r An # 0, by Proposition 1.4 we have pa, = pa, =
rve = pga, = p; then A ®r - Br An & A Orjp - Qryp A,,. The result
follows from [W, Theorem 3.8]. O

Now we consider the special case in which (A5, A1) = (A4g, A2).

Corollary 2.17. Let (A, \4) be an AF-ring. Then dim(A®gA) = dim A+
t(A : R) if and only if there ewist mazimal ideals M and N in A such that
AZTH M) = AHN), M =dim A, t(Ay: R) = t(A: R) and t(A/N : R) <
t{(A/M : R).

3, The valuative dimension of tensor products and Jaffard rings

[BGK1, Theorem 2.1} establishes that if A is an AF-ring over a field & and
B is & locally Jaffard ring, then A ®; B is a locally Jaffard ring. We next
extend this result to AF-rings over a zero-dimensional ring.

Theorem 3.18. Let (A, A4} be an AF-ring and (B, Ag) a locally Jaffard
ring such that A®p B # 0. Then A®g B is o locally Jaffard ring.

Proof. Tt is sufficient to prove that for each prime ideal @ of A ®p B and
for each nonnegative integer n, ht Q{X,...,X,] = ht @ (see [ABDFK] and
[Q)). Let P = p31(Q), I = 15'(Q) and p = A35,(Q); according to Lemma,
2.2, A/pA is an AF-ring over the field R/p; moreover, by Lemma 1.2 B /pBis
a locally Jaffard ring; so we can apply Theorem 2.1 of [BGK1] to the (/p)-
algebras A/pA and B/pB obtaining that (4/pA) ®ry, (B/pB) is a locally
Jaffard ring. Since (A/pA) ®g/» B/pB & (A®r B)/p(A®r B), then for
each nonnegative integer n, it results that ht{((Q/p(A®r B))[X1,... , Xa]) =
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ht (Q/p(A ®r B)); so according to Lemma 1.2, ht Q = ht Q[X1,...,, X,], as
desired. [ . . _

Remark 3, Let (A, A1) be an AF-ring and (B, Ag) any R-algebra such that
A®pr B # 0. Let Q € Spec(A®g B), P = p3}(Q) and I = p31{(Q). We
obtain from [BGK 1, Lemma 2.2] the following result:

htQ +t((A®r B)/Q: R) = tp+ht I[X,... , X, | + (B/I : R).

Let us recall that the valuative dimension of tensor products of algebras
over a field does not seem to be effectively computable in general. However,
[Gi, Proposition 3.1) states that provided A; and A; are two algebras over
a field k, then

dim, (A ® Az) < min (dim, 4y + t.d.(Az : k), t.d.(A4; : k) + dim, A4,).

The next result establishes the analogue of this result for the zero-dimensio-

nal case.

Proposition 3.19. Let (A1, A1) and (Az, A7) be tensorially compatible R-
algebras, Then

dim, (A4, ®g Az) < min (dim, A; + t(4z : R), t(Ay : R) + dim, 4;).

Proof. Let @ be any prime ideal of 4, ®g As; let Pi = p71(Q), P2 = 13 1(Q)
and p = AT 1(P) = A7 (P2). Let T'= A; ®p A;. Then -
dim, (T/Q) < dim, (T/ (Im(j; ® id4,) + Im{ida, ® 72))).
Moreover, using the canonicel isomorphism
T/(Im(j, ® ida,) + Im(ida, ® 52)) = (A1/P1) ®ryp (A2/Pa)
and (Gi, Proposition 3.1}, yields
dim, (T/Q) < dim, ((Ai/P1) ®rsp (A2/ P2))
< min(dim, A;/P; + t{As/ P, : R), dim, A3/ P + t(A; /P : R))
< min(dim, A; + t(42 : R), dim, A3 +t(A; : R)). O

The next result handles the case where one of two R-algebras is an AF-
ring.

Proposition 3.20. Let (A,A4) and (B, Ag) be tensorially compatible R-
algebras and A an AF-ring. Then, for any r > dim, B — 1, :
sup{D(tp +r,ht P + r,B/pB) | P & Spec(A), p = A\;'(P) and pB # B} —
r = ' SRR
sup{htI [X1,... ,X,] + min (tp, ht P+ t(B/I: R)) | (P,I) € (A, B)}.
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Proof.” Let 7> dimy B —1.- Then, by'[C, Proposition 1, i1)],B [X1, .y Xy I8
a locally Jafferd ring. So, according to Theorem 3.1, A®g B [ X150y Xy) 18
a locally Jaffard ring and hence a Jaffard ring. Therefore, by Corollary 2.5,
dim,, (A ®n B [Xl, ...,Xr]) = dim(A ®r B [Xl, ceny X,-]) = "
sup{D(tp, htP,(B/pB) (X1,... , X)) | P € Spec(A) with A7°(P) = p and
pB # B}. Hence, according to [BGK1, Lemma 2.3],

dim,, (A ®r B) = . _

sup{D(tp + 1, htP +r, B/pB) | P € Spec(4) with A7'(P) = p and pB #
B}—r=

sup{htI X1, ..., X,]+ min{tp, itP+#(B/I: R)) | (P,I)€T(4,B)}. O

We cohciude this sectioﬁ with two results on AF-domains.

Corollary 3.21. Let (A, A4) be an AF-domain and B any R-algebra such
that AQr B # 0. Then for anyr > dim, B -1

dim,(A ®g B) = D{t+r, d+ v, BfpaB) -1 = sup{ht @ [X1,... X;] +
min(t, d+t(B/I: R)) | I € Spec(B) and A\5'(I) = pa},

where t =t(A: R) and d = dim A4,

Corollary 3.22. Let (A,\4) and (B, Ag) be R-algebras such that A z's' an
AF-domain and AQg B # 0. Ifdim, B <t(A: R)+1, then AQpr B is a
Jaffard ring.

Remark 4. We thank the Referee for the following observation, Let Apeq
be the reduced ring associated to a ring A. Then t{A : R) = t(Areq : Rred)
for any R-algebra (A, A4); moreover, if (A;, A1) and (Az, Ao) are R-algebras,
then (A; ®r Az)red = ((A1)red @Rrex (A2)red)peq [GD, Corollary 4.5.12). One
may therefore assume that R is absolutely flat and (A1, M), (Aa, A2) are
reduced R-algebras.
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