Dekker Lect. Notes Pure Appl. Math. 205 (1999) 145-159.

The Dimension of Tensor Products of Commutative Algebras Over a Zero-Dimensional Ring

·

Samir Bouchiba	Université de Meknès, Meknès, Morocco
Florida Girolami ¹	Università degli Studi di Roma Tre, Roma, Italy
Salah-Eddine Kabbaj	² KFUPM, Dhahran, Saudi Arabia

0. Introduction

×.

All the rings and algebras considered in this paper will be commutative, with identity elements and ring-homomorphisms will be unital. If A is a ring, then dim A will denote the (Krull) dimension of A, that is, the supremum of lengths of chains of prime ideals of A. An integral domain D is said to have valuative dimension n (in short, $\dim_v D = n$) if each valuation overring of D has dimension at most n and there exists a valuation overring of D of dimension n. If no such integer n exists, then D is said to have infinite valuative dimension (see [G]). For reader's convenience, recall that for any ring A, $\dim_v A = \sup\{\dim_v(A/P) \mid P \in \operatorname{Spec}(A)\}$, and that a finite-dimensional domain D is a Jaffard domain if dim $D = \dim_v D$. As the class of Jaffard domains is not stable under localization, an integral domain D is defined to be a locally Jaffard domain if D_P is a Jaffard domain for each prime ideal P of D (see [ABDFK]). Analogous definitions are given in [C] for a finite-dimensional ring.

¹Partially supported by MURST (60% Fund). ²Partially supported by KFUPM.

Tensor Products of Commutative Algebras Over a 0 Dimensional Ring

Bouchiba et al.

• • •

In [S] Sharp proved that if K and L are two extension fields of a field k, then

$$\dim(K \otimes_k L) = \min(t, d, (K:k), t, d, (L:k))$$

This result provided a natural starting point to explore dimensions of tensor products of somewhat general k-algebras and it was concretized by Wadsworth in [W], where the result of Sharp was extended to AF-domains (for "altitude formula"), that is, integral domains A such that

$$\operatorname{ht} P + \operatorname{t.d.}(A/P:k) = \operatorname{t.d.}(A:k)$$

for all prime ideals P of A. He showed that if A_1 and A_2 are AF-domains, then

$$\dim(A_1 \otimes_k A_2) = \min(\dim A_1 + t. d. (A_2 : k), \dim A_2 + t. d. (A_1 : k)).$$

He also stated a formula for dim $(A \otimes_k R)$ which holds for an AF-domain A, with no restriction on R. At this point, it is worthwhile to recall that an AF-domain is a (locally) Jaffard domain [Gi].

The purpose of this note is to extend all the known results on the dimension of tensor products of k-algebras to the general case where k is any zero-dimensional ring, denoted by R. The most remarkable outcome is perhaps that dim $(A_1 \otimes_R A_2)$, where A_1 and A_2 are two R-algebras, depends on a subtle relation which intertwines their two R-module structures. Such phenomenon does not hold in the field case since any k-algebra ($\neq 0$) contains k. Thus, our investigation relies on a mild new assumption that keeps under control most results involving the ideal structures of $A_1 \otimes_R A_2$.

In the first section we extend, in a natural way, the definition of the transcendence degree over a field as well as some basic Wadsworth's results to the zero-dimensional ring case. In the same regard, Section 2 and 3 establish adequate analogues of all the results stated in [BGK1] for AF-rings. Some examples throw more light on the new phenomenon (cited above).

1. Background and preliminaries on tensor products of algebras over a zero-dimensional ring

Throughout this paper R denotes a zero-dimensional ring. We denote by (A, λ_A) an R-algebra A and its associated ring homomorphism $\lambda_A : R \longrightarrow A$; we denote by λ_A^* the associated spectral map $\operatorname{Spec}(A) \longrightarrow \operatorname{Spec}(R)$.

If P is a prime ideal of A, $\lambda_A^{-1}(P)$ is a maximal ideal of R; so we can consider the transcendence degree of the integral domain A/P over the field $R/\lambda_A^{-1}(P)$; we put:

$$t(A:_{\lambda_A} R) = \sup\{t. d. (A/P: R/\lambda_A^{-1}(P)) \mid P \in \operatorname{Spec}(A)\} \\ = \sup\{t. d. (A/P: R/\lambda_A^{-1}(P)) \mid P \in \operatorname{Min}(A)\}$$

and we say that $t(A:_{\lambda_A} R)$ is the transcendence degree of the *R*-algebra *A* over *R*; we write t(A:R) as an abbreviation for $t(A:_{\lambda_A} R)$, when there is no ambiguity. All along this note we consider only *R*-algebras (A, λ_A) such that $t(A:_{\lambda_A} R) < \infty$. This, of course, ensures that dim $A < \infty$. If *A* is an integral domain, p_A denotes ker λ_A .

First of all we note that the transcendence degree of an R-algebra A depends on its R-module structure, as it is shown by the next example:

Example 1. Let $R = k(X) \times k$ and A = k(X), where k is a field. Let $\lambda_1 : R \longrightarrow A$ be the ring homomorphism defined by $\lambda_1(x, y) = x$, and $\lambda_2 : R \longrightarrow A$ be the ring homomorphism defined by $\lambda_2(x, y) = y$. We have $t(A:_{\lambda_1} R) = t. d. ((k(X):k(X)) = 0 \text{ and } t(A:_{\lambda_2} R) = t. d. (k(X):k) = 1.$ Thus $t(A:_{\lambda_1} R) \neq t(A:_{\lambda_2} R)$.

We begin by giving a simple generalization of a well-known result [ZS] for algebras over a field.

Lemma 1.1. Let (A, λ_A) be an *R*-algebra and $P \in \text{Spec}(A)$. Then

 $\operatorname{ht} P + \operatorname{t}(A/P:R) \le \operatorname{t}(A_P:R).$

Proof. Clearly, $t(A/P : R) = t. d.(A/P : R/\lambda_A^{-1}(P))$. If $P' \in \text{Spec}(A)$ and $P' \subseteq P$, then for the prime ideal P/P' of the $R/\lambda_A^{-1}(P)$ -algebra A/P', by [ZS, p.10], we get

 $\begin{aligned} \operatorname{ht}(P/P') + \operatorname{t.d.}(A/P: R/\lambda_A^{-1}(P)) &\leq \operatorname{t.d.}(A/P': R/\lambda_A^{-1}(P)) \\ &= \operatorname{t.d.}(A_P/P'A_P: R/\lambda_A^{-1}(P')). \end{aligned}$

The result then follows. \Box

The following elementary properties will be used frequently. These statements admit routine proofs.

Lemma 1.2. Let (A, λ_A) be an R-algebra.

(1) If P is a prime ideal of A and $p = \lambda_A^{-1}(P)$, then ht P = ht(P/pA) and $t(A_P : R) = t((A/pA)_{P/pA} : R)$.

(2) If P is a prime ideal of A and $p = \lambda_A^{-1}(P)$, then for each $n \ge 1$ ht $P[X_1, \dots, X_n] = ht(P/pA)[X_1, \dots, X_n].$

146

Bouchiba et al.

(3) If A is a locally Jaffard ring, then A/pA is a locally Jaffard ring for each prime ideal p of R such that $pA \neq A$.

Let (A_1, λ_1) and (A_2, λ_2) be *R*-algebras. For i = 1, 2, we denote by $\mu_i : A_i \to A_1 \otimes_R A_2$ the canonical A_i -algebra homomorphism. The *R*-algebra $A_1 \otimes_R A_2$, when not specifically indicated, has $\lambda_{A_1 \otimes_R A_2} = \mu_1 \circ \lambda_1 = \mu_2 \circ \lambda_2$ as its associated ring homomorphism. If $P_i \in \text{Spec}(A_i)$, $i = 1, 2, j_i$ denotes the inclusion of P_i into A_i , t_{P_i} denotes the transcendence degree of the local ring $A_{i_{P_i}}$ over *R* and $k(P_i)$ denotes the residue field of $A_{i_{P_i}}$. At last, we set $\Gamma(A_1, A_2) = \{(P_1, P_2) \mid P_1 \in \text{Spec}(A_1), P_2 \in \text{Spec}(A_2) \text{ and } \lambda_1^{-1}(P_1) = \lambda_2^{-1}(P_2)\}.$

A tensor product of *R*-algebras may be zero. We are interested in *R*-algebras (A_1, λ_1) and (A_2, λ_2) such that $A_1 \otimes_R A_2 \neq 0$, and say that such algebras are *tensorially compatible*. The next result provides some elementary and useful characterizations of tensorially compatible *R*-algebras. For a more general result, we refer the reader to [GD, Corollary 3.2.7.1].

Proposition 1.3. Let (A_1, λ_1) and (A_2, λ_2) be *R*-algebras. The following conditions are equivalent:

(1) (A_1, λ_1) and (A_2, λ_2) are tensorially compatible.

(2) $\lambda_1^*(\operatorname{Spec}(A_1)) \cap \lambda_2^*(\operatorname{Spec}(A_2)) \neq \emptyset$.

(3) There exists a prime ideal P_1 of A_1 such that $\lambda_1^{-1}(P_1)A_2 \neq A_2$.

(4) There exists a prime ideal P_2 of A_2 such that $\lambda_2^{-1}(P_2)A_1 \neq A_1$.

(5) There exists a prime ideal p of R such that $pA_1 \neq A_1$ and $pA_2 \neq A_2$.

(6) ker $\lambda_1 + \ker \lambda_2 \neq R$.

Proof. (1) \Longrightarrow (2). If (1) holds, then there exists a prime ideal Q of $A_1 \otimes_R A_2$; therefore $\mu_1^{-1}(Q) \in \operatorname{Spec}(A_1)$ and $\mu_2^{-1}(Q) \in \operatorname{Spec}(A_2)$ are such that $\lambda_1^{-1}(\mu_1^{-1}(Q)) = \lambda_2^{-1}(\mu_2^{-1}(Q))$, and hence, $\lambda_1^*(\operatorname{Spec}(A_1)) \cap \lambda_2^*(\operatorname{Spec}(A_2)) \neq \emptyset$. (2) \Longrightarrow (3). Let P_1 be a prime ideal of A_1 and P_2 a prime ideal of A_2 such that $\lambda_1^{-1}(P_1) = \lambda_2^{-1}(P_2)$; then $\lambda_1^{-1}(P_1)A_2 \subseteq P_2$ and so $\lambda_1^{-1}(P_1)A_2 \neq A_2$.

The implications $(3) \Longrightarrow (4)$, $(4) \Longrightarrow (5)$ and $(5) \Longrightarrow (6)$ are apparent.

Finally, assume (6). Since ker $\lambda_1 + \ker \lambda_2 \neq R$, there exists a prime ideal p of R such that ker $\lambda_1 + \ker \lambda_2 \subseteq p$; this ensures that there exist a prime ideal P_1 of A_1 and a prime ideal P_2 of A_2 such that $\lambda_1^{-1}(P_1) = \lambda_2^{-1}(P_2) = p$. Then

 $(A_1 \otimes_R A_2) / (\operatorname{Im}(j_1 \otimes id_{A_2}) + \operatorname{Im}(id_{A_1} \otimes j_2)) \cong (A_1/P_1) \otimes_R (A_2/P_2)$ $\cong (A_1/P_1) \otimes_{R/p} (A_2/P_2) \neq 0$

and so $A_1 \otimes_R A_2 \neq 0$. \square

By induction, we obtain the following:

Tensor Products of Commutative Algebras Over a 0 Dimensional Ring

149

Proposition 1.4. Let $(A_1, \lambda_1), \ldots, (A_n, \lambda_n)$ be *R*-algebras. Then the following conditions are equivalent:

- (1) $A_1 \otimes_R \cdots \otimes_R A_n \neq 0$.
- (2) $\lambda_1^*(\operatorname{Spec}(A_1)) \cap \lambda_2^*(\operatorname{Spec}(A_2)) \cap \cdots \cap \lambda_n^*(\operatorname{Spec}(A_n)) \neq \emptyset$.
- (3) There exists a prime ideal p of R such that $pA_i \neq A_i$ for every i = 1, 2, ..., n.

The next result establishes an analogue to [W, Proposition 2.3].

Proposition 1.5. Let (A_1, λ_1) and (A_2, λ_2) be *R*-algebras. Let $P_1 \in \text{Spec}(A_1)$ and $P_2 \in \text{Spec}(A_2)$ such that $\lambda_1^{-1}(P_1) = \lambda_2^{-1}(P_2) = p$. Let

 $T = A_1 \otimes_R A_2$ and $\Omega = \{Q \in \text{Spec}(A_1 \otimes_R A_2) \mid \mu_i^{-1}(Q) = P_i, i = 1, 2\}.$

Then

- (1) Ω is lattice isomorphic to Spec(T'), where $T' = k(P_1) \otimes_{R/p} k(P_2)$.
- (2) A prime ideal Q of Ω is minimal in Ω if and only if $t(T/Q:R) = t(A_1/P_1:R) + t(A_2/P_2:R)$.
- (3) If $Q_0 \in \operatorname{Spec}(T)$ and $\mu_i^{-1}(Q_0) \supseteq P_i$, i = 1, 2, then there exists $Q \in \Omega$ such that $Q \subseteq Q_0$.

Proof. (1) is an immediate consequence of [GD, Corollary 3.2.7.1(ii)]. The proof of (2) and (3) is quite similar to that of Wadsworth. \Box

Proposition 1.5 allows us to extend partially some results of [W] to R-algebras.

Corollary 1.6. Let (A_1, λ_1) and (A_2, λ_2) be tensorially compatible *R*-algebras. Let $Q \in \text{Spec}(A_1 \otimes_R A_2)$. Then

 $\operatorname{ht} Q \ge \operatorname{ht}(\mu_1^{-1}(Q)) + \operatorname{ht}(\mu_2^{-1}(Q)).$

We omit the proof because of its similarity to that of [W, Corollary 2.5].

Corollary 1.7. Let (A_1, λ_1) and (A_2, λ_2) be tensorially compatible *R*-algebras. Then

 $t(A_1 \otimes_R A_2 : R) = \sup\{t(A_1/P_1 : R) + t(A_2/P_2 : R) \mid (P_1, P_2) \in \Gamma(A_1, A_2)\}.$ Consequently,

 $t(A_1 \otimes_R A_2 : R) \leq t(A_1 : R) + t(A_2 : R).$

Bouchiba et al.

Proof. Let $(P_1, P_2) \in \Gamma(A_1, A_2)$. Then by Proposition 1.5 there exists a prime ideal Q of $A_1 \otimes_R A_2$ such that $t((A_1 \otimes_R A_2)/Q:R) = t(A_1/P_1:R) + t(A_2/P_2:R)$. So

$$\begin{split} &\sup\{\mathsf{t}(A_1/P_1:R) + \mathsf{t}(A_2/P_2:R) \mid (P_1,P_2) \in \Gamma(A_1,A_2)\} \leq \mathsf{t}(A_1 \otimes_R A_2:R). \\ & \text{Conversely, let } Q \text{ be a prime ideal of } A_1 \otimes_R A_2; \text{ the prime ideals } P_1 = \\ & \mu_1^{-1}(Q) \text{ and } P_2 = \mu_2^{-1}(Q) \text{ are such that } \lambda_1^{-1}(P_1) = \lambda_2^{-1}(P_2) = p; \text{ let } T = \\ & A_1 \otimes_R A_2; \text{ then, by using [W, Corollary 2.4], we obtain:} \end{split}$$

$$\begin{aligned} t\left(T/Q:R\right) &= t.d.\left(T/Q:R/p\right) \\ &= t.d.\left(\frac{T/\left(\operatorname{Im}(j_1 \otimes id_{A_2}) + \operatorname{Im}(id_{A_1} \otimes j_2)\right)}{Q/\left(\operatorname{Im}(j_1 \otimes id_{A_2}) + \operatorname{Im}(id_{A_1} \otimes j_2)\right)}:R/p\right) \\ &\leq t.d.\left((A_1/P_1) \otimes_{R/p} (A_2/P_2)):R/p\right) \\ &= t.d.(A_1/P_1:R/p) + t.d.(A_2/P_2:R/p) \\ &= t(A_1/P_1:R) + t(A_2/P_2:R), \end{aligned}$$

as desired. \Box

Remark 1. Let (A_1, λ_1) and (A_2, λ_2) be tensorially compatible *R*-algebras. Clearly, $t(A_1 \otimes_R A_2 : R) = t(A_1 : R) + t(A_2 : R)$ if and only if there exist $P_1 \in \text{Spec}(A_1)$, and $P_2 \in \text{Spec}(A_2)$ such that $\lambda_1^{-1}(P_1) = \lambda_2^{-1}(P_2)$ and $t(A_1 : R) = t(A_1/P_1 : R)$, $t(A_2 : R) = t(A_2/P_2 : R)$. The second condition holds, for instance, if A_1 and A_2 are integral domains or if Spec(R) is reduced to only one prime ideal. In general, the equality fails as it is shown in the next example. Moreover, when *R* is a field, we have $\dim(A_1 \otimes_R A_2) \ge$ $\dim A_1 + \dim A_2$ [W, Corollary 2.5]. This is not, in general, true in the zero-dimensional case. The next example deals with these matters.

Example 2. There exist two tensorially compatible *R*-algebras (A_1, λ_1) and (A_2, λ_2) with $t(A_1 \otimes_R A_2 : R) < t(A_1 : R) + t(A_2 : R)$

and

$$\dim(A_1 \otimes_R A_2 : R) < \dim A_1 + \dim A_2$$

Let $R = \mathbb{R} \times \mathbb{R}$, $A_1 = \mathbb{R}$ and $A_2 = \mathbb{R} \times \mathbb{R}[X]$. Let $\lambda_1 : \mathbb{R} \longrightarrow A_1$ be the ring homomorphism defined by $\lambda_1(x, y) = x$ and let $\lambda_2 : \mathbb{R} \longrightarrow A_2$ be the ring homomorphism defined by $\lambda_2(x, y) = (x, y)$. Then

$$t(A_1:_{\lambda_1}R) = t(I\!R:_{\lambda_1}R) = t.d.(I\!R:I\!R) = 0$$

and

 $t(A_2:_{\lambda_2} R) = t(\mathbb{R} \times \mathbb{R} [X]:_{\lambda_2} R) = \sup\{t. d.(\mathbb{R}:\mathbb{R}), t. d.(\mathbb{R} [X]:\mathbb{R})\} = 1$ and so $t(A_1:_{\lambda_1} R) + t(A_2:_{\lambda_2} R) = 1.$

Tensor Products of Commutative Algebras Over a 0 Dimensional Ring

Moreover, by Corollary 1.7, $t(A_1 \otimes_R A_2 : R) = \sup\{t(A_1/P_1 : R) + t(A_2 : P_2 : R) \mid (P_1, P_2) \in \Gamma(A_1, A_2)\} = t(A_1 :_{\lambda_1} R) + t(A_2/((0) \times I\!\!R[X]) : R) = t. d.(I\!\!R : I\!\!R) + t. d.(I\!\!R : I\!\!R) = 0.$ Further

 $\dim(A_1 \otimes_R A_2 : R) \le \operatorname{t}(A_1 \otimes_R A_2 : R) = 0 < \dim A_1 + \dim A_2 = 1. \quad \Box$

2. Tensor products of AF-rings

Definition 2.8. An *R*-algebra (A, λ_A) is an AF-ring if for every $P \in \text{Spec}(A)$

 $\operatorname{ht} P + \operatorname{t}(A/P : R) = \operatorname{t}(A_P : R).$

Remark 2. The AF-ring concept does not depend on the structure of algebra over R defined by the associated ring homomorphism.

Indeed, let A be a ring and let λ and $\overline{\lambda}$ be two ring homomorphisms defining two different structures of algebra over R on A. Let $P \in \text{Spec}(A)$. Let $\pi : A \to A/P$ be the natural ring homomorphism. Let $p = \ker(\pi \circ \lambda) = \lambda^{-1}(P)$ and $q = \ker(\pi \circ \overline{\lambda}) = \overline{\lambda}^{-1}(P)$. We can view R/p and R/q as subfields of A/P. Let $k = R/p \cap R/q$. We have:

$$t(A/P:_{\lambda} R) = t. d.(A/P: R/p) = t. d.(A/P: k) - t. d.(R/p: k)$$

 and

$$t(A/P:_{\overline{\lambda}} R) = t. d.(A/P: R/q) = t. d.(A/P: k) - t. d.(R/q: k).$$

On the other hand

$$t(A_P:_{\lambda} R) = \sup\{t. d. (A/Q: R/p) \mid Q \in \operatorname{Spec}(A) \text{ and } Q \subseteq P\}$$

=
$$\sup\{t(A/Q: k) \mid Q \in \operatorname{Spec}(A) \text{ and } Q \subseteq P\} - t. d. (R/p: k)$$

and

 $\begin{aligned} \mathrm{t}(A_P:_{\overline{\lambda}}R) &= \sup\{\mathrm{t.d.}(A/Q:R/q) \mid Q \in \operatorname{Spec}(A) \text{ and } Q \subseteq P\} \\ &= \sup\{\mathrm{t}(A/Q:k) \mid Q \in \operatorname{Spec}(A) \text{ and } Q \subseteq P\} - \mathrm{t.d.}(R/q:k). \end{aligned}$

Therefore $t(A/P :_{\lambda} R) - t. d.(A_P :_{\lambda} k) = t(A/P :_{\overline{\lambda}} R) - t(A_P :_{\overline{\lambda}} R)$. Consequently, (A, λ) is an AF-ring if and only if $(A, \overline{\lambda})$ is an AF-ring.

Let \mathcal{R} be the class of *R*-algebras that are AF-rings. Since $R[X_1, \ldots, X_n]$ satisfies the first chain condition for prime ideals [G, Corollary 31.17], any finitely generated *R*-algebra or any integral extension of such an algebra is an AF-ring. Moreover the class \mathcal{R} is stable under localization and direct product.

The next result presents some properties of the class \mathcal{R} , and our proof of Proposition 2.3 uses the following lemma.

150

Tensor Products of Commutative Algebras Over a 0 Dimensional Ring

Lemma 2.9. Let (A, λ_A) be an R-algebra. Then A is an AF-ring if and only if A/pA is an AF-ring over the field R/p, for each prime ideal p of R such that $pA \neq A$.

Bouchiba et al.

Proof. Let P be a prime ideal of A and let $p = \lambda_A^{-1}(P)$. According to Lemma 1.2, ht $P = \operatorname{ht}(P/pA)$ and $\operatorname{t}(A_P : R) = \operatorname{t.d.}((A/pA)_{P/pA} : R/p)$.

Assume that A is an AF-ring and let p be a prime ideal of R such that $pA \neq A$. Let P be a prime ideal of A containing pA; then

$$ht(P/pA) + t. d.((A/pA)/(P/pA) : R/p) = ht P + t(A/P : R)$$

= $t(A_P : R)$
= $t. d.((A/pA)_{P/pA} : R/p).$

Conversely, let P be a prime ideal of A and let $p = \lambda_A^{-1}(P)$. Then $pA \neq A$; so by hypothesis A/pA is an AF-ring over R/p, hence

$$ht P + t(A/P : R) = ht(P/pA) + t. d.(A/P : R/p) =$$

= $ht(P/pA) + t. d.((A/pA)/(P/pA) : R/p)$
= $t. d.((A/pA)_{P/pA} : R/p) = t(A_P : R).$

Proposition 2.10. The class \mathcal{R} satisfies the following properties:

- (1) Let $(A_1, \lambda_1), \ldots, (A_n, \lambda_n)$ be tensorially compatible R-algebras. If A_1, \ldots, A_n are AF-rings, then $A_1 \otimes_R \cdots \otimes_R A_n$ is an AF-ring.
- (2) Let A be an AF-ring. Then the polynomial ring A[X] is an AF-ring and for each prime ideal P of A, ht P = ht P[X].
- (3) An AF-ring A is a locally Jaffard ring.

Proof. (1) By induction, it suffices to consider the case n = 2. Let (A_1, λ_1) and (A_2, λ_2) be tensorially compatible AF-rings. Let p be a prime ideal of R such that $p(A_1 \otimes_R A_2) \neq A_1 \otimes_R A_2$. By Lemma 2.2 A_1/pA_1 and A_2/pA_2 are AF-rings over the field R/p; hence by [W, Proposition 3.1] $(A_1/pA_1) \otimes_{R/p} (A_2/pA_2)$ is an AF-ring over R/p, so that $(A_1 \otimes_R A_2)/p(A_1 \otimes_R A_2) \cong (A_1/pA_1) \otimes_{R/p} (A_2/pA_2)$ is an AF-ring over R/p. The proof is complete via Lemma 2.2.

(2) Since $A[X] \cong A \otimes_R R[X]$, the result follows from (1). Let P be any prime ideal of A; so

 $ht P \leq ht PA[X]$ $= t \left(A[X]_{PA[X]} : R \right) - t \left(A[X] / PA[X] : R \right)$ $\leq t \left(A_P[X] : R \right) - t \left((A/P)[X] : R \right)$

= ht P.

(3) Let A be an AF-ring. By (2) we obtain that for any prime ideal P of A and for each positive integer n, ht $P = \operatorname{ht} P[X_1, \ldots, X_n]$. Hence, by [C, p.127], A is a locally Jaffard ring. \Box

In the same regard, this section establishes adequate analogues of the main results stated in [BGK1] on the dimension of tensor products of AFrings over a field. Let us consider for *R*-algebras the following functions (introduced in [W] for *k*-algebras) : let (A_1, λ_1) and (A_2, λ_2) be tensorially compatible *R*-algebras; let $P_1 \in \text{Spec}(A_1)$ and $P_2 \in \text{Spec}(A_2)$ such that $\lambda_1^{-1}(P_1) = \lambda_2^{-1}(P_2)$. Set

 $\delta(P_1, P_2) = \sup\{ \operatorname{ht} Q \mid Q \in \operatorname{Spec}(A_1 \otimes_R A_2) \text{ and } \mu_i^{-1}(Q) = P_i, i = 1, 2 \}.$

One may easily check that

$$\dim(A_1 \otimes_R A_2) = \sup\{\delta(P_1, P_2) \mid (P_1, P_2) \in \Gamma(A_1, A_2)\},\$$

and

$$\delta(P_1, P_2) = \delta(P_1/pA_1, P_2/pA_2),$$

where $p = \lambda_1^{-1}(P_1) = \lambda_2^{-1}(P_2)$.

Let (A, λ_A) be an *R*-algebra, $P \in \text{Spec}(A)$ and *d* and *s* integers with $0 \le d \le s$. Set

 $\triangle(s,d,P) = \operatorname{ht} PA[X_1,...,X_s] + \min(s, d + \operatorname{t}(A/P:R)),$

 $D(s, d, A) = \sup\{\Delta(s, d, P) \mid P \in \operatorname{Spec}(A)\}.$

Next we provide a formula for the dimension of the tensor product $A \otimes_R B$, where A is an AF-ring and B is any ring.

Theorem 2.11. Let (A, λ_A) be an AF-ring and (B, λ_B) be any R-algebra such that $A \otimes_R B \neq 0$. Let $(P, I) \in \Gamma(A, B)$. Then

 $\delta(P, I) = \Delta(t_P, \operatorname{ht} P, I)$

where $t_P = t(A_P : R)$, and consequently $\dim(A \otimes_R B) = \sup\{D(t_P, \operatorname{ht} P, B/pB) \mid P \in \operatorname{Spec}(A), p = \lambda_A^{-1}(P) \text{ and } pB \neq B\}$ $= \sup\{\operatorname{ht} I[X_1, \ldots, X_{t_P}] + \min(t_P, \operatorname{ht} P + t(B/I : R)) \mid (P, I) \in \Gamma(A, B)\}.$

Proof. Let $P \in \text{Spec}(A)$, $I \in \text{Spec}(B)$ such that $\lambda_A^{-1}(P) = \lambda_B^{-1}(I) = p$. As noted previously, $\delta(P, I) = \delta(P/pA, I/pB)$; moreover, by Lemma 2.2, A/pA is an AF-ring over the field R/p; so we can apply Theorem 1.4 from [BGK1] to the (R/p)-algebras A/pA and B/pB, obtaining that

 $\delta(P/pA, I/pB) = \Delta(t_P, \operatorname{ht}(P/pa), I/pB).$

Tensor Products of Commutative Algebras Over a 0 Dimensional Ring

Bouchiba et al.

154

By Lemma 1.2, $\operatorname{ht}(P/pa) = \operatorname{ht} P$ and $t(A_P : R) = t((A/pA)_{P/pA} : R))$. Further, for any $n \ge 1$, $\operatorname{ht} I[X_1, \ldots, X_n] = \operatorname{ht}(I/pB)[X_1, \ldots, X_n]$. Hence

$\delta(P/pA, I/pB) = \Delta(\mathbf{t}_P, \operatorname{ht} P, I).$

It follows that $\delta(P, I) = \Delta(t_P, \operatorname{ht} P, I)$, as asserted. Consequently, using the definitions of δ , Δ and D and the stated condition on $\delta(P, I)$, yields $\dim(A \otimes_R B) = \sup\{\delta(P, I) \mid (P, I) \in \Gamma(A, B)\} = \sup\{\Delta(t_P, \operatorname{ht} P, I) \mid (P, I) \in \Gamma(A, B)\} = \sup\{D(t_P, \operatorname{ht} P, B/pB) \mid P \in \operatorname{Spec}(A), p = \lambda_A^{-1}(P) \text{ and } pB \neq B\} = \sup\{\operatorname{ht} I[X_1, \ldots, X_{t_P}] + \min(t_P, \operatorname{ht} P + t(B/I : R)) \mid (P, I) \in \Gamma(A, B)\}$ as we wished to show. \Box

It is worthwhile to note that $\dim(A \otimes_R B)$ depends on the *R*-module structure of *A* and *B*. The next example illustrates this fact:

Example 3. Let (A, λ_A) and (B, λ_B) be *R*-algebras such that *A* is an AFring and $A \otimes_R B \neq 0$. Let *p* be a prime ideal of *R* and let $\pi : R \longrightarrow R/p$ be the canonical ring homomorphism. Let $\lambda_1 : R \times R \times R \longrightarrow R/p \times A$ and $\lambda_2 : R \times R \times R \longrightarrow R/p \times B$ be the ring homomorphisms defined respectively by $\lambda_1(x, y, z) = (\pi(x), \lambda_A(y))$ and $\lambda_2(x, y, z) = (\pi(x), \lambda_B(z))$. It is an easy matter to verify that $\Gamma(R/p \times A, R/p \times B) = \{(0) \times A, (0) \times B)\}$. Hence via Theorem 2.4, it is easy to check that the dimension of the tensor product of $((R/p \times A), \lambda_1)$ and $((R/p \times B), \lambda_2)$ is zero. On the other hand, let $\lambda'_2 : R \times R \times R \longrightarrow R/p \times B$ be the ring homomorphism defined by $\lambda'_2(x, y, z) = (\pi(x), \lambda_B(y))$; now by Theorem 2.4 we obtain that the dimension of the tensor product of $((R/p \times A), \lambda_1)$ and $((R/p \times A), \lambda_1)$ and $((R/p \times B), \lambda_2)$ is zero. On the other hand, let $\lambda'_2 : R \times R \times R \longrightarrow R/p \times B$ be the ring homomorphism defined by $\lambda'_2(x, y, z) = (\pi(x), \lambda_B(y))$; now by Theorem 2.4 we obtain that the dimension of the tensor product of $((R/p \times A), \lambda_1)$ and $((R/p \times B), \lambda'_2)$ is equal to dim $(A \otimes_R B)$. Thus, it suffices to choose *A* and *B* such that dim $(A \otimes_R B) > 0$ (for instance, when *R* is a field and *A*, *B* are non trivial *R*-algebras). Therefore the two values are different according to the $(R \times R \times R)$ -module structure of $R/p \times A$ and $R/p \times B$.

With the further assumption that A is an AF-domain, we obtain the following :

Corollary 2.12. Let (A, λ_A) be an AF-domain and let (B, λ_B) be any R-algebra such that $A \otimes_R B \neq 0$. Then

 $\dim(A\otimes_R B) = D(\operatorname{t}(A:R), \dim A, B/p_A B)$

where $p_A = \ker \lambda_A$. Furthermore, if B is an integral domain, then

$$\dim(A \otimes_B B) = D(\mathfrak{t}(A:R), \dim A, B)$$

Proof. Since A is an integral domain, for any prime ideal P of A, $\lambda_A^{-1}(P) = p_A$ and $t(A_P : R) = t(A : R)$; so Theorem 2.4 implies that dim $(A \otimes_R B) = \sup\{D(t(A : R), \operatorname{ht} P, B/p_A B) \mid P \in \operatorname{Spec}(A)\}$. Since D(s, d, A) is

a nondecreasing function of the second argument, then $\dim(A \otimes_R B) = D(t(A:R), \dim A, B/p_A B)$, as asserted. \Box

Next, we state a technical result that allows us to determine a necessary and sufficient condition under which the dimension of the tensor product of AF-rings over a zero-dimensional ring satisfies the formula of Wadsworth's Theorem 3.8.

Proposition 2.13. Let $(A_1, \lambda_1), \ldots, (A_n, \lambda_n)$ be tensorially compatible AFrings. Then

 $\dim(A_1\otimes_R\cdots\otimes_R A_n)=$

 $\sup\{\min(\operatorname{ht} M_1 + \operatorname{t}_{M_2} + \dots + \operatorname{t}_{M_n}, \operatorname{t}_{M_1} + \operatorname{ht} M_2 + \dots + \operatorname{t}_{M_n}, \dots, \operatorname{t}_{M_1} + \dots + \operatorname{t}_{M_{n-1}} + \operatorname{ht} M_n) \mid M_i \in \operatorname{Max}(A_i) \text{ and } \lambda_1^{-1}(M_1) = \lambda_2^{-1}(M_2) = \dots = \lambda_n^{-1}(M_n)\}.$

Proof. It is deduced from the fact that $\dim(A_1 \otimes_R \cdots \otimes_R A_n) =$ $\sup\{\dim((A_1/P_1) \otimes_R (A_2/P_2) \otimes_R \cdots \otimes_R (A_n/P_n)) \mid P_i \in \operatorname{Spec}(A_i) \text{ for } i =$ $1, \ldots, n \text{ and } \lambda_1^{-1}(P_1) = \lambda_2^{-1}(P_2) = \cdots = \lambda_n^{-1}(P_n)\} =$ $\sup\{\dim((A_1/pA_1) \otimes_{R/p} (A_2/pA_2) \otimes_{R/p} \cdots \otimes_{R/p} (A_n/pA_n)) \mid p \in \operatorname{Spec}(R),$ and $pA_i \neq A_i \text{ for } i = 1, \ldots, n\}$; now we conclude via [BGK1, Lemma 1.6 and Remark 1.7]. \square

Theorem 2.14. Let $(A_1, \lambda_1), \ldots, (A_n, \lambda_n)$ be tensorially compatible AF-rings with $t_i = t(A_i : R)$ and $d_i = \dim A_i$. Then $\dim(A_1 \otimes_R \ldots \otimes_R A_n) =$ $t_1 + \cdots + t_n - \max\{t_i - d_i \mid 1 \le i \le n\}$ if and only if there exist maximal ideals M_1, \ldots, M_n belonging respectively to A_1, \ldots, A_n such that $\lambda_1^{-1}(M_1) =$ $\cdots = \lambda_n^{-1}(M_n)$, and there exists $r \in \{1, \ldots, n\}$ such that $\operatorname{ht} M_r = d_r$ and for any $j \in \{1, \ldots, n\} - \{r\}$, $t_{M_j} = t_j$ and $t(A_j/M_j : R) \le t(A_r/M_r : R)$.

Proof. It is deduced from the fact that $\dim(A_1 \otimes_R \cdots \otimes_R A_n) = \sup \{\dim((A_1/pA_1) \otimes_{R/p} (A_2/pA_2) \otimes_{R/p} \cdots \otimes_{R/p} (A_n/pA_n)) \mid p \in \operatorname{Spec}(R) \text{ and } pA_i \neq A_i, \text{ for } i = 1, 2, \ldots, n\} \text{ and } [\operatorname{BGK1}, \operatorname{Theorem 1.8}]. \square$

Corollary 2.15. Let $(A_1, \lambda_1), \ldots, (A_n, \lambda_n)$ be tensorially compatible AFrings with $\mathbf{t}_i = \mathbf{t}(A_i : R)$ and $d_i = \dim A_i$. If one of the following conditions is satisfied:

(1) There exist maximal ideals M_1, \ldots, M_n belonging respectively to

 A_1,\ldots,A_n such that $\lambda_1^{-1}(M_1) = \cdots = \lambda_n^{-1}(M_n)$ and $\operatorname{ht} M_i = d_i$, $t_{M_i} = t_i$ for $i = 1, 2, \ldots, n$.

(2) If M_1, \ldots, M_n are maximal ideals belonging respectively to A_1, \ldots, A_n such that $\lambda_1^{-1}(M_1) = \cdots = \lambda_n^{-1}(M_n)$, then $t_{M_i} = t_i$ for $i = 1, \ldots, n$.

(3) If P_1, \ldots, P_n are minimal prime ideals belonging respectively to A_1, \ldots, A_n such that $\lambda_1^{-1}(P_1) = \cdots = \lambda_n^{-1}(P_n)$, then $t(A_i/P_i: R) = t_i$, for $i = 1, \ldots, n$.

(4) A_1, \ldots, A_n are equicodimensional.

then

156

$$\dim(A_1 \otimes_R \cdots \otimes_R A_n) = \mathbf{t}_1 + \cdots + \mathbf{t}_n - \max\{\mathbf{t}_i - \mathbf{d}_i \mid 1 \le i \le n\}.$$

The proofs of (1), (2), (3) and (4) are similar to those of [BGK1, Corollaries 1.10, 1.11, 1.13, and 1.14], respectively.

Corollary 2.16. Let $(A_1, \lambda_1), \ldots, (A_n, \lambda_n)$ be tensorially compatible AFdomains with $t_i = t(A_i : R)$ and $d_i = \dim(A_i)$. Then

$$\dim(A_1 \otimes_R \cdots \otimes_R A_n) = \mathbf{t}_1 + \cdots + \mathbf{t}_n - \max\{\mathbf{t}_i - d_i \mid 1 \le i \le n\}.$$

Proof. Since $A_1 \otimes_R \cdots \otimes_R A_n \neq 0$, by Proposition 1.4 we have $p_{A_1} = p_{A_2} = \cdots = p_{A_n} = p$; then $A_1 \otimes_R \cdots \otimes_R A_n \cong A_1 \otimes_{R/p} \cdots \otimes_{R/p} A_n$. The result follows from [W, Theorem 3.8]. \Box

Now we consider the special case in which $(A_1, \lambda_1) = (A_2, \lambda_2)$.

Corollary 2.17. Let (A, λ_A) be an AF-ring. Then dim $(A \otimes_R A) = \dim A + t(A:R)$ if and only if there exist maximal ideals M and N in A such that $\lambda_A^{-1}(M) = \lambda_A^{-1}(N)$, ht $M = \dim A$, $t(A_N:R) = t(A:R)$ and $t(A/N:R) \leq t(A/M:R)$.

3. The valuative dimension of tensor products and Jaffard rings

[BGK1, Theorem 2.1] establishes that if A is an AF-ring over a field k and B is a locally Jaffard ring, then $A \otimes_k B$ is a locally Jaffard ring. We next extend this result to AF-rings over a zero-dimensional ring.

Theorem 3.18. Let (A, λ_A) be an AF-ring and (B, λ_B) a locally Jaffard ring such that $A \otimes_R B \neq 0$. Then $A \otimes_R B$ is a locally Jaffard ring.

Proof. It is sufficient to prove that for each prime ideal Q of $A \otimes_R B$ and for each nonnegative integer n, ht $Q[X_1, \ldots, X_n] = \operatorname{ht} Q$ (see [ABDFK] and [C]). Let $P = \mu_A^{-1}(Q)$, $I = \mu_B^{-1}(Q)$ and $p = \lambda_{A\otimes_R B}^{-1}(Q)$; according to Lemma 2.2, A/pA is an AF-ring over the field R/p; moreover, by Lemma 1.2 B/pB is a locally Jaffard ring; so we can apply Theorem 2.1 of [BGK1] to the (R/p)algebras A/pA and B/pB obtaining that $(A/pA) \otimes_{R/p} (B/pB)$ is a locally Jaffard ring. Since $(A/pA) \otimes_{R/p} B/pB \cong (A \otimes_R B)/p(A \otimes_R B)$, then for each nonnegative integer n, it results that $\operatorname{ht}((Q/p(A \otimes_R B))[X_1, \ldots, X_n]) =$ Tensor Products of Commutative Algebras Over a 0 Dimensional Ring

157

ht $(Q/p(A \otimes_R B))$; so according to Lemma 1.2, ht $Q = \operatorname{ht} Q[X_1, \ldots, X_n]$, as desired. \Box

Remark 3. Let (A, λ_A) be an AF-ring and (B, λ_B) any *R*-algebra such that $A \otimes_R B \neq \mathbf{0}$. Let $Q \in \operatorname{Spec}(A \otimes_R B)$, $P = \mu_A^{-1}(Q)$ and $I = \mu_B^{-1}(Q)$. We obtain from [BGK 1, Lemma 2.2] the following result:

 $\operatorname{ht} Q + \operatorname{t} \left((A \otimes_R B) / Q : R \right) = \operatorname{t}_P + \operatorname{ht} I[X_1, \ldots, X_{t_p}] + \operatorname{t}(B / I : R).$

Let us recall that the valuative dimension of tensor products of algebras over a field does not seem to be effectively computable in general. However, [Gi, Proposition 3.1] states that provided A_1 and A_2 are two algebras over a field k, then

 $\dim_{\nu}(A_1 \otimes_k A_2) \le \min(\dim_{\nu} A_1 + t. d. (A_2 : k), t. d. (A_1 : k) + \dim_{\nu} A_2).$

The next result establishes the analogue of this result for the zero-dimensional case.

Proposition 3.19. Let (A_1, λ_1) and (A_2, λ_2) be tensorially compatible *R*-algebras. Then

 $\dim_{v}(A_{1} \otimes_{R} A_{2}) \leq \min(\dim_{v} A_{1} + t(A_{2} : R), t(A_{1} : R) + \dim_{v} A_{2}).$

Proof. Let Q be any prime ideal of $A_1 \otimes_R A_2$; let $P_1 = \mu_1^{-1}(Q)$, $P_2 = \mu_2^{-1}(Q)$ and $p = \lambda_1^{-1}(P_1) = \lambda_2^{-1}(P_2)$. Let $T = A_1 \otimes_R A_2$. Then

 $\dim_{v} \left(T/Q \right) \leq \dim_{v} \left(T/\left(\operatorname{Im}(j_{1} \otimes id_{A_{2}}) + \operatorname{Im}(id_{A_{1}} \otimes j_{2}) \right) \right).$

Moreover, using the canonical isomorphism

 $T/(\operatorname{Im}(j_1 \otimes id_{A_2}) + \operatorname{Im}(id_{A_1} \otimes j_2)) \cong (A_1/P_1) \otimes_{R/p} (A_2/P_2)$ and [Gi, Proposition 3.1], yields

 $\dim_{\nu} \left(T/Q \right) \leq \dim_{\nu} \left(\left(A_1/P_1 \right) \otimes_{R/\nu} \left(A_2/P_2 \right) \right)$

 $\leq \min(\dim_v A_1/P_1 + t(A_2/P_2 : R), \dim_v A_2/P_2 + t(A_1/P_1 : R))$

 $\leq \min(\dim_v A_1 + t(A_2: R), \dim_v A_2 + t(A_1: R)).$

The next result handles the case where one of two R-algebras is an AF-ring.

Proposition 3.20. Let (A, λ_A) and (B, λ_B) be tensorially compatible *R*algebras and *A* an *AF*-ring. Then, for any $r \ge \dim_v B - 1$, $\dim_v(A \otimes_R B) =$ $\sup\{D(t_P + r, \operatorname{ht} P + r, B/pB) \mid P \in \operatorname{Spec}(A), \ p = \lambda_A^{-1}(P) \text{ and } pB \neq B\} - r =$ $\sup\{htI[X_1, \ldots, X_r] + \min(t_P, \operatorname{ht} P + \operatorname{t}(B/I:R)) \mid (P,I) \in \Gamma(A,B)\}.$ Bouchiba et al.

Proof. Let $r \ge \dim_v B - 1$. Then, by [C, Proposition 1, ii)], $B[X_1, ..., X_r]$ is a locally Jaffard ring. So, according to Theorem 3.1, $A \otimes_R B[X_1, ..., X_r]$ is a locally Jaffard ring and hence a Jaffard ring. Therefore, by Corollary 2.5, $\dim_v (A \otimes_R B[X_1, ..., X_r]) = \dim(A \otimes_R B[X_1, ..., X_r]) =$

 $\sup\{D(t_P, htP, (B/pB)[X_1, \dots, X_r]) \mid P \in \operatorname{Spec}(A) \text{ with } \lambda_A^{-1}(P) = p \text{ and } pB \neq B\}.$ Hence, according to [BGK1, Lemma 2.3],

 $\dim_n(A\otimes_R B) =$

 $\sup\{D(t_P + r, htP + r, B/pB) \mid P \in \operatorname{Spec}(A) \text{ with } \lambda_A^{-1}(P) = p \text{ and } pB \neq B\} - r =$

 $\sup\{htI[X_1,...,X_r] + \min(t_P, htP + t(B/I:R)) \mid (P,I) \in \Gamma(A,B)\}. \quad \Box$

We conclude this section with two results on AF-domains.

Corollary 3.21. Let (A, λ_A) be an AF-domain and B any R-algebra such that $A \otimes_R B \neq 0$. Then for any $r \ge \dim_v B - 1$ dim $(A \otimes_R B) = D(t+r, d+r, B/p_A B) - r = \sup\{\operatorname{ht} Q[X_1, \ldots, X_r] + d(x_1, \ldots, x_r]\}$

 $\dim_{v}(A \otimes_{R} B) = D(t+r, d+r, B/p_{A}B) - r = \sup\{\operatorname{ht} Q[X_{1}, \ldots, X_{r}] + \min(t, d+t(B/I:R)) \mid I \in \operatorname{Spec}(B) \text{ and } \lambda_{B}^{-1}(I) = p_{A}\},\$ where t = t(A:R) and $d = \dim A$.

Corollary 3.22. Let (A, λ_A) and (B, λ_B) be R-algebras such that A is an AF-domain and $A \otimes_R B \neq 0$. If $\dim_v B \leq t(A:R) + 1$, then $A \otimes_R B$ is a Jaffard ring.

Remark 4. We thank the Referee for the following observation. Let A_{red} be the reduced ring associated to a ring A. Then $t(A : R) = t(A_{red} : R_{red})$ for any R-algebra (A, λ_A) ; moreover, if (A_1, λ_1) and (A_2, λ_2) are R-algebras, then $(A_1 \otimes_R A_2)_{red} = ((A_1)_{red} \otimes_{R_{red}} (A_2)_{red})_{red}$ [GD, Corollary 4.5.12]. One may therefore assume that R is absolutely flat and (A_1, λ_1) , (A_2, λ_2) are reduced R-algebras.

References

- [ABDFK] D.F. Anderson, A. Bouvier, D.E. Dobbs, M. Fontana and S. Kabbaj, On Jaffard domains, Expo. Math. 6 (1988), 145-175.
- [B] N. Bourbaki, Algèbre, Ch.3, Paris, Hermann, 1958.
- [BGK1] S. Bouchiba, F. Girolami and S. Kabbaj, The dimension of tensor products of AF-rings, Lect. Notes Pure Appl. Math., M. Dekker, 185 (1997), 141-154.
- [BGK2] S. Bouchiba, F. Girolami and S. Kabbaj, The dimension of tensor products of k-algebras arising from pullbacks, J. Pure Appl. Algebra (to appear).

- 159
- [BK] A. Bouvier and S. Kabbaj, Examples of Jaffard domains, J. Pure Appl. Algebra 54 (1988), 155-165.
- [BMRH] J.W. Brewer, P.R. Montgomery, E.A. Rutter and W.J. Heinzer, Krull dimension of polynomial rings, Lect. Notes in Math., Springer Berlin-New York, 311 (1972), 26-45.
- [C] P.-J. Cahen, Construction B,I,D et anneaux localement ou résiduellement de Jaffard, Arch. Math., 54 (1990), 125-141.
- [G] R. Gilmer, Multiplicative ideal theory, M. Dekker, New York, 1972.
- [GD] A. Grothendieck and J.A. Dieudonné, Eléments de Géométrie Algébrique I, Die Grundlehren der mathematischen Wissenschaften 166, Springer, Berlin, 1971.
- [Gi] F. Girolami, AF-rings and locally Jaffard rings, Lect. Notes Pure Appl. Math. 153 (1994), M. Dekker, 151-161.
- [J] P. Jaffard, Théorie de la dimension dans les anneaux de polynômes, Mém. Sc. Math., 146 (1960), Gauthier-Villars, Paris.
- [M] H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge, 1989.
- [N] M. Nagata, Local rings, Interscience, New York, 1962.
- [S] R.Y. Sharp, The dimension of the tensor product of two field extensions, Bull. London Math. Soc. 9 (1977), 42-48.
- [SV] R.Y. Sharp, P. Vamos, The dimension of the tensor product of a finite number of field extensions, J. Pure Appl. Algebra, 10 (1977), 249-252.
- [V] P. Vamos, On the minimal prime ideals of a tensor product of two fields, Math. Proc. Camb. Phil. Soc., 84 (1978), 25-35.
- [W] A.R. Wadsworth, The Krull dimension of tensor products of commutative algebras over a field, J. London Math. Soc., 19 (1979), 391-401.
- [ZS] O. Zariski, P. Samuel, Commutative Algebra, Vol. I, Van Nostrand, New York, 1960.

Current address: Samir BOUCHIBA, Faculté des Sciences de Meknès, Université Moulay Ismail, Meknès (50000), Morocco E-mail address: bouchiba@caramail.com

Current address: Florida GIROLAMI, Dipartimento di Matematica, Università degli Studi Roma Tre, Largo S. Leonardo Murialdo 1, 00146 Roma, Italy *E-mail address*: girolami@mat.uniroma3.it

Current address: Salah-Eddine KABBAJ, Department of Mathematical Sciences, KFUPM, P.O. Box 849, Dhahran 31261, Saudi Arabia *E-mail address*: kabbaj@kfupm.edu.sa

158