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O. Introduction 

All the rings and algebras considered in this paper will be commutative, with identity 
elements and ring-homomorphisms will be unital. If A is a ring, then dimA will denote 
the (Krull) dimension of A, that is the supremum of lengths of chains of prime ideals of 
A. An integral domain D is said to have valuative dimension n (in short, dirnvD = n) 
if each valuation averring of 0 has dimension at most n and there exists a valuation 
averring of D of dimension n. If no such integer n exists, then D is said to have infinite 
valuative dimension (see [GJ). It must be remembered that for any ring A, dimv A = 
sup{ dimv(Aj P) I P E Spec (A)}. Furthermore, it must also be remembered by [ABDFK] 
that a finite-dimensional domain D is a Jaffard domain if dim D = dimvD. As the class 
of Jaffard domains is not stable under localization, an integral domain D is defined to be 
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a locally Jaffard domain if Dp is a Jaffard domain for each prime ideal P of D. Analogous 
definitions are given in [0] for a finite-dimensional ring. 

R.Y. Sharp proved in [S] that if KI and K, are extension fields of a field k, then 

dim(KI ®k K,) = min{t.d.(KI : k), t.d.(K, : k)} . 

A.R. Wadsworth extended this result to AF-domains. We wish to recall, at this 
point, that a k-algebra A is an AF-ring (altitude formula) if 

htP + t.d.(A/ P : k) = t.d.(Ap : k) 

for each prime ideal P of A. He proved that if DI and D, are AF-domains,.~hen 

dim(DI ®k D,) =min{ dirnDl + t.d.(D, : k), t.d.(DI : k) + dimD2} . 

He also provided a formula for dim(D ®k R) applicable to an AF-domain D, with no 
restriction on the ring R. He also proved that for any prime ideal P of an AF -ring A and 
for any n 2': 1, htP = htP[XI,,,.,Xn]. This latter property characterizes the class of 
locally Jaffard rings, meaning that an AF-ring is a locally Jaffard ring. 

In [Gi] the class of AF-domains is examined with respect to the class of k-algebras 
which are stably strong S-domains, and the behaviour of the class of AF-domains with 
respect to certain pull-back type constructions. An upper bound for the valuative dimen­
sion of the tensor product. of two k-algebras is given, that is: 
if Al and A, are k-algebras with t.d.(AI : k) < 00 and t.d.(A, : k) < 00, then 

dim. (AI ®k A,) :5 min{ dim. Al + t.d.(A, : k) , t.d.(AI : k) + dim.A,} . 

We wish to point out that this work is a continuation of'Wadsworth's paper [W]. 
In this first section we extend some known results concerning the class of AF­

domains [W] to the class of AF-rings and we show that the results do not extend trivially 
from domains to rings with zero-divisors. In particular, we provided a formula for the 
dimension of the tensor product A ® B, where A is an AF-ring and B is any ring. Once 
we have provided a technical formula for the dimension of tensor products of AF-rings, 
then we can prove that if Al and A, are AF-rings, then 

dim (AI ®k A,) = min{ dimAI + t.d.(A, : k) , t.d.(A I : k) + dim A,} 

if and only ifml E Max (AI) and m, E Max(A,) exist such that either html = 'dimAI, 
t.d.(A'm, : k) = t.d.(A, : k) and t.d.(A,jm,) :5 t.d.(AJ/mJ) or htm, = dimA" 
t.d;(Alm, : k) = t.d.(AI : k) and t.d.(AI/ml) :5 t.d.(A,/m,). Finally we consider the 
special case in which Al = A2 . 

, In the second section we first prove that if A is an AF-ring and B is a locally Jaffard 
ring, then A ®k B is a locally Jaffard ring; then we give some formulas for computing the 
valuative dimension of the tensor product of an AF-ring and any ring. We conclude this 
section by giving an example of a tensor product of an AF-ring and a Jaffard ring which 
is not a Jaffard ring. 
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Tensor products of AF-rings ' 

ThrolIghout this paper k will indicate a field, t(A) will denote the transcendence degree 
a k-algebra A over k and for P E Spec (A) tp will denote the transcendence degree of 

over k. The 'tensor products, when not specifically indicated otherwise, will be taken 
being relative to k. ,. 

In this section we will extend some of the properties of the dimension of the tensor 
product of AF-domains (see [W]) to the case of AF-rings. 

Lemma 1.1. Let AI, ... , An be AF-rings andT = AI ® ... ®An; for any Q E Spec (AI ® 
.. , ® An) let Pi = Q n Ai' Then 

t(TQ) = t(AIP,) + t(A,p,) + ... + t(AnP.) . 

Proof. Since there is nothing to prove for n = 1, we may assume that n > 1 and, by 
, induction, that R = A, ® ... ® An satisfies the given property. Let P = Q n R; since TQ 
. is a'localization of AlP, ® ... ® Anpn , it results from [W, Corollary 2.4] that 

t(TQ) :5 t(AIP, ® ... ® AnPn) = t(AIP,) + ... + t(AnPn) . 

" By the proof of [W, Proposition 3.1] we have 

t(TQ) = ht Q +t(T/Q) 2': htPJ+ ht P + t(AI/PI ) + t(R/P) = 

= t(AIP,) + t(Rp) = t(A IP,) + ... + t(AnPn) . 

We can now obtain the following known result for AF -domains. 

" Corollary 1.2.' Let D I, ... , Dn be AF-domains, and Q E Spec (DI ® ... ® Dn). Then 
t«DI ® ... ® Dn)Q) = t(DI ® ... ® Dn) = t(DI) + ... + t(Dn). 

The following simple statement will have important consequences. 

Lemma 1.3. Let A be an AF -ring. If P E Spec (A) and Po is a minimal prime ideal of 
Aeontained in P such that ht P = ht (P/ Po), then tp = tp,. 

Proof. tp = htP + t(AlP) = ht (P/ Po) + t«A/ Po)/(P/ Po)) :5 t(AI Po) :5 t(Ap,) = tp,. 

We recall by [W, p. 394-395] the following functions: 
let Al and A, be rings, PI E Spec (AIl and P, E Spec (A,), then 

6(PI,p,)=max{htQIQE Spec{AI'®A,) andQnAI=PI,QnA,=P,}; 

let' A be a ring, P E Spec (A) and d and s integers with 0 :5 d :5 s, then 

f',,(s,d,P) =htPA[XIo ... ,X,]+min(s,d+t(A/P)) , 

D(s,d,A) = max{f',,(s,d,P) I P E Spec(A)} . 

~ 
I: , 

I 
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Theorem 1.4. Let A be an AF -ring and B any ring; let p E Spec (A) and q E Spec (B). 
Then 

8(p, q) = "'(tp, htp, q) and dim(A 0 B) = max{D(tp, ht P, B) I P E Spec (A)} . 

Proof· Since 8(p, q) = 8(pAp, qAq) and the class of AF-rings is stable under localizations, 
we may assume that p and q are maximal ideals in local rings. Let B = B/q and t = t(B). 
By {W, Theorem 3.4] 

8(p, DB) = "'(t, O,p) = htp{X" ... ,X,] + min(t, t(A/p)) = min(tp, htp +t) . 

Then 
"'(tp,htp,q) =htq[X" ... ,X,,]+8(p,OB).· 

Let Qo <;: Q, <;: •.• <;: Qh be a chain of prime ideals of A 0 B such that h = 8(p, DB), 
Qh nA = p and QhnB = DB. Then QonA = po is a minimal prime of A and QonB = DB. 
Let Qo <;: Ql <;: •.. <;: Qh be the chain of inverse images in A 0 B. Let A = A/po and 
Qo <;: Ql <;: ... <;: Qh be the chain of images in A0B; so that Qo survives in the localization 
K 0 B of A 0 B, where K is the quotient field of A. Therefore according to [W, Remark 
1.(a) p.398] htQo:o': htq[X" ... ,X",]. Then we have 

htQh:o': htQo+ht(Qh/Qo):o': htq{X
" 

... ,X,,,]+8(p,OB). 

Since A0B is an AF-rin~nd ht Qh = ht (Qh/QO)' by Lemma 1.3 we have t«A0B}Q.l = 
t«A 0 B)Q)' Since A 0 B is a tensor product of an AF-ring and a field, by Lemma 1.1 
we have 

t«A 0 B)Q.l = t(Apo) + t = t«A 0 B)Q) = t(Ap) + t . 

So tp = tPo' Therefore 

ht Qh :0': ht q[X" . .. , X,,] + 8(p, DB) = "'(tp, htp, q) . 

Therefore, it follows that 8(p, q) :0': "'(tp, htp, q). 
The reverse inequality is deduced from the demonstration of the same inequality 

given in [W, Theorem 3.7] for an AF-domain. So 8(p, q) = "'(tp, ht p, q). 
The result upon dim(A 0 B) derives directly from the definition of 8, '" and D. 

Corollary 1.5. Let A, and A, be AF -rings; then 
(a) If Pl E Spec (A,) and p, E Spec (A,), then 

8(Pl,P,) = min(htp, + t p" t p, + htp,) . 

(b) dim(Al0A,) = max{min(htp,+tp"tp,+htP,)IP, E Spec(A,),P,E Spec(A,)}. 

Proof· (a) According to Theorem 1.4 8(p" p,) = "'(tp" ht p, ,p,); furthermore 

"'(tp" htp"p,) = htp,[X" . .. , X,,,] + min(tp" ht p, + t(A2/p,)) 

= htp, + min(tp"htp, + t(A2/p,)) 

= min(ht p, + t p" t p , + ht p,) . 

(b) Follows from the definition of 8(pl ,p,). 
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Lemma 1.6. Let A" .... ,An be AF-rings with n >2. Then dim(A, 0··· 0 An) = 
max{min(ht p,+tp,+' +tp., tp, +ht p,+tp,+" ·+tpo"'" tp, +. +tpo.' +ht Pn) I P, E 
Spec (A,), for i = 1, ... , n}. 

Proof· We can define the following function for primes Pi of Ai with i = 1, ... 1 n: 

8(P"", ,Pn) = max{htQ I Q E Spec(Al 0'" 0 An) and Q n A, = P,., i = 1, ... ,n} . 

We prove by induction that 

8(P1, ••• , Pn) = min(ht P, + tp, + ... + tpo' 

tp, + ht P, + tp, + ... + tpo"'" tp, + ... + tpo.' + ht Pn) . 

For n = 2, this is Corollary 1.5. Let n > 2 and assume that 8(P" ... , Pn) satisfies the 
given formula. Of course, 

8(P
" 

. .. , Pn) = max{8(P" Q/) I QI E Spec (A,0" '0An) and Q/nAj = Pj,j = 2, ... , n}; 

moreover 8(P
" 

Q/) = min(ht P, + tQ" ht QI + tp,) and tQ' = tp, + ... + tpo according to 
Lemma 1.1. So 

8(P
" 

... , Pn) = 

= max{min(htP, + tp, + ... + tp.,htQ' + tp,) I 
QI E Spec (A, 0'" 0 An) and QI n Aj = Pj , j = 2, ... , n} = 

= min(htP, + tp, + ... + tpo' 8(P" ... , Pn ) + tp,) = 

= min(htP, + tp, + ... + tp., tp, + htP, + tp, + ... + tp., ... ,tp, + ... + tpo.' + htPn ). 

Then 

dim(A, 0 ... 0 An) = 

= max{8(PI, ... , Pn ) I Pi E Spec (A;), for i = 1, ... , n} = 

= max{min(htP, + t1'o + ... + tpo' tp, + htP, + tp, + ... + tpo"'" 

tp, + ... + tp •. , + ht Pn ) I P, E Spec (A,), for i = 1, ... , n}. 

Remark 1.7. (a) Since D(s, d, A) is a nondecreasing function of the first two arguments, 
then in Theorem 1.4 it suffices to consider the maximal ideals of A for dim(A0B) only and 
in Corollary 1.5 it suffices to consider the maximal ideals of A, and A, for dim(A, 0 A,) 
only. 
(b) With the notation as in Lemma 1.6, it is very easy to prove: 

(i) dim(AI 0··· 0 An) = max{min(htM, + tM, + '" + tMo, tM, + ht M, + tM, + 
···+tM., ... ,tM, +···+tM •. , + htMn)IMi E Max (Ai), fori= 1, ... ,n}. 

(ii) dim(A, 0" '0An) :s; tl +t,+·· +tn -max{t, -di , 1 :s; i :s; n}, where d, = dimAi. 

In the following result, we determine a necessary and sufficient condition under 
which the dimension of the tensor product of the AF-rings A" ... , An satisfies the formula 
of Wadsworth's Theorem 3.8, that is 

dim(A1 0··· 0 An) = t, + t, + ... + tn - max{t, - d i , 1 :s; i :s; n} . 

~ 

" , 

, 
" 

,', 
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Theorem 1.8. Let A" ... ,An be AF-rings, with t, = teA,) and d, = dimA,. Then 
dim (AI ® ... ® An) = tl + t, + ... + tn - max{t, - d" 1 :0; i :0; n} if and only if for any 
i = 1, ... ,n there is m, E Max(A,) and there is r E {1,2, ... ,n} such that htmr = dr 
and for any j E {I, 2, ... , n} - {r}, t m , = tj andt(Aj/mj) :0; t(Ar/mr). 

Proof· (==?) We may assume that 

dim(A I ® ... ® An) = d1 + t, + ... + tn ; 

on the basis of Remark 1.7 (b) fori = 1,2, ... , n let m, E Max (A,) such that dim(A1®"'0 
An) = min(html +tm ,+" +tmn , tm,+htm,+tm,+-' ·+tmn , ... , t m, +-. ·+tmn_, +htmn). 

Then d1 + t, + ... + tn :0; ht ml + tm, + ... + t mn . So 

Then ht ml = dl and tm; = tj for any j = 2, ... ,n. Furthermore for any j = 2, ... , n, 
being d, + tm, + ... + tmn :0; tm, + ... + t m,_, + ht mj + tm,., + ... + t mn , it follows that 

ht ml + t, + ... + tn :0; tm, + ... + tj_l + ht mj + tj + ... + tn ; 

so 

t(Aj/mj) = tj - htmj :0; tm, - html = t(Al/ml) . 

(.(=) We may assume that for any i = 1, ... ,n an m, E Max (A,) exists so that html = 
dl and for any j = 2, ... , n tm, = tj and t(Aj/mj) :0; t(Al/ml). Therefore, for any 
j = 2, ... , n it follows that 

ht m, + t m , :0; t m , + ht mj 

html + tm2 + ... + tmn ::; tml + ... + tmj _ 1 + htmj + tmHl + ... + tmn . 

Therefore, being ht ml = d1 and tm; = tj for any j = 2, ... , n, on the basis of Remark 1.7 
(b) then 

dim(A I 0'" 0 An) ::> d, + t, + ... +,tn . 

According to Remark 1.7 (b) it follows dim (A, 0··· 0 An) = d, + t, + ... + tn. 

Example 1.9. Let us now give an example of two AF-rings A, and A, where dim(A,0A,) 
does not satisfy the formula of Wadsworth's Theorem. 

Let Xl, X" X3 be three indeterminates over k. Let R, = k[X" X" X 3)(x,) and 
R, = k[X"X,). We consider A, = R, X R, and A, = k[X"X,!cx,). A, is an AF-ring 
so that dim A, = 2 and teA,) =3; A, is an AF-ring so that dimA, = 1 and teA,) = 2. 
According to Corollary 1.5, knowing Max (R, x R,) and Max (A,), it is very easy to 
calculate that dim(A, 0 A,) = 3. So dim(A, ® A,) < teA,) + teA,) - 1 = 4. 

We will now illustrate a number of applications of Theorem l.Sj we note'in par­
ticular that we arrive at Wadsworth's Theorem 3.8 regarding AF-domains (sec Corollary 
1.12). 
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Corollary 1.10. Let A" ... , An be AF-rings, with t, = teA,) and d, = dimA, such that 
lor any i = 1, ... , n an m, E Max (A;) with ht m, = d, and tm, = t, exists. Then 

dim(A, 0··· 0 An) = tl + t, + ... + tn - max{t, - d" 1 :0; i :0; n} . 

Proof. Let r E {I, 2, ... , n} such that t(A;/mr) = max{t(Adm,),1 :0; i :0; n}; then 
,htmr = dr and for any j E {I, 2, ... , n} - {r}, t m , = tj and t(Aj/mj) :0; t(Ar/mr). Thus 
obtaining the result according to Theorem 1.8. 

Corollary 1.11. Let AI"", An be AF-rings, with t, = teA,) and d, = dimA, such that 
for any i = 1, ... , n and for any M, E Max (A,), tM, = t,. Then 

dim(A, 0··· 0 An) = It + t, + ... + tn - max{t, - d" 1 :0; i :0; n} . 

Proof. For any i = 1, ... ,n let m, E Max(A;) such that htm, = d,; so htm, = d, and 
tm, = t,. Then Corollary 1.10 completes the proof. 

Corollary 1.12. Let AI, . .. , An be AF -domains, with t, = teA,) and d, = dimA,. Then 

dim(AI 0··· 0 An) = It + t, + ... + tn - max{t, - d" 1 :0; i :0; n} . 

Corollary 1.13. Let AI"", An be AF-rings, with t, = teA;) and d, = dimA, such that 
lor anyi=I, ... ,n and for any P; E Min(A,), t(AdP,) =t,. Then 

dim(A, 0··· 0 An) = tl + t, + ... + tn - max{t, - d" 1 :0; i :0; n} . 

Proof. For any i = 1, ... , n let M, E Max (A,); therefore a P, E Min (A,) such that 
ht M, = ht (M,/ P,) exists. Since every A; is an AF-ring, according to Lemma 1.3 

So the result follows from Corollary 1.10. 

Corollary 1.14. Let AI,'" ,An be equicodimensional AF-rings, with t, = teA,) and 
d, = dimA,. Then 

dim(AI 0··· 0 An) = tl + t, + ... + tn - max{t, - d" 1 :0; i:O; n} . 

Proof. For any i = 1, ... , n let m, E Max (A,) such that tm, = t,; let r E {l, 2, ... , n} 
such that t(Ar/mr) = max{t(Adm,),1 :0; i :0; n}. Then htmr '" d" tm; = tj and 
t(Aj/mj) :0; t(Ar/mr) for any j .;. r. ThuR the conditions of Theorem 1.8 are satisfied and 
the result obtained. 

It is known [Gi, Corollary 3.3) that if A is an AF-ring, then 

dim (A 0 A) = dimv(A 0 A) :0; dim A + teA) = dimvA + teA) . 

The same result is also obtained in the case of Corollary 1.5. By applying Theorem 1.8 to 
A 0 A we obtain: 
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Corollary 1.15. Let A be an AF-ring. Then dim(A ® A) = dimA + t(A) if and only 
if there exist two maximal ideals m and n of A such that ht m = dimA, tn = t(A) and 
trAIn) ~ t(A/m). 

Example 1.16. Let us now offer an example of an AF-ring A such that 

dim(A ® A) < dimA + t(A) . 

Let K be an extension field of k such that t(K) = 2. Let A = K x k[X], where X is an 
indeterminate over k. The AF-ring A is such that dimA = 1 and t(A) = 2. The maximal 
ideals of A are (0) x k[XJ and K x N with N E Max (k[XJ); besides ht((O) x k[XJ) = 0 
and tCO)xk[XI = 2, ht (K x N) = 1 and tKxN = 1. It follows, therefore, on the basis of 
Corollary 1. 5 that 

dim (A ® A) = 2 < dimA + t(A) = 3'. 

We will conclude this section by giving an example which requires the following 
technical result. 

Lemma 1.17. Let A be an AF-ring such that two prime ideals p and q with tp of tq 
exist. Then for any AF-ring B, A ® B is not the tensor product of a finite number of 
AF -domains. 

Proof· Suppose that A ® B = D, ® ... ® Dn, where D, is an AF-domain for i = 1, ... , n. 
Then P, Q E Spec (A® B) such that P n A = p and Q n A = q exist. Therefore, on the 
basis of Lemma 1.1, it follows that 

where p' = P n B; besides, according to Corollary 1.2 

ht P + t(D, ® ... ® Dn/ P) = t(D, ® ... ® Dn) = t(A) + t(B) . 

Therefore, tp = t(A); in the same way it follows that tq = t(A), which is impossible. 

Example 1.18. For each positive integer n, two AF-rings A, and A, exists such that 
a) dim(A, ® A,) = n; 
b) A, ® A, is not the tensor.product of a finite number of AF-domains; 
c) if a not finitely generated separable extension of k exists, then neither Al nor A2 

is a finite direct product of AF-domains. 

a) and b). Let K be a separable extension of k. Consider 

Vi = K(X) [YlcY) = K(X) + M, (with M, = YV,) ; 

V, is a one-dimensional valuation domain of K(X, Y); consider V = K(Y)[XJcX) = K(Y)+ 
M and . 

V, = K[YJCY) + M = K + M, ; 

V, is a two-dimensional valuation domain of K(X, Y). Since Vi and V, are incomparable, by 
[N, Theorem 11.11J T = V, n V, is a two-dimensional Prilfcr domain with only two maximal 
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ideals, m, and m" such that Tm. = V, and Tm, = V,. Let I = m,m, and R = T/I. 
R is a zero-dimensional ring with only two prime ideals, p, = m'; I and p, = m,/ I. 
Furthermore, t(R/p,) = 1 and t(R/P2) = O. Now according to Corollary 1.6, 

dim(R®R[X" ... ,XnJ) = dim((R®R)[X,,®,XnJ) = dim(R®R)+n = t(R)+n = l+n. 

Besides, according to Lemma 1.17, R ® R[X" ®, XnJ is not the tensor product of a finite 
number of AF-domains; so it suffices to consider A, = R and A, = R[X" ... ,Xn-d. 

c) Now assume K as not being finitely generated over k. Therefore, K ® K is 
reduced [ZS, Theorem 39J, zero-dimensional IS, Theorem 3.1J and is not Noetherian [V, 
Theorem 11J. Therefore, Spec (K ® K) is infinite [V, Lemma OJ. Now let us consider 
A = K ¢$I Rj since A is an integral extension of R, it is zero-dimensional. Furthermore, two 
prime ideals of A, P, and P, such that P, n R = p, and P, n R = P2 with t(A/ P,) = 1 and 
t(A/ P2) = 0 exist. Since K is .the quotient field of R/p, and Spec (K ® K) is infinite, by 
[W, Proposition 3.2J Spec(A) = Min (A) is infinite. Thus A is not a finite direct product 
of AF-domains and the same holds for A[X" ... , XnJ. Now, according to Corollary 1.6, 

dim(A®A[X" ... ,XnJ) = dim((A®A)[X, ... ,XnJ) = dim(A®A)+n = t(A)+n = l+n. 

Furthermore, according to Lemma 1.17, A ® A[X" ®, XnJ is not the tensor product of 
a finite number of AF-domainsj therefore, it suffices to consider Al = A and A2 = 

A[X" ... ,Xn-,J. 

2. Tensor products of AF-rings and locally Jaffard rings 

We will now present this section's main theorem. 

Theorem 2.1. Let A be an AF-ring and B a locally Jaffard ring. Then A®B is a locally 
Jaffard ring. 

In order to prove this theorem the following premise is necessary. 

Lemma 2.2. Let A be an AF -ring and B any ring; let Q be any prime ideal of T = A®B, 
andletp=QnA, q=QnB. Then 

ht Q +t(T/Q) = tp + htq[X"". ,Xt,J +t(B/q) . 

Proof. By localizing, -we may assume that p and q are maximal ideals in local rings. Let 
B = B/qand let Q be the image of Q in A ®B; let Qo c;: Q, c;: ". c;: Qh = Q be a chain 
of prime ideals of A ® B such that h = ht Q. Then Qo n A = Po 'is a minimal prime of A 
and Qo n B = OB. Let Qo c;: Q, c;: ". c;: Qh = Q be the chain of inverse images in A ®B. 
As in the case of demonstration given in Theorem 1.4, ht Qo 2 ht q[X" ... , Xt,J. Since B 
is an AF-domain, according to [W, Remark 1 (b) p. 398J it follows that 

htQ + t((A ® B)/Q) = t(B) + htp[X" . .. , X'(ll)J + t(A/p) = tp + t(B/q) . 
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Therefore 

ht Q 2': htQo + ht (Q/Qo) 2': ht Qo + ht Q 2': htq[XI, .. " X t ,) + tp + t(B/q) - t(T/Q) . 

Then 
htQ+t(T/Q) 2': t p + htq[XI, ... ,Xt ,) +t(B/q) . 

On the other hand, let Qo S; QI S; .... s; Q. = Q be a chain of prime ideals of T such 
that s = ht Q. Therefore, a finitely Ilenerated k-aillebra DI contained in A such that 
t(A/p) = t(DJ/PI), where PI = P n DI, and 

Qo n (DI ® B) S; QI n (DI ® B) S; ... S; Q. n (DI ® B) = Q n (DI ® B) , 

exists. It is t(DI) ::; t(A). By choosing gl, ... ,gr E T such that,. setting TIIf = (DI ® 
B)[gl,'" ,gr) and QIIf = Q n Til', it emerges t(TIIf) = t(T) and t(TIIf/QIIf) = t(T/Q). 
This gives rise to a finitely generated k-algebra D where DI <:;; D <:;; A, where, if we set 
Til = D ® Band Q" = Q n Til, then we obtain t(T") = t(T) and t(T" /Q") = t(T/Q). 
So tID) = t(A) = tp. According to Noether's normalization Lemma [M, Lemma 2 p.262) 
Zl, ... ,Zt

p 
E D which are algebraically independent over k, so that D is integral over 

C = k[ZI"'" Zt,) exist. Let T' = C ® B; since D ® B is integral over C ® B, distinct 
primes of D ® B in a chain contract to distinct primes of C ® B. Thus 

Qon(C®B) S; Qln(C®B) S; .. , S; Q,n(C®B) ",Qn(C®B) =Q'. 

Then ht Q ::; ht Q' and tIT' /Q') = tIT /Q). SO ht Q + t(T /Q) ::; ht Q' + tIT' /Q'); since 
T' = C ® B, according to [W, Remark 1 (b) p. 39S) it follows that 

ht Q' + tIT' /Q') = tp + htq[XI,.'" X t ,) + t(B/q) . 

Consequently 
htQ+t(T/Q) ::;tp+htq[XJ, ... ,Xt,)+t(B/q). 

Proof of theorem. Let T = A®B, let Q E Spec (T) and let p = QnA, q = QnB. For any 
n 2': 0 let T' = T[XJ, ... ,Xn); T' S; A[XI, ... ,Xn) ® Band A[XI, ... , Xn) is an AF-ring 
by [W, Corollary 3.2); therefore, on the basis of the previous Lemma 

,htQ[XI, ... , Xn) +tIT' /Q[XI, ... ,Xn)) = tp' + ht q[XI, ... , X t ,,) +t(B/q) 

where p' = Q[XI, . .. , Xn) n A[X I, ... , Xn) = p[X;, ... , Xn). Furthermore, since A is an 
AF-ring, . 

tp' =t(A[XI, .. '., Xn)p') = htp' + t(A[XI"'" Xn)/P[XI, ... , Xn)) = tp + n . 

Since B is a locally J affard ring, 

htQ[XI, ... ,Xn) + t(T'/Q[XI, ... ,Xn)) =n+tp+htq+t(B/q). 

Besides, 

htQ[XI, ... ,Xn) +t(T'/Q[XI, ... ,Xn)) = htQ[XI, ... , Xn) + n+ t(T/Q) , 

Therefore, by applying the previous Lemma to Q, it follows that 

htQ[XI, ... ,Xn) =tp+htq+t(B/q) -t(T/Q) = htQ. 

Consequently A ® B is a locally Jaffard ring. 
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Lemma 2.3. Let A be an AF -ring and B any ring; let P E Spec (A). Then for any r 2': 1 

D(tp,htP,B[X!, ... ,Xr)) = D(tp +r,htP+ r,B) . 

Proof. Since Ap ® B[X!, ... ,Xr) S; Ap[X!, .... , Xr) ® B, according to Theorem 1.4 and 
Remark 1.7 (a), it emerges that 

D(tp,htP,B[X!, ... ,Xr)) = max{D(tp>, ht p', B) I p' E Spec (Ap[X!, ... , Xr))} . 

Since Ap is a locally Jaffard ring, dimAp[XJ, ... , Xr) = ht P + r; therefore, for . any 
P' E Spec (Ap[X!, ... ,Xr)) it follows that 

D(tp>,htP',B)::; D(tp+r,htP+r,B) 

and therefore that 

D(tp, ht P, B[X!, ... ,Xr)) ::; D(tp + r, ht P + r, B) . 

Furthermore, by letting M' = (PAp,X!, ... ,Xr), it follows that htM' = htP+r.and 
t M' = t P + r; therefore 

D(tp + r, ht P + r, B) ::; D(tp, ht P, B[X!, ... , Xr)) . 

Proposition 2.4. Let A be an AF -ring and B any ring. Then for any r 2': dimvB - 1 

dimv(A ® B) = max{D(tp + r, htp+ r, B) I p E Spec (A)} - r = 

= max{htq[X!, ... , Xr) + min(tp, ht P + t(B/q) Ip E Spec (A) and q E Spec (B)} . 

Proof. Let r 2': dimvB - 1. Since, according to [C, Proposition 1. ii»), B[X!, ... ,Xr) 
is a locally Jaffard ring, according to Theorem 2.1 A ® B[X!, ... ,Xr) is a Jaffard ring. 
Therefore by Theorem1.4 and Lemma 2.3 

dimv(A®B[X!, ... ,Xr)) = dim(A®B[XJ"",Xr)) 

= max{D(tp,htp,B[X!, ... ,Xr)) Ip E Spec(A)} 

=max{D(tp+r,htp+c,B)lpE Spec(A)}. 

From this it follows that dimv(A ® B) = max{D(tp + c, ht p + r, B) I p E Spec (A)} - c = 
max{htq[X!, ... ,Xr) + min(tp,htp+ t(B/q» Ip E Spec (A) and q E Spec (B)}. 

Corollary 2.5. Let A be an AF-domain with t = t(A) and'd = dimA and let B be any 
ring. Then for any c 2': dimvB - 1 

dimv(A ® B) = D(t + r, d + c, B) - r = 

=max{htq[XI, ... ,Xr)+min(t,d+t(B/q»lqE Spec(B)}. 
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Corollary 2.6. Let A be an AF -domain with t = t(A) and B a ring such that dimvB :0; 
t + 1. Then A 0 B is a Jaffard ring. 

Corollary 2.7. Let A be an AF-domain with t = t(A) and B a Jaffard ring such that 
B[X] is a locally Jaffard ring. Then A 0 B is a Jaffard ring. 

Proof. If t = 0, then A 0 B is an integral extension of B; since B is a J affard ring, 
according to [J, Proposition 4, p. 5S] A 0 B is a J affard ring. Assume that t :2: 1; A 0 B[X] 
is a Jaffard ring according to Theorem 2.1; furthermore, according to [J, Theorem 2 p. 
60], dimv(A0B[X]) = dimv(A0B)+1; so according to [W, Theorem 3.7] 

dimv(A 0 B) = dimv(A 0 B[X]) - 1 = dim(A 0 B[X]) - 1 = 

= max{ht Q[XI, ... , X t ] + min(t, d+ t(B[X]IQ)) I Q E Spec (B[X])} - 1 = 

= max{htq[X] + min(t+ 1,d+ 1 + t(Blq)) Iq E Spec (B)} - 1 = 

= D(t + 1, d + 1, B) - 1 = D(t, d, B) = dim(A 0 B) . 

In conclusion, A ® B is a Jaffard ring. 

Remark 2.8. The example 3.2 of [ABDFK] is an example of a Jaffard, not locally Jaffard 
ring B, where B[X] is a locally Jaffard ring. 

Example 2.9. The result of Theorem 2.1 is the best-possible one: the tensor product of 
an AF-domain and a Jaffard ring is not necessarily a Jaffard ring. 

It is possible to deduce the following example from [ABDFK]. Let ZI, Z2, Z3, Z4 
be four indeterminates over k. Let L = k(Z" Z" Z3, Z,). Let 

VI = k(ZI, Z2, Z3)[Z4](Z,) = k(ZI, z" Z3) + MI 

Vl is a one-dimensional valuation ring of L, with maximal ideal Ml = Z4 VI. Let V' be 
a one-dimensional valuation overring of k(Z4)[Z2, Z3] of the form V' = k(Z,) + M'. Let 
V', = k[Z4hz,) +M' = k+M'2, where M', = Z,k[Z4](Z,) +M'. V '2 is a two- dimensional 
valuation ring. Let V = k(Z" Z3, Z4)[Zlhz,) = k(Z2, Z3, Z4) + M, with M = ZI V; let 
M2 = M'2 +M and 

. V2 = V',+M = k+M,. 

V2 is a three-dimensional valuation ring. 
We now wish to demonstrate that VI and V2 are incomparable. If not, it would 

follow from the one-dimensionality of VI that V, C VI. Then we would have VI = (V,) M. 

We would have that M is a divided prime ideal of V2. Then Z4 VI = MI = M(V2)M. Thus 
1 = Z4Zil E MV = M, which is a contradiction. Since VI and V2 both have quotient 
field k(ZI' Z" Z3, Z4), we can now see from [N, Theorem 11.11] that S = VI n V2 is a 
three-dimensional Priifer domain with only two maximal ideals, ml and m2, such that 
Sm, = VI and Sm, = V,. Let F = k(ZI), f : VI ~ k(ZI' z" Z3) be the natural ring 
homomorphism and D = f-I(F) = F+ MI. Let g : S ~ Simi'" VI/ml '" k(ZI' Z2, Z3) 
be the natural ring homomorphism and B = 9-1 (F). It follows that B = D n S = D n V, 
and dimB = dimS = 3. Furthermore, accorning to [AnDFK, Theorem 2.11], it follows 
that 
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Thus, B is a Jaffard ring. Since B = D n V2 and VI, V2 are incomparable, it follows 
that Bn, = D and Bn, = V2, where {nl,n2} = Max (B). Moreover, htnl[XI, ... ,X,] = 
htnIBn,[XI, ... ,X,] = htMdXI,""X,]. Since VI is a Jaffard ring, by [A, Theorem 
1.7] it follows that htDlx"".,x.1MdXI, ... ,X,] = htv,MI + inf(s,2). Thus, htnl = 1, 
htndXI]=2 and htndXI,X2]=3; t(Blnl) = t(DIMd = I and t(Bln2) = t(V2IM2) =0. 
Let A = k(X). According to Theorem 1.4, 

dim(A 0 B) = D(t(A), 0, B) = max{htq[XI] + min(l, t(Blq))1 q E Spec (B)} . 

For q = nl, it is htndXI] + min(l,t(Blnl)) = 2 + 1 = 3; for q = n2, it is htn2[Xd + 
min(l, t(Bln,)) = ht no = 3 and ht q[XI] + min(l, t(B Iq)) :0; 3 for every prime ideal of B 
contained in n2. Consequently, dim(A 0 B) = 3. On the basis of Corollary 2.5, 

dimv(A 0 B) = max{htq[XI' X 2] + min(l, t(Blq)) I q E Spec (B)} 

for q = nlo htndXI,X2] + min(l, t(Blnl)) = 3 + 1 = 4. Therefore dimv(A 0 B) = 4 <F 
dim(A 0 B). In conclusion A 0 B is not a Jaffard ring. 

References 

[A] A. AYACHE: Inegalite au formule de la dimension et priJduits fibres, These de 
doctorat en sciences, Universite d' Aix-Marseille, 1991. 

[ABDFK] D.F. ANDERSON, A. BOUVIER, D.E. DOBBS, M. FONTANA, S. KABBAJ: 
"On Jaffard domains", Expo. Math., 6 (19SS), 145-175. 

[C] P.-J. CAHEN: "Construction B, I, D et anneaux localement ou residuellement 
de Jaffard", Arch Math., 54 (1990), 125-141. 

[G] 
[Gi] 

R. GILMER: Multiplicative ideal theory, M. Dekker, New York, 1972. 
F. GlROLAMI: "AF-rings and locally Jaffard rings", Proc. Fes Conference 
1992, Lect. Notes Pure Appl. Math. 153, M. Dekker, 1994, 151-161. 

[J] P. JAFFARD: "Tbeorie de la dimension dans les anneaux de polyn6mes", 
Mem. Sc. Math., 146 (1960), Gauthier-Villars, Paris . 

[M] H. MATSUMURA: Commutative ring theory, Cambridge University Press, 
Cambridge, 19S9. 

[N] M. NAGATA: Local rings, Interscienee, New York 1962. 
[S] R,Y," SHARP: liThe dimension of the tensor product of two field extensions", 

Bull. London Math. Soc. 9 (1977), 42-4S. 
[SV] R.Y. SHARP, P. VAMOS: "The dimension of the tensor product of a finite 

number of field extensions", J. Pure Appl. Algebra, 10 (1977), 249-252. 
[V] P. VAMOS: "On the minimal prime ideals of a tensor product of two fields", 

Math. Proc. Camb. Phil. Soc., 84 (197S), 25-35. 
[W] A.R. WADSWORTH: "The Krull dimension of tensor products of commutative 

algebras over a field", J. London Math. Soc., 19 (1979), 391-401. 
IZS] O. ZARISKI, P. SAMUEL: Commutative Algebra, Vol. I, Van Nostrand, New 

York,1960. 

I: 
1 

.1 




