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0. Introduction

; All the rings and algebras considered in this paper will be commutative, with identity

elements and ring-homomorphisms will be unital. If A is a ring, then dim A will denote

Il : . : the (Krull) dimension of A, that is the supremum of lengths of chains of prime ideals of

{ : A. An integral domain D is said to have valuative dimension n (in short, dim,D = n)
|

;. if each valuation overring of D has dimension at most n and there exists a valuation
. overring of I? of dimension n. If no such integer n exists, then D is said to have infinite
k. valuative dimension (see [G)). It must be remembered that for any ring A, dim,A =
3 sup{ dim,(A/P) | P € Spec (A4)}. Furthermore, it must also be remembered by {ABDFK]
that a finite-dimensional domain D is a Jaffard domain if dim D = dim,D. As the class
of Jaffard domains is not stable under localization, an integral domain D is defined to be
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142 ' Bouchiba et al.

a locally Jaffard domain if Dp is a Jaffard domain for each prime ideal P of D. Analogous
definitions are given in [C] for a finite-dimensional ring.
R.Y. Sharp proved in [S] that if X, and Kj are extension fields of a field k, then

dim(Ky & K2) = min{t.d.(K; : k), t.d.(Kp : k)} .

A R. Wadsworth extended this result to AF-domains. We wish to recall, at this
point, that a k-algebra A is an AF-ring (altitude formula) if

WP + t.d.(A/P : k) = t.d.(Ap : k)
for each prime ideal P of A. He proved that if D and Dj are AF-domains,\j:hen
dim(Dy @ Dz) = min{ dimD; + +.d.(D; : k), £.d.(Dy : k) + dimDs} .

He also provided a formula for dim(D ®, R) applicable to an AF-domain D, with no
restriction on the ring R. He also proved that for any prime ideal P of an AF-ring A and
for any n > 1, ht P = ht P[X,,..., X,,]. This latter property characterizes the class of
locally Jaffard rings, meaning that an AF-ring is a locally Jaffard ring.

In [Gi] the class of AF-domains is examined with respect to the class of k-algebrag
which are stably strong §-domains, and the behaviour of the class of AF-domains with
respect to certain pull-back type constructions. An upper bound for the valuative dimen-
sion of the tensor product. of two k-algebras is given, that is:
if Ay and Aj are k-algebras with t.d.(4; : k) < co and t.d.(43 : k) < oo, then

dim, (4; ® A} < min{ dim, 4, -+ t.d.{A4;: k), t.d.(A4; : k) + dimuAg} .

We wish to point out that this work is a continuation of Wadsworth’s paper {W].

In this first section we extend some known results concerning the class of AF-
domains [W] to the class of AF-rings and we show that the results do not extend trivially
from domains to rings with zero-divisors. In particular, we provided a formula for the
dimension of the tensor product A @ B, where A is an AF-ring and B is any ring. Once
we have provided a technical formula for the dimension of tensor products of AF-rings,
then we can prove that if 4; and Ay are AF-rings, then

dim{A; &g Ag) = min{ dim 4; + t.d. (A 1 k), t.d. (A : k) + dim Ag}

if and only if m1 € Max (A1) and mg € Max (As) exist such that either ht m; = dim Ai,
t.d.(Azm, : k) = t.d.(A2 : k) and t.d.(A2/ms) < t.d.(Ay/m1) or htmy = dim Ay,
t.d:(Ar,, k) =td.(4; : k) and t.d.(4;/m)) < t.d.(A3/ms). Finally we consider the
special case in which A; = Aj. , ‘

In the second section we first prove that if A is an AF-ring and Bisa locally Jaffard
ring, then A ®; B is a locally Jaffard ring; then we give some formulas for computing the
valuative dimension of the tensor product of an APF-ring and any ring. We conclude this

section by giving an example of a tensor product of an AF-ring and a Jaffard ring which

is not a Jaffard ring.

Dimension of Tensor Products of AF-Rings

~Tensor products of AF-rings“

Throughout this paper & will indicate a field, t(4) will denote the transcendence degree
of a k-algebra A over k and for P € Spec(A) tp will denote the transcendence degree of
Ap over k. The tensor products, when not specifically indicated otherwise, will be taken
i 25 being relative to k. S . o

In this section we will extend some of the properties of the dimension of the tensor
product of AF-domains (see {(W]) to the case of AF-rings. '

I;.emma 1.1. Let Ay,...,Apn be AF-rings and T = A1®---Q Apn; for any @ € Spec (41 ®
@ Ap) let B, =QnNA;. Then

’ t(TQ) = t(AIPI) + t(A2P2) +oeF t(Anf"n) :

© Proof. Since there is nothing to prove for n = 1, we may assume that n > 1 and, by
induction, that B = Ay ® --- @ A,, satisfies the given property. Let P = QN R; since Ty
is a localization of A1p, @ --- ® App,, it results from [W, Corollary 2.4] that

t(TQ) S t{(Aip, ® - @ Anp,) =t(41p) + -+ t(Anp,) .

\' 'By'. the proof of [W, Proposition 3.1] we have

t(To) = ht Q-+ t(T/Q) > htP; + ht P+ t{A1/P1) + t(R/P) =
=t(A1p) + t(Rp) = t(A1p) + - +t(dnp,) .

We can now obtain the following known result for AF-domains.

;:Corollary 1.2, Let Dy,. +vs D be AF-domains, and Q € Spec(D1® - @ D). Then
t(D1® @ D)) =t(D1® - ®D,) =t(D)) +-- + t(Dn).

The following simple statement will have important consequences.

:. Lemma 1.3. Let A be an AF-ping. If P € Spec(A) and Py is a minimal prime ideal of
A contained in P such that ht P = ht (P/Fp), then tp = tp,. ‘

Proof. tp =1t P+ t(A/P) = bt (P/Po) + t((A/ )/ (P/Py)) < t(A/ Py) < t(Ap,) = s,

. We recall by [W, p. 394-395] the following functions:
let A; and Ay be rings, P € Spec(4;) and P, € Spec (Ag), then

5(P1, Pp) = max{ht Q| Q € Spec {41 ® A43) and QN A; =P, ,QN Az = By} ;

let A be a ving, P € Spec(A) and d and s integers with 0 < d < s, then

A(s,d, P) = ht PA[Xy,...,X,] + min(s,d + t(A/LPY))

D{s,d, A) = max{A(s,d, P) | P € Spec(A)} .
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144 Bouchiba et al,

Theorem 1.4. Let A be an AF-ring and B any ring; let p & Spec(A) and g € Spec(B).
Then
(pa Q) A(tp;ht »q ) and

Proof. Since 8(p, q) = §(pAp, ¢A,) and the class of AF-rmgs is stable under localizations,
we may assume that p and ¢ are maximal ideals in local rings. Let B=B/gandt= t(B)

By {W, Theorem 3.4]
6(p,0B) = A(t,0,p) = ht p[X1,.. .,

dim(A ® B) = max{D(tp,ht P, B) | P € Spec (4)} .

Xt + min(t,t(A/p)) = min(t,, htp 4+ t) .
Then ' . _ .
Aty htp, g) = ht g[X1,.. o X, ]+ 8(p,0B) .

Let Qg € @, C C -+ € @ be & chain of prime idcals of 4 ® B such that & = é(p, OB),
Q,NA = pand QhﬂB 0B. Then QN A = po is a minimal prime of A and Qor‘lB 0B.
Let Qo C Ql G +-- & O be the chain of inverse images in A® B. Let A = 4/pp and
Qo C Q1 - Qh be the chain of images in A®B so that Qg survives in the localization
KoB of A ® B, where K is the quotient field of A. Therefore according to [W, Remark

1.(a) p.398) ht Q¢ > ht g[Xy, .. +»Xt,,]- Then we have
ht Qn 2 ht Qo + bt (Qn/Qo) > bt g X1, ...,

Since A® B is an AF-ring and ht ), = ht (Gr/Q,), by Lemma 1.3 we have t((A®_)Q-
t{{A® B)z:;} Since A ® B is a tensor product of an AF-ring and a field, by Lemma 1.1
we have

Kepo] +6(p, 0B) .

t{{(A®B)g,) =t(An) +t =t((A®B)g) = t(4,) +t .
80 tp = tpy. Therefore
ht @y, > htq[Xl,

Therefore, it follows that 6(p, q) > A(t,, htp, q).
The reverse inequality is deduced from the demonstration of the same inequality

given in [W, Theorem 3.7] for an AF-domain. So 6(p, q) = Aft,, htp, g).
The result upon dim(A ® B) derives directly from the definition of §, A and D.

Corollary 1.5. Let Ay and Ag be AF-vings; then
" (a) If p1 € Spec (A1) and py € Spec (As), then

&(p1,p2) = min(ht p; + f:';,,,,,il:]‘Jl + htpg) .

1 X, + 8(p,0B) = Alt,, ht p,q) .

(b) dim{A4;®@A4z) =
Proof. (a) According to Theorem 1.4 §(py, p2) = Aftp,, ht p1, p2); furthermore
( p1)htpl1p2) htp?[Xh X“-p,]"*' min(tp,,htm +t(A2/p2))
= htpa + min(t,, , ht p; + t(42/p2))
= min(ht p; + tpgstp, + htpa) .

(b) Follows from the definition of §(py, p2).

max{min(ht Pi+tp,,tp +ht %) | Py € Spec(A;), P € Spec (Az)}.
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wAn be AF-rings with n >2. Then dim(4, ® .- - ® A

Lemma 1.6. Let Aj,.. a) =
otptottp, 1+htP)|Pi€

max{min(ht Pi+tp,+- +tp,‘, tp +ht Pyttp+ - +tp,,.
Spec{A:), fori=1,...,n}.
Proof. We can define the following function for primes P, of A; withi=1,... N

8(Pry..., P) =max{tQ|Q € Spec(A1®--- ®Ax) and QNA; =P, 4 == 1...,n}.
We prove by induction that

8(Py,..., B) =mintht P, +tp, + - + tp,,
tp, +ht Po-tp, + - +tp,,...,tp + -+

For n = 2, this is Corollary 1.5. Let n > 2 and assume that §(,...,

+te,_, +ht F) .
FB,) satisfies the

* given formula. Of course,

6(Pr,..., P} = max{6(P1,Q")| Q@ € Spec(A2®-- - ®A,) and QNA;=P;,j=2,...,n}

moreover 6{F, Q') = min(ht P + tor, it Q' + tpl) and tgr =tp, +--- + tp, according to

Lemma 1.1. So
§(Pi,..., Py) =
= max{min(ht P, + tp, +---+tp,, ht Q'+ tp) |

Q' € Spec(A2 @ @A) and Q'NA; =P, 7=2,...,n) =
=min(ht Py +tp, + -+ tp,,6(P2, ..., B) +tp) =
=min(ht P, +tp, + - +tp,, tp, + Mt Pa+tp, + - tp,...,

Then
dim{A;1 ® - @ Ap) =
=max{0(P,..., )| P € Spec(A;), fori=1,...,n} =

= max{mintht P; +tp, ++ +tp, tp, + Mt B+ tp + -+ tp,,...,
tp + o +tp,; +htP) [ P € Spec(A;), fori=1,...,n}.

Remark 1.7. (a) Since D(s,d, A) is a nondecreasing function of the first two arguments,
then in Theorem 1.4 it suffices to consider the maximal ideals of A for dim{(4® B) only and
in Corollary 1.5 it suffices to consider the maximal ideals of Ay and Ay for dim(A; & 4)
only.
(b} With the notation as in Lemma 1.6, it is very easy to prove :

{i) dim(Al @+ @ Apn) = max{min(ht M1 + tp, + - + tM., tar, + ht Mo 4 tag, +

b taf, ot b b, FhEML) [ M € Max(A), fori=1,...,n}
(i) d1m(A1® ®An) < t1+t2+ “+tn—max{t;—d;, 1 < i< n}, whered = dimA,.

In the following result, we determine a necessary and sufficient condition under
which the dimension of the tensor product of the AF-rings A, ..., A, satisfies the formula
of Wadsworth’s Theorem 3.8, that is

dim(A; ® - ® An) =t1 +ta+ -+« + ty — max{t; - d;,1 << n}.

tp, + - +tp,_, + ht B,).
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146 . Bouchiba et al,

Theorem 1.8. Let Ai,...,An be AF-rings, with t; = t(4;) and di = dim 4;. Then

dim(A1 ®-- @ A,) =t1+fa+ - +tn —max{t; — d;, 1 < i < n} if and only if for any -

i=1,...,n there is m; € Max(4;) and there isr € {1,2,...,n} such that htm, = d,
and for any j € {1,2,...,n} = {r}, tm, =t; andt(A;/m;) < t(4./m.).

Proof. (=) We may assume that
dim(A1®"'®An) =di+ta+- -+t :

on the ba,.sis of Remark 1.7 (b) for i = 1,2,...,nlet m; € Max (A;) such that dim{4;®-.-®
An) = mIN(BE M1+t Aty by FBE Mg o+ bty oy by b+ - b, _, 1),
Thendy +to+ -+ t, Shtm1+tm2+-"+tmn. So

0<di —htmy £ (tm, —t2) + -+ + (b, — tn) .

T}fen htmy = di and ty, =t; for any 5 = 2,...,n. Furthermore for any j = 2,...,n,
being di +tmy + -+ +tm, < by +- by, Fhtmy b, 4+ by, it follows that

htmy+te+ o by Sty oo+ tj_g - htmg b+ -+t

50
t'(Aj/mj) =t; ~ htmj Lty —htmg = t(Al/ml) .

{<=) We may assume that for any § = 1,...,n an m; € Max (4;) exists so that ht m; =
(.11 and for any j = 2,...,n tm; = t; and t(4;/m;) < t{A1/m1). Therefore, for any
J=2,...,nit follows that

ht my F by Sty +htmj '

611 A by b oo by < oy b by O by y b b b,

Therefore, being ht m; = d; and tm; =1t; for any 7 = 2,...,n, on the basis of Remark 1.7
(b) then '
dim(A;1 ®@ - ® A4,) > d+to+ -+t .

According to Remark 1.7 (b) it follows dim(4; @ --- ® A,) = d.1 Ftot e+t

Example 1.9. Let us now give an example of two AF-rings A; and Ay where dim(A4;®42)
does not satisfy the formula of Wadsworth’s Thecrem. :

Let Xi, X3, X3 be three indeterminates over k. Let Ry = Ic[Xl,Xg,Xs](Xl) and
- Ry = k(X1, X3). We consider A; = Ry x Ry and Ap = k[X), Xo)(x,). A1 is an AF-ring
s0 that dimA; = 2 and t(A;) ='3; A4, is an AF-ring so that dimA; = 1 and t(Ag} = 2.
According to Corollary 1.5, knowing Max (1 X Ry) and Max(As), it is very easy to
calculate that dim(A; ® A2) = 3. So dim(A4; ® A2) < t(A;) + t(As)—1=4.

We will now illustrate a number of applications of Theorem 1.8; we note'in par-
ticular that we arrive at Wadsworth’s Theorem 3.8 regarding AF-domains (see Corollary
1.12). :
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: Corollary 1.10. Let Ay,..., A, be AF-rings, with t; = t(4;) and d; = dimA; such that
“foranyi=1,...,n an m; € Max (4;) withhtm; = d; and tm, = t; exists. Then

dim(4; ® - - @A) =ty +ta+ -+ t, —max{t; - d;, 1 <i<n} .

. Proof. Let r € {1,2,...,n} such that t(A,:/m,) = max{t(4;/m;},1 < i £ n}; then
‘htrny = dy and for any 7 € {1,2,...,n} = {r}, tm, =t; and t(4;/m;) < t(A,/m,). Thus
obtaining the result according to Theorem 1.8,

Corollary 1.11. Let Av,..., An be AF-rings, with t; = t(A;) and di = dimA; such that
for enyi=1,...,n and for any M; € Max(4;), ta, =ti. Then

dim(A) ® -+ ® An) = t1 + tg + -+ + £y, — max{t; — d;, 1 i < n} .

Proof. For any i = 1,...,n let m; € Max (A;) such that ht m; = d;; so htm; = d; and
tm, = ti. Then Corollary 1.10 ¢ompletes the proof.

Corollary 1.12. Let Ay,..., An be AF-domains, with t; = t(A;) and d; = dimA;. Then

dim(41 @ - @A) =t1 +ta+ -+t —max{t; —d;, 1 S i< n}.

Corollary 1.13. Let Ay,...,An be AF-rings, with t; = t(4;) and d; = dimA; such that
for enyi=1,...,n and for any P, € Min(4;), t(A;/P) = t;. Then
dim(A1 ® - @ An) =t1+tadk -+t —max{t; —d;, 1 <i<n}.

Proof. For any i = 1,...,n let M; € Max(A;); therefore a P; € Min {A;) such that
ht M; = ht (M;/P,) exists. Since every A; is an AF-ring, according to Lemma 1.3

ty, =tp = t(Ai/P,;) =1; .

So the result follows from Corollary 1.10.

Cordllary 1.14. Let Ay,...,An be equicodimensional AF-rings, with t; = t(A;) and
d;' = dimA,-. Then

dim{4d; ® ---®@ A,) = t1 +t2+"'+tnwrﬁax{ti—d,~,lSiSn}.

’ Proof. For any ¢ = 1,...,n let m; € Max(A;) such that t,,, = t;; let r € {1,2,...,n}
L such that t(A,/m,) = max{t(4;/ms),1 € i < n}. Then htm, = Qrytm;- = t; and

the result obtained. »
It is known [Gi, Corollary 3.3] that if A is an AF-ring, then

dim(A ® A) = dim,(A® A) < dimA 4 t(A4) = dim, A + t{A) .

The same result is also obtained in the case of Corollary 1.5. By applying Theorem 1.8 to
- A ® A we obtain:

t(A4;/my) < t(Ar/m;) for any j # r. Thus the conditions of Theorem 1.8 are satisfied and -
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148 ' _ Bouchiba et al.

Corollary 1.15. Let A be an AF-ring, Then dim{(4A @ A) = dimA + t(A) if end only
if there ezist two maximal ideals m and n of A such that htm = dimA,t, = i{A) and
t(A4/n) < t{A/m).

Example 1.16. Let us now offer an example of an AF-ring 4 such that
dim(A ® A) < dimA +t(4) .

Let K be an extension field of k such that t(K) = 2. Let A = X x k[X], where X is an
indeterminate over k. The AF-ring A is such that dimA =1 and t{A) = 2. The maximal
ideals of A are (0) x k[X] and K x N with N € Max (k[X]); besides ht ((0) x k(X)) =0
and toyskix) = 2, (K X N) = 1 and txuny = 1. It follows, therefore, on the basis of
Corollary 1.5 that

dim(A® A) = 2 < dimA + t{4) = 3.

We will conclude this section by giving an example which requires the following
technical result.

Lemma 1.17. Let A be an AF-ring such that two prime ideals p and q with t, # t,
erist. Then for any AF-ring B, A® B 15 not the tensor product of a finite number of
AF-domains.

Proof. Suppose that A® B =D, ®--+® D, where D; is an AF-domain for § — 1,...,n.
Then P,Q € Spec(A'® B) such that PNA'=pand QN A = q exist. Therefore, on the
basis of Lemma 1.1, it follows that

ht P+H{A® B/P) = t, -+ t,
where p’ = PN B; besides, according to Corollary 1.2
WP+t(D1® - @D, /P)=t(D1® - ®D,) = t(A)+t(B) .

Therefore, t, = t(A4); in the same way it follows that ty = t(A), which is impossible.

Example 1.18. For each positive integer n, two AF-rings A; and Ay exists such that
a) dim{Ad; @ As) =n; : :
b) A; ® Ay is not the tensor.product of a finjte number of AF-domains;
¢) if a not finitely generated separable extension of k exists, then neither A; nor 4,
is a finite direct product of AF-domains,

a) and b). Let K be a separable extension of k. Consider

Vi = K(X)[Y) vy = K(X) + My (with My = YV}) ;

V1 is a one-dimensional valuation domain of K (X, Y); consider V = (Y} X]xy = K(Y)+
M and _
Va=K[Y)yy+ M=K+ M, ;

Vs is a two-dimensional valuation domain of K(X,Y). Since 1 and V; are incomparable, by
[N, Theorem 11.11] T = VjNV, is a two-dimensional Priifer domain with only two maximal
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ideals, m) and my, such that Tn, = Vi and Ty, = Vo, Let T = mymo and R = /1.
R is a zero-dimensional ring with only two prime ideals, p1 = mi/I and p2 = ma/I.
Furthermore, t(R/p;) =1 and t(R/p2) = 0. Now according to Corollary 1.6,

dim(ROR[X1,. .., Xa) = dim((ROR)[X1, ®, X)) = dim(ROR)+n = t{R)+n = 1+

Besides, according to Lemma 1.17, R ® R[X),®, X,,] is not the tensor product of a finite
number of AF-domains; so it suffices to consider A; = R and A; = R{X1,..., Xn-1].

¢) Now assume K as not. being finitely generated over k. Therefore, K ® K is
reduced [ZS, Theorem 39], zero-dimensional [S, Theorem 3.1] and is not Noetherian [V,
Theorem 11]. Therefore, Spec(K ® K) is infinite [V, Lemma 0]. Now let us consider
A= K @ R; since A is an integral extension of R, it is zero-dimensional. Furthermore, two
prime ideals of A, Py and P such that AN R = p; and AN R = pp with t(A/P;) = 1 and
t(A/Pp) = 0 exist. Since K is the quotient field of R/p; and Spec (K & K) is infinite, by
fW, Proposition 3.2] Spec(A4) = Min (4) is infinite. Thus 4 is not a finite direct product
of AF-domains and the same holds for A[X1,..., X,). Now, according to Corollary 1.6,

dim(ARA[X1, ..., X,]) = dim((AQA)X:..., X,]) = dim(A®A)+n =t(A)+n=1+n.

Furthermore, according to Lemma 1.17, 4 ® A[X1,®, X,,] is not the tensor product of
a finite number of AF-domains; therefore, it suffices to consider 41 = A and A, =
A[Xl, Ve ,.Xn_.ﬂ.

2. Tensor products of AF-rings and locally J affard rings

We will now present this section’s main theorem.
Theorem 2.1. Let A be an AF-ring and B a locally Jaffard ring. Then AQB is a locally
Jaffard ring. . B

In order to prove this theorem the following premise is necessary.

Lemma 2.2. Let A be an AF-ring and B any ring; let ( be any prime ideal of T = A®B,
andletp=0QnNA, g=QNB., Then

th-I-t(T/Q) :tp+ht(I{-XI)"-:ti]—I_t(B/q) r

Proof . By localizing, we may assume that p and ¢ are maximal ideals ini local rings. Let
B = B/q and let Q be the image of Q in A®B; let Qo G Oy S -+ C Uy, = O be a chain
of prime ideals of A ® B such that h = ht . Then Qy M A = po is a minimal prime of A
and Qo NE = 0B. Let Qp C Q1S+ C Qr=2Q be the chain of inverse images in A ®B.
As in the case of demonstration given in Theorem 1.4, ht Qo > ht ¢[X1,... y Xt,). Since B
is an AF-domain, according to [W, Remark 1 (b) p. 398] it follows that

WG + (A6 B)/Q) = UB) + bt plX,..., Xy + H(A/p) = tp+ L(B/q) .
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150 : Bouchiba et al.

Therefore
htQ > ht Qo + bt (Q/Q0) > bt Qo + Bt Q@ = ht q[X1, ..., Xe,) + tp + t(B/a) — t(T/Q) .
Then
Tt Q+HT/Q) 2 tp + htg[Xy,... ,ti] +t(B/q) .

On the other hand, let Qo € Q1 & .+-'C @5 = @ be a chain of prime ideals of T such
that s = ht Q. Therefore, a finitely generated k-algebra Dy contained in A such that

t(A/p} = t{D1/p1), where p; = pN Dy, and

QNDL1@B)ChN(D®B)C- SR N(D1®B}=QN(D1®B),
exists. It is t(D1) < t{A). By choosing g1,...,4- € T such that, setting 7" = (D, ®
B)lgy,-..,g-] and Q" = QN T", it emerges t(T") = t(T) and t(T"/Q") = t(T/Q).
This gives rise to a finitely generated k-algebra D where Dy € D C A, where, if we set
TH - D@ B and Q" = QN T", then we obtain t(T") = t(T) and t(T7/Q") = t(T/Q).
So t(D) = t(A) = ty. According to Noether’s normalization Lemma {M, Lemma 2 p.262]
#1,..., 2, € D which are algebraically independent over k, so that D is integral over
C = klz1,...,2,) exist. Let TV = C ® B; since D ® B is integral over €' ® B, distinct
primes of D ® B in & chain contract to distinct primes of C'® B. Thus

QN(CeB) CQUNCOB G SQN(CEB)=QnCeB)=q .
Then ht Q < ht ¢ and £(T*/Q") = t(T/Q). So Wt Q + t(T/Q) < ht Q' + t(T"/Q’); since
T' = C ® B, according to [W, Remark 1 (b) p. 398] it follows that

ht @ +t(T'/Q) =t, + htq[X1,..., X¢, )+ t(B/q) .

Consequently
th+t(T/Q) < tp+ htq[Xl) )ti] +t’(B/q) .

Proof of theorem. Let T'= A® B, let Q € Spec (1) and let p=QNA, g=QnB. For any
n>0let T =T[Xy,..., Xnl; T = AlXy,..., X, ® B and A[Xy,...,X,] is an AF-ring
by [W, Corollary 3.2]; therefore, on the basis of the previous Lemma

BEQIX1, -+, X + 4T /QIXy, ., Xa) = tpr + B q[X1,. .., Ko ] +4(B/0)
where p' = QI X1,. WXl NA[X,. . X)) = p[Xi,...,Xn]. Fﬁrthermore, since A is an
AF-ring, . ) ‘
by = (ALK, Xaly) = b6+ ALK Xal/B[Xd, o Xa]) =ty
Since B is a locally Jaffard ring, :

ht Q[X1,. .., Xn] + H{T/QX1,..., Xn)) =n+tp+ htg+t(B/q) .
Besides, ’
Cht QX1 .., Xn] +HT/Q[X1,. .., Xal) = R Q[X1,. .., Xul + 04+ t{T/Q) .
Therefore, by applying the previous Lemma to @, it follows that
M QX1 ., Xa] = tp -k hbq -+ £(B/q) — t(L/Q) =1t Q .
Consequently A @ B is a locally Jaffard ring.
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Lemma 2.3. Let A be an AF-ring and B any ring; let P € Spec(A): Then for anyr > 1
D(tp,bt P,B[Xy,..., X/ ) =Dlp+r,ht P+, B) .

Proof. Since Ap ® B[X1,...,X;] & Ap[Xy,...,X,] ® B, according to Theorem 1.4 and
Remark 1.7 (a), it emerges that ,

D(tp,ht P, B[X1,...,X:]) = max{D{tpr, ht P!, B) | P’ € Spec(Ap[X1,..., X/ ])} .

Since Ap is a locally Jaffard ring, dimAp[X1,...,X;] = ht P 4 r; therefore, for any
P' e Spec (Ap[X1,...,X.]} it follows that

D{tpi,ht P', B) < D(tp + r,ht P+, B)
and therefore that
D(tp,ht P, B[Xy,...,X/]) < D(tp + 0t P+ 7, B) .

Furthermore, by letting M’ = (PAp, X1,...,X,), it follows that ht M’/ = ht P 4+ r.and
ta = tp + r; therefore

D{tp +mht P+r,B) < D(tp,ht P, B[X1,...,X.]) .
Proposition 2.4, Let A be an AF-ring and B any ring. Then for any r > dim,B — 1

dimy (A ® B) = max{D{t, +r,htp+r,B)|p € Spec(A)} —r =
= max{ht ¢[X1,..., X;] + min{t,, ht P+ t(B/q) | » € Spec(A) and ¢ € Spec(B}} .

Proof. Let r > dim,B — 1. Since, according to [C, Proposition 1. ii)], B[X1,...,X;]
is a locally Jaffard ring, according to Theorem 2.1 A ® B[X4,...,X,] is a Jaffard ring.
Therefore by Theoreml.4 and Lemma 2.3 _

dim,(A® B[Xy,..., X)) = dim(A® B[X,..., X))
= max{D(tp, ht p, B{X1,..., X;]) |p € Spec (A)}
= max{D(t, + r,htp+r, B}|p € Spec(A)} .
From this it follows that dim,(A ® B) = max{D(t, +r,ktp+r, B) |p € Spec(A)} —r =
max{ht ¢[X1,..., X;] + min(t,, ht p+ t(B/q)) | p € Spec (A) and g € Spec (B)}.
Corollary 2.5. Let A be an AF-domain with t = t(A4) and d = dimA and let B be any
ring. Then for any r 2 dim,B —1 '
dim,(A®B) = D{t + r,d+ 7, B) —r =
= max{ht ¢[X1,..., X} + min{t,d + ¢(B/q)) | ¢ € Spec{B)} .
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Corollary 2.6. Let A be an AF-domain with t = t(A) and B a ring such that dim,B <
t-+1. Then A® B is o Jaffard ring.

Corollary 2.7. Let A be an AF-domain with t = t(A) end B a Jaffard ring such that
B[X] is a locally Jaffard ring. Then A ® B is a Jaffard ring.

Proof. Ift = 0, then A @ B is an integral extension of B; since B is a Jaffard ring,
according to {J, Proposition 4, p. 58] A® B is a Jaffard ring. Assume that ¢ > 1; A® B[X]
is & Jaffard ring according to Theorem 2.1; furthermore, according to [J, Theorem 2 p.
60], dim,{4 ® B[{X]} = dim,(A ® B) + 1; so according to [W, Theorem 3.7

dim,(A ® B) = dim,(A® B[X]) - 1= dim(A® B[X]) - 1=
= max{ht Q[X1,..., X¢| + min(t, d + t(B[X}/Q)) | Q € Spec(B[X])} -1 =
= max{ht g[X] + mih(t + 1,d+ L+ t(B/q)) | g € Spec(B)} — 1=
=D(t+1,d+1,B) =~ 1= D{,d,B) = dim(A® B) .

In conclusion, A ® B is a Jaffard ring.’

Remark 2.8. The example 3.2 of [ABDFK] is an example of a Jaffard, not locally Jaffard
ring B, where B[X] is a locally Jaffard ring. :

Example 2.9. The result of Theorem 2.1 is the best-possible one: the tensor product of
an AF-domain and a Jaffard ring is not necessarily a Jaffard ring.

It is possible to deduce the following example from [ABDFX)]. Let Z1, Zg, 73, Z4
be four indeterminates over k. Let L = k(Z), Z;, Z3, Z,). Let

Vi = k{21, Za, Z3)[Zal(z,) = k{21, Z2, Za) + Ma

¥, is a one-dimensional valuation ring of L, with maximal ideal M; = Z4V1. Let V' be
a one-dimensional valuation overring of k(Z4)[Z2, Za] of the form V' = k(Z4} + M’. Let
V'y = k{Z4)(z,)+ M’ = k-+ M'y, where M’y = Z4k([Z4}(z,)+M'. V'3 is a two- dimensional
valuation ring. Let V = k(Zz,Zs,Z;;)[Z]](ZI) = k(Zy, Z3,Z4) + M, with M = Z;V; let
My = M9 + M and

" Va=Vih+M=k+ M.

V4 is a three-dimensional valuation ring,

‘We now wish to demonstrate that ¥} and V; are incomparable. If not, it wonld
follow from the one-dimensionality of Vi that V3 C V4. Then we would have V; = (Va)ar.
We would have that M is a divided prime ideal of V3. Then Z4Vh = M1 = M (Va)as. Thus
1= Z4Z;1 € MV = M, which is a contradiction. Since Vi and V5 both have quotient
field k(Z1, Z2, Za, Z4), we can now see from [N, Theorem 11.11] that § = V1NV is a
three-dimensional Priifer domain with only two maximal ideals, my and mg, such that
Smy, = V1 and Sm, = Va. Let F' = k(Z,), f: Vi — k(Z1, 23, Z3) be the natural ring
homomorphism and D = f~}(F) = F+ M;. Let g: § — S/my = Vi/my = k(Z1, Z2, Z3)
be the natural ring homomorphism and B = g~!(F). It follows that B=DNS=DnNW,
and dimB = dim$ = 3. Furthermore, according to [ABDFK, Theorem 2.11], it follows
that
dim, B = max{ dim, 5, dim,F + dim,Sm, + t(S/m1: F)} =3 .
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Thus, B is a Jaffard ring. Since B = DN V2 and Vi, V2 are incomparable, it follows
that Ba, = D and By, = Vb, where {n1,n2} = Max (B). Moreover, ht 71 [X1,..., X =
ht 723 B, [X1,. .+, Xs] = ht My[X1,..., X,]. Since V) is a Jaffard ring, by [A, Theorem
1.7] it follows that htD[X,,_",X,]Ml[Xl,...,Xs] = hty, M + inf(s,2). Thus, htny = 1,
ht n1[X;]=2 and ht na {X, Xo]=3; t(B/n) = t(D/My) =1 and t(B/ng) = t(Va/M>) =0.
Let A = k(X). According to Theorem 1.4,

dim{A ® B) = D(t(4),0, B) = max{ht ¢[X1] + min(1,t(B/g)) | ¢ € Spec (B)} -

For ¢ = ny, it is htny{X1] + min(1,t(B/n1)) = 241 = 3; for ¢ = mp, it is ht ng[X1] +
min(1,t(B/ng)) = ht ny = 3 and ht ¢{X;] + min(1,t(B/q}) < 3 for every prime ideal of B
contained in na. Consequently, dim{A ® B) = 3. On the basis of Corollary 2.5,

dim, (A ® B) = max{ht q[X, X2] + min(1, t(B/q}) | g € Spec (B)}

for ¢ = ny, ht n1[X1, Xa] + min(1,t(B/n1)} = 8 + 1 = 4. Therefore dim,(A® B) =4+
dim(A ® B). In conclusion A ® B is not a Jaffard ring.
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