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Abstract

This paper is concerned with the prime spectrum of a tensor product of algebras over a 5eld.
It seeks necessary and su8cient conditions for such a tensor product to have the S-property,
strong S-property, and catenarity. Its main results lead to new examples of stably strong S-rings
and universally catenarian rings. The work begins by investigating the minimal prime ideal
structure. Throughout, several results on polynomial rings are recovered, and numerous examples
are provided to illustrate the scope and sharpness of the results. c© 2002 Elsevier Science B.V.
All rights reserved.

MSC: 13C15; 13B24; 13F05

1. Introduction

All rings and algebras considered in this paper are commutative with identity element
and, unless otherwise speci5ed, are assumed to be non-zero. All ring homomorphisms
are unital. Throughout, k denotes a 5eld. We shall use t.d.(A : k), or t.d.(A) when no
confusion is likely, to denote the transcendence degree of a k-algebra A over k (for
nondomains, t.d.(A) = sup{t:d:(A=p): p∈Spec(A)}), and kA(p) to denote the quotient
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5eld of A=p, for each prime ideal p of A. Also, we use Spec(A), Max(A), and Min(A)
to denote the sets of prime ideals, maximal ideals, and minimal prime ideals, respec-
tively, of a ring A, and ⊂ to denote proper inclusion. Recall that an integral domain A
of 5nite Krull dimension n is a JaEard domain if its valuative dimension, dimv(A), is
also n. A locally JaEard domain is a 5nite-dimensional domain A such that Ap is a Jaf-
fard domain for each p∈Spec(A). Finite-dimensional PrFufer domains and Noetherian
domains are locally JaEard domains. We assume familiarity with the above concepts,
as in [1,15]. Any unreferenced material is standard, as in [12,18,20].
Since the EGA of Grothendieck [13], a few works in the literature have explored

the prime ideal structure of tensor products of k-algebras (cf. [23,24,26,3,4]). These
have mainly been concerned with dimension theory in speci5c contexts, such as tensor
products of 5elds, AF-domains, or pullbacks. At present, the general situation remains
unresolved. By analogy with known studies on polynomial rings, the investigation of
some chain conditions may be expected to cast light on the spectrum of such con-
structions. Thus, we focus here on an in-depth study of central notions such as the
S-property, strong S-property, and catenarity. In particular, our main result, Theorem
4.13, allows us to provide new families of stably strong S-rings and universally catenar-
ian rings. Throughout, several results on polynomial rings are recovered and numerous
examples are provided to illustrate the scope and sharpness of the main results.
In order to treat Noetherian domains and PrFufer domains in a uni5ed manner,

Kaplansky [18] introduced the concepts of S(eidenberg)-domain and strong S-ring.
A domain A is called an S-domain if, for each height-one prime ideal p of A, the
extension pA[X ] to the polynomial ring in one variable also has height 1. A commu-
tative ring A is said to be a strong S-ring if A=p is an S-domain for each p∈Spec(A).
It is noteworthy that while A[X ] is always an S-domain for any domain A [11], A[X ]
need not be a strong S-ring even when A is a strong S-ring. Thus, as in [19], A is said
to be a stably strong S-ring (also called a universally strong S-ring) if the polynomial
ring A[X1; : : : ; Xn] is a strong S-ring for each positive integer n. The study of this class
of rings was initiated by Malik and Mott [19] and further developed in [16,17]. An
example of a strong S-domain which is not a stably strong S-domain was constructed
in [8].
As in [6], we say that a domain A is catenarian if A is locally 5nite-dimensional

(LFD for short) and, for each pair P ⊂ Q of adjacent prime ideals of A, ht(Q) =
1 + ht(P); equivalently, if for any prime ideals P ⊆ Q of A, all the saturated chains
in Spec(A) between P and Q have the same 5nite length. Note that catenarity is not
stable under adjunction of indeterminates. Thus, as in [6], a domain A is said to be
universally catenarian if A[X1; : : : ; Xn] is catenarian for each positive integer n. Cohen–
Macaulay domains [20] or LFD PrFufer domains [7] are universally catenarian; and so
are domains of valuative dimension 1 [6] and LFD domains of global dimension 2 [5].
Finally, recall that any universally catenarian domain is a stably strong S-domain [6,
Theorem 2.4].
In Section 2, we extend the de5nitions of the S-property and catenarity to the context

of arbitrary rings (i.e., not necessarily domains). Section 3 investigates the minimal
prime ideal structure in tensor products of k-algebras. Vamos [25] proved that if K
and L are 5eld extensions of k, then the minimal prime ideals of K ⊗k L are pairwise
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comaximal. We give an example to show that this result fails for arbitrary domains
A and B that are k-algebras, and then show that the minimal prime ideals of A ⊗k

B are pairwise comaximal provided that A and B are integrally closed domains. As
an application, we establish necessary and su8cient conditions for A ⊗k B to be an
S-ring, and therefore extend (in Theorem 3.9) the known result that A[X1; : : : ; Xn] is an
S-domain for any domain A and any integer n¿ 1 [11, Proposition 2.1]. Our purpose
in Section 4 is to study conditions under which tensor product preserves the strong
S-property and catenarity. We begin with a result of independent interest (Proposition
4.1) characterizing the LFD property for A ⊗k B. Also noteworthy is Corollary 4.10
stating that the tensor product of two 5eld extensions of k, at least one of which
is of 5nite transcendence degree, is universally catenarian. Our main theorem (4.13)
asserts that: given an LFD k-algebra A and an extension 5eld K of k such that either
t:d:(A : k)¡∞ or t:d:(K : k)¡∞, let B be a transcendence basis of K over k and L be
the separable algebraic closure of k(B) in K , and assume that [L : k(B)]¡∞; then if
A is a stably strong S-ring (resp., universally catenarian and the minimal prime ideals
of K⊗k A are pairwise comaximal), K⊗k A is a stably strong S-ring (resp., universally
catenarian). This result leads to new families of stably strong S-rings and universally
catenarian rings. Section 5 displays examples illustrating the limits of the results of
earlier sections. The section closes with an example of a discrete rank-one valuation
domain V (hence universally catenarian) such that V ⊗k V is not catenarian, illustrating
the importance of assuming K is a 5eld in Theorem 4.13.

2. Preliminaries

In this section, we extend the notions of S-domain and catenarian domain to the
context of arbitrary rings (i.e., not necessarily domains). We then state some elementary
results and recall certain basic facts about tensor products of k-algebras, providing a
suitable background to the rest of the paper.
Consider the following four properties that a ring A may satisfy:
(P1): A=P is an S-domain for each P ∈Min(A).
(P2): ht(P) = 1⇒ ht(P[X ]) = 1, for each P ∈Spec(A).
(Q1): A is LFD and ht(Q) = 1 + ht(P) for each pair P ⊂ Q of adjacent prime ideals

of A.
(Q2): A=P is a catenarian domain for each P ∈Min(A).
It is clear that a domain A satis5es (P1) (resp., (P2)) if and only if A is an S-domain;

and that a domain A satis5es (Q1) (resp., (Q2)) if and only if A is catenarian. Some
of these observations carry over to arbitrary rings. Using the basic facts from [18, p.
25], we verify easily that (P1) ⇒ (P2); and that (Q1) ⇒ (Q2). However, the inverse
implications do not hold in general. The next example illustrates this fact.

Example 2.1. There exists a (locally) 5nite-dimensional ring A which satis5es both
(P2) and (Q2) but neither (P1) nor (Q1).
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Let V := k(X )[Y ](Y ) = k(X ) + m, where m :=YV: Let R = k + m. There exist two
saturated chains in Spec(R[Z]) of the form:

Indeed, let I=PQ and A=(R[Z]=I)M=I . Then A is a two-dimensional quasilocal ring,
and hence trivially satis5es (Q2). Further, part of Spec(A) displays as follows:

where M ′=(M=I)M=I , Q′=(Q=I)M=I , m′=(m[Z]=I)M=I , and P′=(P=I)M=I . It is clear
that m′ is the unique prime ideal of A of height 1. By [8, Example 5], ht(m[Z])=
ht(m[Z; T ])=2, so that ht(m′[T ])=1. Thus A satis5es (P2). Now, A=Q′ ∼= (R[Z]=Q)M=Q

∼=
R is not an S-domain, since ht(m) = 1 and ht(m[Z]) = 2, whence A does not satisfy
(P1). Moreover, A fails to satisfy (Q1), since Q′ ⊂ M ′ is a saturated chain in Spec(A)
such that ht(M ′) = 2 
=1 + ht(Q′) = 1.

By avoiding a feature of Example 2.1, we shall 5nd a natural context in which
(P2) implies (P1), and (Q2) implies (Q1). Let us say that a ring A satis5es MPC
(for Minimal Primes Comaximality) if the minimal prime ideals in A are pairwise
comaximal; i.e., if each maximal ideal of A contains only one minimal prime ideal.
In the literature, MPC has also been termed “locally irreducible,” presumably because
any domain evidently satis5es MPC.

Remark 2.2. Let A be a ring satisfying MPC. Then:
(a) A satis5es (P1) (resp.; Q1) if and only if A satis5es (P2) (resp.; Q2).
(b) S−1A satis5es MPC for any multiplicative subset S of A.
(c) A[X1; : : : ; Xn] satis5es MPC for all integers n¿ 1.

Proof. The proof of (a) may be left to the reader. Now; (b) follows from basic
facts about localization; while (c) is immediate since the minimal prime ideals of
A[X1; : : : ; Xn] are of the form p[X1; : : : ; Xn]; where p∈Min(A).
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We now extend the domain-theoretic de5nitions of the S-property and catenarity to
the MPC context. A ring A is called an S-ring if it satis5es MPC and (P1); equivalently,
MPC and (P2). A ring A is said to be catenarian if A satis5es MPC and (Q1); equiv-
alently, MPC and (Q2). It is useful to note that if A is an S-ring (resp., a catenarian
ring), then so is AS (=S−1A), for each multiplicative subset S of A.
Next, we extend a domain-theoretic result of Malik and Mott [19, Theorem 4.6].

Proposition 2.3. Let A ⊆ T be an integral ring extension. If T is a strong S-ring
(resp.; stably strong S-ring); then so is A.

Proof. Let p∈Spec(A). Since T is an integral extension of A; the Lying-over theorem
provides P ∈Spec(T ) such that P ∩A=p. Hence T=P is an integral extension of A=p;
and T=P is a strong S-domain by hypothesis. Consequently; by [19; Theorem 4.6]; A=p
is a (strong) S-domain. The “stably strong S-ring” assertion follows from the “strong
S-ring” assertion since A[X1; : : : ; Xn] ⊆ T [X1; : : : ; Xn] inherits integrality from A ⊆ T .

Proposition 2.5 generalizes the following domain-theoretic result.

Proposition 2.4 (Bouvier et al. [6, Corollary 6.3]). Let A be a one-dimensional do-
main. Then the following conditions are equivalent:
(i) A is universally catenarian;
(ii) A[X ] is catenarian;
(iii) A is a stably strong S-domain;
(iv) A is a strong S-domain;
(v) A is an S-domain.

Proposition 2.5. Let A be a one-dimensional ring. Then
(a) The following three conditions are equivalent:

(i) A is a stably strong S-ring;
(ii) A is a strong S-ring;
(iii) A satis:es (P2).

(b) Suppose; in addition; that A satis:es MPC. Then (i)–(iii) are equivalent to each
of (iv)–(vi):
(iv) A is universally catenarian;
(v) A[X ] is catenarian;
(vi) A is an S-ring.

Proof. (a) It is trivial that (i)⇒ (ii) (even without one-dimensionality). Also; any 5eld
is an S-domain. As dim(A)=1; (ii) is therefore equivalent to the requirement that A=Q
is an S-domain for each Q∈Min(A). This requirement is obviously equivalent to (iii).
Thus; (ii)⇔ (iii).
(ii)⇒ (i) Clearly, it su8ces to prove that A=p is a stably strong S-domain for each

p∈Min(A). By Proposition 2.4, this assertion holds, since for any p∈Min(A), A=p
is either a 5eld or a one-dimensional strong S-domain.
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(b) (iii)⇔ (P1)⇔ (vi), since A satis5es MPC.
(v)⇒ (vi) Let p∈Min(A). Then (A=p)[X ] ∼= A[X ]=p[X ] is a catenarian domain,

since p[X ]∈Min(A[X ]). So, by Proposition 2.4, A=p is an S-domain. Hence (in view
of the MPC condition), A is an S-ring.
(vi)⇒ (iv) It su8ces to prove that A=p is universally catenarian, for each minimal

prime ideal p of A. This holds by Proposition 2.4, since for any p∈Min(A), A=p is
either a 5eld or a one-dimensional S-domain. The proof is complete.

For the convenience of the reader, we close this section by discussing some basic
facts connected with the tensor product of k-algebras. These will be used frequently
in the sequel without explicit mention.
Let A and B be two k-algebras. If A′ is an integral extension of A, then A′ ⊗k B is

an integral extension of A⊗k B. If S1 and S2 are multiplicative subsets of A and B, re-
spectively, then S−1

1 A⊗k S−1
2 B ∼= S−1(A⊗k B), where S := {s1⊗s2: s1 ∈ S1 and s2 ∈ S2}.

Recall also that if A is an integral domain, then ht(p) + t:d:(A=p)6 t:d:(A), for each
p∈Spec(A) (cf. [21, p. 37] and [28, p. 10]). It follows that dim(A)6 t:d:(A) for any
ring A. Moreover, we assume familiarity with the natural isomorphisms for tensor prod-
ucts. In particular, we identify A and B with their canonical images in A ⊗k B. Also,
A ⊗k B is a free (hence faithfully Qat) extension of A and B. Here we recall that if
R ,→ S is a Qat ring extension and P ∈Min(S), then P∩R∈Min(R) by going-down. Fi-
nally, we refer the reader to the useful result of Wadsworth [26, Proposition 2.3] which
yields a classi5cation of the prime ideals of A⊗k B according to their contractions to
A and B.

3. Minimal prime ideal structure and S-property

This section studies the transfer of the MPC property and S-property to tensor prod-
ucts of k-algebras. As a prelude to this, we 5rst investigate the minimal prime ideal
structure of such constructions. In [25, Corollary 4], Vamos proved that if K and L
are 5eld extensions of k, then K ⊗k L satis5es MPC. We 5rst illustrate by an example
the failure of this result for arbitrary k-algebras A and B, and then show that A ⊗k B
satis5es MPC provided A and B are integrally closed domains. As an application, we
establish necessary and su8cient conditions for A⊗k B to be an S-ring, and therefore
extend the known result that A[X1; : : : ; Xn] is an S-domain, for any domain A and any
integer n¿ 1 [11, Proposition 2.1]. Throughout Sections 3 and 4, LO (resp., GD) refers
to the condition “Lying-over” (resp., “Going-down”), as in [18, p. 28].
We begin by providing a necessary condition for A⊗k B to satisfy MPC.

Proposition 3.1. (a) If C ⊆ D is a ring extension satisfying LO and GD; and D
satis:es MPC; then C satis:es MPC.
(b) If A and B are k-algebras such that A⊗k B satis:es MPC, then A and B each

satisfy MPC.

Proof. (a) Let p; q∈Min(C) and m∈Spec(C) such that p+q ⊆ m: Since C ⊆ D satis-
5es LO and GD; there exist P;Q;M ∈Spec(D) with P ∩C=p; Q∩C = q; M ∩C =m;
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and P + Q ⊆ M: Choose P0; Q0 ∈Min(D) such that P0 ⊆ P and Q0 ⊆ Q. Therefore
P0+Q0 ⊆ M; with P0∩A=p and Q0∩A=q. Since D satis5es MPC; we have P0=Q0;
consequently p= q; as desired.
(b) It su8ces to treat A. Now, A⊗k B is A-Qat, and so A → A⊗k B satis5es GD. It

also satis5es LO by [26, Proposition 2.3]. Apply (a), to complete the proof.

The following example shows that Vamos’ result (mentioned above) does not extend
to arbitrary k-algebras. It also provides a counterexample to the converse of Proposition
3.1(b).

Example 3.2. There exists a separable algebraic 5eld extension K of 5nite degree over
k and a k-algebra A satisfying MPC such that K ⊗k A fails to satisfy MPC.

Let k =R and K =C be the 5elds of real numbers and complex numbers, re-
spectively. Let V :=C[X ](X ) =C + XC[X ](X ) and A :=R + XC[X ](X ). Clearly, A is
a one-dimensional local domain with quotient 5eld L = C(X ) and maximal ideal
p = XC[X ](X ), such that A=p = R. We wish to show that K ⊗R A does not satisfy
MPC. Indeed, let f(Z) = Z2 + 1 be the minimal polynomial of i over R. We have
K ⊗R A ∼= R[Z]=(f(Z)) ⊗R A ∼= A[Z]=(f(Z)). Therefore, the minimal prime ideals of
K⊗RA are SI=I=(f) and SJ=J=(f), where I=(Z−i)L[Z]∩A[Z] and J=(Z+i)L[Z]∩A[Z].
Since K ⊗R A is an integral extension of A, then so are A[Z]=I ∼= (A[z]=(f))= SI and
A[Z]=J ∼= (A[z]=(f))= SY , whence dim(A[Z]=I) = dim(A[Z]=J ) = dim(A) = 1. It follows
that I and J are not maximal ideals in A[Z]. Then, there exist PI and PJ in Spec(A[Z])
such that I ⊂ PI and J ⊂ PJ . Clearly, PI ∩ A = PJ ∩ A = p. Further, since f∈ I ∩ J
and f 
∈ p[Z], then PI and PJ are both uppers to p. As A=p = R and f is an irre-
ducible monic polynomial over R, it follows that PI = PJ = (p;f) (cf. [18, Theorem
28]). Therefore I + J ⊆ P := (p;f), and hence SI + SJ ⊆ SP :=P=(f(Z)). Consequently,
A[z]=(f) ∼= K ⊗R A does not satisfy, MPC, establishing the claim.
We next investigate various contexts for the tensor product to inherit the MPC

property. The following result treats the case where the ground 5eld k is algebraically
closed.

Theorem 3.3. Let k be an algebraically closed :eld. Let A and B be k-algebras. Then
A⊗k B satis:es MPC if and only if A and B each satisfy MPC.

Proof. Proposition 3.1(b) handles the “only if” assertion. Next; assume that A and B
each satisfy MPC. Let P0; Q0 ∈Min(A⊗k B) and P ∈Spec(A⊗k B) such that P0 +Q0 ⊆
P. Let p1 :=P0∩A; q1 :=P0∩B and p2 :=Q0∩A; q2 :=Q0∩B. We have p1; p2 ∈Min(A)
and q1; q2 ∈Min(B); since A ⊆ A⊗k B and B ⊆ A⊗k B each satisfy GD. Let p :=P∩A
and q :=P ∩ B. Then p1 + p2 ⊆ p and q1 + q2 ⊆ q. As A and B each satisfy MPC;
p1 = p2 =:p0 and q1 = q2 =: q0. Since k is algebraically closed; it follows from [27;
Corollary 1; Chapter III; p. 198] and the lattice-isomorphism in [26; Proposition 2.3]
that there is a unique prime Q of A⊗k B that is minimal with respect to the properties
Q ∩ A= p0; Q ∩ B= q0: Hence; P0 = Q = Q0; and the proof is complete.

The next theorem generalizes the above-mentioned result of Vamos.
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Theorem 3.4. If A and B are integrally closed domains that are k-algebras; then
A⊗k B satis:es MPC.

Proof. Let K (resp.; L) denote the quotient 5eld of A (resp.; B). Let Ks (resp.; Ls)
denote the separable algebraic closure of k in K (resp.; in L). Since A is integrally
closed and k ⊆ A ⊆ K; the algebraic closure of k in K is contained in A. In particular;
Ks ⊆ A; and; similarly; Ls ⊆ B. By [25; Theorem 3]; Min(K ⊗k L) and Spec(Ks ⊗k Ls)
are canonically homeomorphic; with the prime ideals of Ks⊗k Ls being the contractions
of the minimal prime ideals of K⊗k L. Observe that K⊗k L is the localization of A⊗k B
at {a⊗b: a∈A\{0}; b∈B \{0}}. If follows that there is a one-to-one correspondence
between Min(K ⊗k L) and Min(A⊗k B). Since Ks⊗k Ls ⊆ A⊗k B ⊆ K ⊗k L; we obtain;
via contraction; a bijection between Min(A ⊗k B) and Spec(Ks ⊗k Ls). Now; consider
P0; Q0 ∈ Min(A⊗k B) and P ∈Spec(A⊗k B) such that P0+Q0 ⊆ P. Taking contractions
to Ks⊗k Ls; we obtain Pc0 =Pc and Qc0 =Pc; since dim(Ks⊗k Ls)=0 [26]. In particular;
Pc0 = Qc0. By the above bijection; P0 = Q0; as desired.

The proof of Theorem 3.4 actually gives the following result. Let A and B be domains
that are k-algebras. Let Ks (resp., Ls) be the separable algebraic closure of k in the
quotient 5eld K (resp., L) of A (resp., B). If Ks ⊆ A and Ls ⊆ B, then A⊗k B satis5es
MPC.
Moving beyond the contexts of Theorems 3.3 and 3.4, we next show that A ⊗k B

can satisfy MPC when k is not algebraically closed and when A; B are not integrally
closed domains.

Example 3.5. Let k :=Q be the 5led of rational numbers and let A :=B :=Q(i)[X 2; X 3].
The quotient 5eld of A (resp.; B) is K =L=Q(i)(X ). We can easily check that A and
B are not integrally closed (in fact; they are not seminormal); and Ks =Ls =Q(i); since
Q(i)[X 2; X 3] ⊆ Q(i)[X ] which is integrally closed. Then Ks ⊆ A and Ls ⊆ B. By the
above remark; A ⊗Q B satis5es MPC; although k =Q is not algebraically closed and
A; B are not integrally closed.

In Example 3.2, we exhibited a separable algebraic extension 5eld K of k and a
k-algebra A satisfying MPC such that K ⊗k A fails to satisfy MPC. The following
result studies the case where K is purely inseparable over k.

Proposition 3.6. Let A be a k-algebra and K a purely inseparable :eld extension of
k. Then K ⊗k A satis:es MPC if and only if A satis:es MPC.

Proof. Proposition 3.1(b) handles the “only if” assertion. Conversely; assume that A
satis5es MPC. Let P0; Q0 be minimal prime ideals of K ⊗k A and let P ∈Spec(K ⊗k A)
such that P0+Q0 ⊆ P. Put p0 :=P0∩A; q0 :=Q0∩A; and p :=P∩A. Hence p0+q0 ⊆ p.
Of course; p0 and q0 are in Min(A) since Qatness ensures that A ⊆ K⊗k A satis5es GD.
Thus; since A satis5es MPC; we obtain p0 = q0. However; Spec(K ⊗k A)→ Spec(A)
is an injection; since “radiciel” is a universal property [13]. Consequently; P0 =Q0; as
desired.
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Theorem 3.9 is an extension to tensor products of k-algebras of the result [11, Propo-
sition 2.1] that A[X1; : : : ; Xn] is an S-domain, for any domain A and any integer n¿ 1.
This latter result was generalized to in5nite sets of indeterminates in [10, Corollary
2.13].
First we establish the following preparatory lemmas.

Lemma 3.7. If A is a ring that satis:es MPC; then A[X1; : : : ; Xn] is an S-ring; for
every integer n¿ 1.

Proof. By Remark 2.2(c); A[X1; : : : ; Xn] satis5es MPC. Thus; it su8ces to show the
result when n=1. Let Q∈Min(A[X ]). Then there exists q∈Min(A) such that Q=q[X ].
Hence; A[X ]=Q ∼= (A=q)[X ] is an S-domain; by the above remark; since A=q is an
integral domain. Thus; A[X ] is an S-ring.

Lemma 3.8. Let A be a k-algebra and let K be a :eld extension of k such that
K ⊗k A satis:es MPC. Then K ⊗k A is an S-ring if and only if either A is an S-ring
or t:d:(K : k)¿ 1.

Proof. Suppose that t := t:d:(K : k) = 0; i.e.; that K is algebraic over k. Then K ⊗k A
is an integral extension of A and thus satis5es LO. Furthermore A ⊆ K ⊗k A satis5es
GD and so it follows easily that A inherits MPC from K ⊗k A. It remains to show that
if P ∈Min(K ⊗k A) and p=P∩A; then (K ⊗k A)=P is an S-domain if and only if A=p
is an S-domain. The “only if” statement follows from the proof of [19; Theorem 4.6];
while the treatment of the “if statement is similar to that of proof of [19; Theorem
4.9].
In the remaining case, t := t:d:(K : k)¿ 1. Let B be a transcendence basis of K

over k. As K ⊗k A ∼= K ⊗k (B) (k(B) ⊗k A), we see that k(B) ⊗k A satis5es MPC,
by Proposition 3.1(b). Also, if X ∈B, B1 :=B \ {X } and S := k(B1)[X ] \ {0}, then
k(B) ⊗k A = k(B1)(X ) ⊗k A ∼= S−1((k(B1) ⊗k A)[X ]). As k(B1) ⊗k A satis5es MPC,
Lemma 3.7 yields that (k(B1)⊗k A)[X ] is an S-ring. Hence, so is its ring of fractions
k(B)⊗k A. Therefore, by the 5rst case, so is K⊗k(B) (k(B)⊗k A) ∼= K⊗k A, to complete
the proof.

Theorem 3.9. Let A and B be k-algebras such that A⊗k B satis:es MPC. Then A⊗k B
is an S-ring if and only if at least one of the following statements is satis:ed:
(1) A and B are S-rings;
(2) A is an S-ring and t:d:(A=p : k)¿ 1 for each p∈Min(A);
(3) B is an S-ring and t:d:(B=q : k)¿ 1 for each q∈Min(B);
(4) t.d.(A=p : k)¿ 1 and t:d:(B=q : k)¿ 1 for each p∈Min(A) and q∈Min(B).

Proof. We claim that A⊗k B is an S-ring if and only if kA(p)⊗k B and A⊗k kB(q) are
S-rings for each p∈Min(A) and q∈Min(B). Indeed; assume that A⊗k B is an S-ring.
Clearly; by [26; Proposition 2.3]; for each minimal prime ideal p of A; (A=p)⊗k B ∼=
(A ⊗k B)=(p ⊗k B) satis5es MPC; and thus so does its ring of fractions kA(p) ⊗k B.
Similarly; so does A⊗k kB(q); for each minimal prime ideal q of B. In view of Remark
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2.2(a); we may focus on (P2). Let p∈Min(A) and P ∈Spec(A⊗k B) such that P∩A=p
and ht(P=(p ⊗k B)) = 1. Since p∈Min(A); we have ht(P) = ht(P=(p ⊗k B)) = 1. By
the hypothesis on A⊗k B; 1 = ht(P[X ]) = ht((P=(p ⊗k B))[X ]). Hence; kA(p)⊗k B is
an S-ring for each p∈Min(A). Similarly; so is A⊗k kB(q) for each q∈Min(B).
Conversely, suppose that kA(p)⊗k B and A⊗k kB(q) are S-rings for each p∈Min(A)

and q∈Min(B). Let P ∈Spec(A⊗k B) such that ht(P) = 1: By [26, Corollary 2.5], we
have that either p :=P∩A is a minimal prime ideal of A or q :=P∩B is a minimal prime
ideal of B. Without loss of generality, p∈Min(A). Then ht(P=(p⊗k B)) = ht(P) = 1.
Since kA(p)⊗kB is an S-ring, we have 1=ht((P=(p⊗kB))[X ])=ht(P[X ]). Consequently,
A ⊗k B is an S-ring, and the claim has been proved. The theorem now follows from
Lemma 3.8.

It is clear from the above proof that the statement of Theorem 3.9 remains true
without the MPC hypothesis if we substitute (P2) for the S-ring property.

Corollary 3.10. Let k be an algebraically closed :eld. Let A and B be domains that
are k-algebras. Then A⊗k B is an S-domain if and only if at least one of the following
statements is satis:ed.
(1) A and B are S-domains;
(2) A is an S-domain and t:d:(A : k)¿ 1;
(3) B is an S-domain and t:d:(B : k)¿ 1;
(4) t.d.(A : k)¿ 1 and t:d:(B : k)¿ 1.

Proof. Apply Theorem 3.9; bearing in mind that A⊗k B is an integral domain (hence
satis5es MPC) since k is algebraically closed [27; Corollary 1; Chapter III; p. 198].

Corollary 3.11. Let A and B be integrally closed domains that are k-algebras. Then
A⊗k B is an S-ring if and only if at least one of the following statements is satis:ed:
(1) A and B are S-domains;
(2) A is an S-domain and t:d:(A : k)¿ 1;
(3) B is an S-domain and t:d:(B : k)¿ 1;
(4) t.d.(A : k)¿ 1 and t.d.(B : k)¿ 1.

Proof. Combine Theorems 3.9 and 3.4.

4. Strong S-property and catenarity

Our purpose in this section is to seek conditions for the tensor product of two
k-algebras to inherit the (stably) strong S-property and (universal) catenarity. The main
theorem of this section generates new families of stably strong S-rings and universally
catenarian rings. Our interest is turned essentially to studying A ⊗k B in case at least
one of A; B is a 5eld extension of k. Beyond this context, the study of these properties
becomes more intricate, as one may expect. In fact, a glance ahead to Example 5.5
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reveals a non-catenarian ring of the form A ⊗k B in which A; B are each universally
catenarian domains (in fact DVRs).
To determine when a tensor product of k-algebras is catenarian, we 5rst need to

know when it is LFD. That is handled by the 5rst result of this section.

Proposition 4.1. Let A and B be k-algebras. Then:
(a) If A ⊗k B is LFD; then so are A and B; and either t.d.(A=p : k)¡∞ for each

prime ideal p of A or t.d.(B=q : k)¡∞ for each prime ideal q of B.
(b) If both A and B are LFD and either t.d.(A : k)¡∞ or t:d:(B : k)¡∞; then

A⊗k B is LFD. The converse holds provided A and B are domains.

The proof of this proposition requires the following preparatory lemma.

Lemma 4.2. Let K and L be :eld extensions of k. Then K ⊗k L is LFD if and only
if either t:d:(K : k)¡∞ or t:d:(L : k)¡∞.

Proof. (⇐) Straightforward; since dim(K ⊗k L) = min(t:d:(K : k); t:d:(L : k)) (cf. [23;
Theorem 3.1]).
(⇒) Let B (resp., B′) be a transcendence basis of K (resp., L) over k. As K ⊗k

L ∼= K ⊗k(B) (k(B) ⊗k k(B′)) ⊗k(B′) L; then k(B) ⊗k k(B′) ⊂→ K ⊗k L is an integral
extension that satis5es GD. Therefore, K ⊗k L is LFD if and only if k(B)⊗k k(B′) is
LFD. Suppose that t:d:(K : k) = t:d:(L : k) =∞. Let T := k(x1; x2; : : :) ⊗k k(y1; y2; : : :),
where the xi ∈B and the yi ∈B′: Since T ⊆ k(B) ⊗k(x1 ;x2 ;:::) T and k(B) ⊗k(x1 ;x2 ;:::) T ⊆
(k(B)⊗k(x1 ;x2 ;:::) T )⊗k(y1 ;y2 ;:::) k(B

′) ∼= k(B)⊗k k(B′) are ring extensions that satisfy GD
and LO, then so does T ⊆ k(B)⊗k k(B′). Thus T is not LFD⇒ k(B)⊗k k(B′) is not
LFD ⇒ K ⊗k L is not LFD.
Let Kn = k(x1; : : : ; xn) and Sn = k[y1; : : : ; yn] \ {0}, for each n¿ 1. Consider the

following ring homomorphisms:

Kn[y1; : : : ; yn] ⊂ in→ k(x1; x2; : : :)[y1; y2; : : : ]
’→ k(x1; x2; : : :);

where ’(yi) = xi for i¿ 1. Let M = Ker(’) and Mn =M ∩ Kn[y1; : : : ; yn] = Ker(’n),
where ’n :=’ ◦ in, for all n¿ 1. Since x1; : : : ; xn are algebraically independent over k,
Mn ∩ Sn = ∅, for all n¿ 1. On the other hand, since Kn[y1; : : : ; yn] is an AF-domain
(we recall early in Section 5 the de5nition of an AF-domain), then, for every n¿ 1,

ht(Mn) + t:d:
(
Kn[y1; : : : ; yn]

Mn
: Kn

)
= t:d:(Kn[y1; : : : ; yn]: Kn) = n:

Hence ht(Mn) = n, since Kn[y1 ;:::;yn]
Mn

∼= Kn, for all n¿ 1. Therefore M ∩ S = ∅, where
S :=

⋃
n Sn = k[y1; y2; : : : ] \ {0}. We wish to show that ht(M) =∞. Indeed, observe

that, for any integer n¿ 1,

Mnk(x1; : : :)[y1; : : : ] =Mn(k(x1; : : :)⊗Kn Kn[y1; : : : ; yn]⊗k k[yn+1; : : : ])

= k(x1; : : :)⊗Kn Mn ⊗k k[yn+1; : : : ]; and
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k(x1; : : :)[y1; : : : ]
Mnk(x1; : : :)[y1; : : : ]

∼= k(x1; : : :)⊗Kn Kn[y1; : : : ; yn]⊗kk[yn+1; : : : ]
k(x1; : : :)⊗Kn Mn ⊗k k[yn+1; : : : ]

∼= k(x1; : : :)⊗Kn

Kn[y1; : : : ; yn]
Mn

⊗k k[yn+1; : : : ] (cf :[26])

∼= k(x1; : : :)⊗Kn Kn ⊗k k[yn+1; : : : ]

∼= k(x1; : : :)[yn+1; : : : ]; an integral domain:

Thus Mnk(x1; : : :)[y1; : : : ] is a prime ideal in k(x1; : : :)[y1; : : : ], for all n¿ 1. Since
Kn[y1; : : : ; yn] → k(x1; : : :)[y1; : : : ] is a faithfully Qat homomorphism (and hence satis-
5es GD), we obtain Mnk(x1; : : :)[y1; : : : ]∩Kn[y1; : : : ; yn] =Mn, and thus ht(Mnk(x1; : : :)
[y1; : : : ])¿ ht(Mn)=n. By direct limits (cf. [10]), it follows that ht(M)=∞, as desired.
Consequently, S−1M is a prime ideal of T=k(x1; : : :)⊗k k(y1; : : :) with ht(S−1M)=∞.
Therefore T is not LFD, completing the proof.

Proof of Proposition 4.1. (a) Assume that A ⊗k B is LFD. Let p∈Spec(A) and
q∈Spec(B). As the extensions A ⊆ A ⊗k B and B ⊆ A ⊗k B satisfy LO; there ex-
ist prime ideals P and Q of A ⊗k B such that P ∩ A = p and Q ∩ B = q. By [26;
Corollary 2.5]; ht(p)6 ht(P)¡∞ and ht(q)6 ht(Q)¡∞. It follows that A and B
are LFD. Now; suppose that there exists a prime ideal q of B such that t:d:(B=q : k)=∞.
Let p be any prime ideal of A. Then A=p⊗k B=q ∼= A⊗k B=(p⊗k B+ A⊗k q) is LFD.
Hence kA(p)⊗k kB(q) is LFD; since it is a ring of fractions of A=p⊗k B=q. Therefore;
by Lemma 4.2; t:d:(kA(p) : k) = t:d:(A=p : k)¡∞.
(b) Suppose that t:d:(A : k)¡∞ and both A and B are LFD. Consider a chain

( := {P0 ⊂ P1 ⊂ · · · ⊂ P} of prime ideals of A⊗k B and let l be its length. We claim
that l is 5nite, with an upper bound depending on P. Let p0 ⊂ · · · ⊂ pr = p :=P ∩ A
and q0 ⊂ · · · ⊂ qs = q :=P ∩ B be the chains of intersections of ( over A and B,
respectively. We can partition ( into subchains (ij the prime ideals of which contract
to pi in Spec(A) and qj in Spec(B). Thus each (ij of length lij6 dim(kA(pi)⊗k kB(qj)),
by [26, Proposition 2.3]. Therefore, we have

l 6
r; s∑

i=0; j=0

(dim(kA(pi)⊗k kB(qj)) + 1)

6
r; s∑

i=0; j=0

(
min

(
t:d:

(
A
pi
: k

)
; t:d:

(
B
qj
:k
))

+ 1
)

[23;Theorem 3:1]

6
r; s∑

i=0; j=0

(
t:d:

(
A
pi
: k

)
+ 1

)

6 (t:d:(A : k) + 1)(r + 1)(s+ 1)

6 (t:d:(A : k) + 1)(ht(p) + 1)(ht(q) + 1)¡∞; as desired:

Now, if A and B are domains, then the converse holds, by (a).
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Given an integer n¿ 1, Malik and Mott proved that A[X1; : : : ; Xn] is a strong S-ring
if and only if so is Ap[X1; : : : ; Xn] for each prime ideal p of A [19, Theorem 3.2]. We
next extend this result to tensor products of k-algebras.

Proposition 4.3. Let A1 and A2 be k-algebras. Then the following statements are
equivalent:
(1) A1 ⊗k A2 is a strong S-ring (resp.; catenarian);
(2) S−1

1 A1 ⊗k S−1
2 A2 is a strong S-ring (resp.; catenarian) for each multiplicative

subset Si of Ai; for i = 1; 2;
(3) (A1)p1 ⊗k A2 is a strong S-ring (resp.; catenarian) for each p1 ∈Spec(A1);
(4) (A1)m1 ⊗k A2 is a strong S-ring (resp.; catenarian) for each m1 ∈Max(A1);
(5) A1 ⊗k (A2)p2 is a strong S-ring (resp.; catenarian) for each p2 ∈Spec(A2);
(6) A1 ⊗k (A2)m2 is a strong S-ring (resp.; catenarian) for each m2 ∈Max(A2);
(7) (A1)m1 ⊗k (A2)m2 is a strong S-ring (resp.; catenarian) for each mi ∈Max(Ai); for

i = 1; 2.

Proof. The class of strong S- (resp.; catenarian) rings is stable under formation of
rings of fractions. Thus (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (7); and (2) ⇒ (5) ⇒ (6) ⇒ (7).
Therefore; it su8ces to prove that (7) ⇒ (1). Note that if (A1)m1 ⊗k (A2)m2 satis5es
MPC for each maximal ideal mi of Ai; for i=1; 2; then A1⊗k A2 satis5es MPC. Indeed;
let P1 and P2 be two minimal prime ideals contained in a common prime ideal P
of A1 ⊗k A2. Choose a maximal ideal mi of Ai such that P ∩ Ai ⊆ mi; for i = 1; 2.
Then Pi((A1)m1 ⊗k (A2)m2 ) ⊆ P((A1)m1 ⊗k (A2)m2 ); for i = 1; 2: Hence; by hypothesis;
P1((A1)m1⊗k (A2)m2 )=P2((A1)m1⊗k (A2)m2 ). Taking contractions to A1⊗k A2; we obtain
P1=P2; since (A1)m1⊗k (A2)m2 is a ring of fractions of A1⊗k A2. Then A1⊗k A2 satis5es
MPC. Also; if (A1)m1 ⊗k (A2)m2 is LFD for each maximal ideal mi of Ai; for i = 1; 2;
then it is clear that A1 ⊗k A2 is LFD.
Now suppose that (7) holds. Let P ⊂ Q be a saturated chain in Spec(A1 ⊗k

A2); pi :=P∩Ai and qi :=Q∩Ai, for i=1; 2. Choose mi ∈Max(Ai) such that pi ⊆ qi ⊆
mi, for i = 1; 2. Then P((A1)m1 ⊗k (A2)m2 ) ⊂ Q((A1)m1 ⊗k (A2)m2 ) is a saturated chain
in Spec((A1)m1 ⊗k (A2)m2 ). Since (A1)m1 ⊗k (A2)m2 is a strong S-ring (resp., catenar-
ian), we have P((A1)m1⊗k (A2)m2 )[X ] ⊂ Q((A1)m1⊗k (A2)m2 )[X ] is a saturated chain in
Spec((A1)m1⊗k (A2)m2 [X ]) (resp., ht(Q((A1)m1⊗k (A2)m2 )) =1+ht(P((A1)m1⊗k (A2)m2 ))).
Therefore, htQ[X ]=P[X ]=1 (resp., ht(Q)=1+ht(P)). Then (1) holds, completing the
proof.

It will follow from Theorem 4.9 (proved below) that if K and L are 5eld exten-
sions of k with t:d:(K)¡∞, then K ⊗k L is a strong S-ring and catenarian. Applying
Proposition 4.3, it follows that if A and B are von Neumann regular k-algebras with
t:d:(A)¡∞, then A⊗k B is a strong S-ring and catenarian.

Proposition 4.4. Let A be a k-algebra and K an algebraic :eld extension of k. If K⊗k

A is a strong S-ring (resp.; catenarian); then A is a strong S-ring (resp.; catenarian).
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Proof. The strong S-property is straightforward from Proposition 2.3. Assume that
K ⊗k A is catenarian. Then K ⊗k A satis5es MPC; and thus; by Proposition 3.1(b); A
satis5es MPC. Let p ⊂ q be a saturated chain of prime ideals of A. Since K⊗k A is an
integral extension of A; there exists a saturated chain of prime ideals P ⊂ Q of K ⊗k A
such that P∩A=p and Q∩A=q. Hence ht(Q)=1+ht(P). As A ⊂→ K ⊗k A satis5es
also GD; we obtain ht(q) = ht(Q) = 1 + ht(P) = 1 + ht(p). Since; by Proposition 4.1;
A is LFD; we conclude that A is catenarian.

Note that Proposition 4.4 fails, in general, when the extension 5eld K is no longer
algebraic over k, as it is shown by Examples 5.2 and 5.3.
Next, we investigate su8cient conditions, on a k-algebra A and a 5eld extension K

of k, for K ⊗k A to inherit the (stably) strong S-property and (universal) catenarity.

Proposition 4.5. Let A be a k-algebra and K a purely inseparable :eld extension of
k. Then K ⊗k A is a strong S-ring (resp.; stably strong S-ring; catenarian; universally
catenarian) if and only if so is A.

Proof. k ,→ K is radiciel; hence a universal homeomorphism. In particular; both A ,→
K⊗k A and (for each n¿ 1) A[X1; : : : ; Xn] ,→ K⊗k A[X1; : : : ; Xn] ∼= (K⊗k A)[X1; : : : ; Xn]
induce order-isomorphisms on Specs. Moreover; by Proposition 3.6; K ⊗k A satis5es
MPC if and only if A satis5es MPC. Hence; the “catenarian” and “universally catenar-
ian” assertions now follow immediately. Also; by applying Spec to the commutative
diagram

A ,→ K ⊗k A
↓ ↓

A[X ] ,→ K ⊗k A[X ]

we obtain the “strong S-ring” assertion and; hence; the “stably strong S-ring” assertion.

Proposition 4.6. Let A be a domain that is a k-algebra and K an algebraic :eld
extension of k. Assume that A contains a separable algebraic closure of k. Then K⊗k

A is a strong S-ring (resp.; stably strong S-ring; catenarian; universally catenarian)
if and only if so is A.

Proof. Proposition 4.4 handles the “only if” assertion. Conversely; let Sk be the sep-
arable algebraic closure of k contained in A. First; we claim that the contractions of
any adjacent prime ideals of K ⊗k A[X1; : : : ; Xn] are adjacent in A[X1; : : : ; Xn]. Indeed;
let n be a positive integer and P ⊂ Q be a pair of adjacent prime ideals of K ⊗k

A[X1; : : : ; Xn]. Put P′ :=P ∩ A[X1; : : : ; Xn] and Q′ :=Q ∩ A[X1; : : : ; Xn]. Since also Sk ⊆
A[X1; : : : ; Xn]=P′; then K ⊗k (A[X1; : : : ; Xn]=P′) satis5es MPC (see the remark following
Theorem 3.4). Furthermore; since K is algebraic over k; P is the unique prime ideal
of K⊗k A[X1; : : : ; Xn] contained in Q and contracting to P′ by [26; Proposition 2.3] and
[23; Theorem 3.1]. Hence; 1=ht(Q=P)=ht(Q=(K⊗k P′))=ht(Q′=P′); proving the claim.
Now the “strong S-ring” and “stably strong S-ring” assertions follow easily. Moreover;
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since K ⊗k A[X1; : : : ; Xn] is an integral extension of A[X1; : : : ; Xn] that satis5es GD; for
any integer n; we have for any prime ideals P ⊆ Q of K⊗k A[X1; : : : ; Xn]; ht(P)=ht(P′)
and ht(Q) = ht(Q′); where P′ :=P ∩ A[X1; : : : ; Xn] and Q′ :=Q ∩ A[X1; : : : ; Xn]. Then;
in view of the above claim; the “catenarian” and “universally catenarian” statements
follow; completing the proof.

Theorem 4.7. Let A be a domain that is a k-algebra and K an algebraic :eld exten-
sion of k. Assume that the integral closure A′ of A is a Pr>ufer domain. Then K ⊗k A
is a stably strong S-ring.

Proof. We claim that K ⊗k A′ is a stably strong S-ring. In fact; let P0 be a minimal
prime ideal of K ⊗k A′. Then P0 ∩ A′ = (0); and thus (K ⊗k A′)=P0 is an integral
extension of A′. Since A′ is a PrFufer domain; (K ⊗k A′)=P0 is a stably strong S-domain
by [19; Proposition 4.18]. It follows that K ⊗k A′ is a stably strong S-ring; as desired.
Proposition 2.3 completes the proof.

Theorem 4.8. Let A be an LFD Pr>ufer domain that is a k-algebra and K an algebraic
:eld extension of k. Then K ⊗k A is catenarian.

Proof. First; we have that K ⊗k (A=p) satis5es MPC; by Theorem 3.4; since A=p is
integrally closed for any p∈Spec(A). An argument similar to the treatment of the
claim in the proof of Proposition 4.6 allows us to see that the contractions of any
adjacent prime ideals of K ⊗k A are adjacent in Spec(A). Then; since K ⊗k A is an
integral extension of A that satis5es GD; the result follows; since the contraction map
from Spec(K ⊗k A) to Spec(A) preserves height.

Theorem 4.9. Let A be a Noetherian domain that is a k-algebra and K a :eld ex-
tension of k such that t:d:(K : k)¡∞. Then K ⊗k A is a stably strong S-ring. If; in
addition; K ⊗k A satis:es MPC and A[X ] is catenarian; then K ⊗k A is universally
catenarian.

Proof. Recall 5rst that a Noetherian ring A is universally catenarian if and only if A[X ]
is catenarian [22]. We have K⊗kA ∼= K⊗k(X1 ;:::;Xt)S

−1A[X1; : : : ; Xt]; where t := t:d:(K : k)
and S := k[X1; : : : ; Xt] \ {0}. Since S−1A[X1; : : : ; Xt] is Noetherian; it su8ces to handle
the case where K is algebraic over k. Thus; in that case; K⊗k A is an integral extension
of a Noetherian domain A. Let P0 be a minimal prime ideal of K ⊗k A. By GD;
P0 ∩ A= (0). It follows that (K ⊗k A)=P0 is an integral extension of A. Hence; by [19;
Proposition 4.20]; (K ⊗k A)=P0 is a stably strong S-domain; whence K ⊗k A is a stably
strong S-ring. Now; assume that K ⊗k A satis5es MPC and A[X ] is catenarian. Let P0
be a minimal prime ideal of K ⊗k A. As above (K ⊗k A)=P0 is an integral extension of
A. By [22; Theorem 3.8]; (K ⊗k A)=P0 is a universally catenarian domain. It follows
that K ⊗k A is a universally catenarian ring. The proof is complete.

Corollary 4.10. Let K and L be :eld extensions of k such that t:d:(K : k)¡∞. Then
K ⊗k L is universally catenarian.
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Proof. K⊗k L is LFD by Lemma 4.2; and satis5es MPC by [25; Corollary 4]. Theorem
4.9 completes the proof.

Corollary 4.11. Let A be a one-dimensional k-algebra and K an algebraic :eld ex-
tension of k. Then the following conditions are equivalent:
(i) K ⊗k A is a stably strong S-ring;
(ii) K ⊗k A is a strong S-ring;
(iii) A is a strong S-ring;
(iv) A satis:es (P2).

If; in addition; K ⊗k A satis:es MPC; then the following conditions are equivalent
and the assertions (i)–(iv) are equivalent to each of (v)–(viii):
(v) K ⊗k A is universally catenarian;
(vi) (K ⊗k A) [X ] is catenarian;
(vii) K ⊗k A is an S-ring;
(viii) A is an S-ring.

Proof. By Proposition 2.3 and Proposition 2.5; we have (i) ⇔ (ii) ⇒ (iii) ⇔ (iv).
(iv) ⇒ (ii) Assume that (iv) holds. Let P be a minimal prime ideal of K ⊗k A

and p :=P ∩ A. If K ⊗k A=P is a 5eld, then it is an S-domain. If dim(K ⊗k A=P) = 1,
then dim(A=p) = 1 (since K ⊗k A=P is an integral extension of A=p); therefore A=p is
an S-domain by Proposition 2.5, whence K ⊗k A=P is an S-domain by [19, Theorem
4.2]. We conclude that K ⊗k A is a strong S-ring. Thus, the statements (i)–(iv) are
equivalent. On the other hand, the assertions (v)–(vii) are equivalent, by Proposition
2.5. Also, (vii) ⇔ (viii), by Lemma 3.8. Apply Proposition 2.5 to complete the proof.

Proposition 4.12. Let A be a two-dimensional k-algebra and K an algebraic :eld
extension of k such that K ⊗k A satis:es MPC. Then K ⊗k A is a strong S-ring
(resp.; catenarian) if and only if so is A.

Proof. The “only if” assertion follows from Proposition 2.3. Conversely; we 5rst show
that the contractions of any pair of adjacent prime ideals of K ⊗k A are adjacent in
Spec(A). In fact; let P ⊂ Q be a pair of adjacent prime ideals in K ⊗k A; p :=P ∩ A
and q :=Q ∩ A. If ht(P) = 1; then ht(p) = 1 and hence ht(q=p) = 1; since dim(A) = 2.
In the remaining case; P is a minimal prime ideal of K ⊗k A. Since K ⊗k A satis5es
MPC; P is the unique minimal prime ideal contained in Q. Then ht(Q)= ht(Q=P)= 1.
It follows that ht(q=p)6 ht(q) = ht(Q) = 1; since K ⊗k A is an integral extension of
A that satis5es GD. Then ht(q=p) = 1. Hence; the “strong S-ring” assertion follows
immediately. As the contraction map from Spec(K ⊗k A) to Spec(A) preserves height;
the “catenarian” assertion also holds.

Next, we state the main theorem of this section. It generates new families of stably
strong S-rings and universally catenarian rings.
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Theorem 4.13. Let A be an LFD k-algebra and K a :eld extension of k such that
either t:d:(A : k)¡∞ or t:d:(K : k)¡∞. Let B be a transcendence basis of K
over k; and let L be the separable algebraic closure of k(B) in K. Assume that
[L : k(B)]¡∞. If A is a stably strong S-ring (resp.; universally catenarian and
K ⊗k A satis:es MPC); then K ⊗k A is a stably strong S-ring (resp.; universally
catenarian).

The proof of this theorem requires the following preparatory result.

Proposition 4.14. Let A be an LFD k-algebra and K a purely transcendental :eld
extension of k such that either t:d:(A : k)¡∞ or t:d:(K : k)¡∞. If A is a stably
strong S-ring (resp.; universally catenarian); then K ⊗k A is a stably strong S-ring;
(resp.; universally catenarian).

Proof. First note that the stably strong S-property and universal catenarity are stable
under formation of rings of fractions. Let K = k(B); where B is a transcendence ba-
sis of K over k. If B is a 5nite set {X1; : : : ; Xn}; then K ⊗k A ∼= S−1A[X1; : : : ; Xn];
where S := k[X1; : : : ; Xn] \ {0}. Clearly; K ⊗k A is a stably strong S-ring (resp.; uni-
versally catenarian); if A is. Hence; without loss of generality; B is an in5nite set and
t:d:(A)¡∞. Let

T = K ⊗k A= lim→
E5nite; E⊆B

TE;

where TE := kE ⊗k A ⊆ T and kE := k(E): Let us point out that; for any 5nite subset
E of B and any prime ideal PE of TE; PET is a prime ideal of T . Indeed; let E be
a 5nite subset of B and PE a prime ideal of TE . Then T ∼= K ⊗kE TE and PET =
PE(K ⊗kE TE) = K ⊗kE PE . Thus T=PET ∼= (K ⊗kE TE)=(K ⊗kE PE) ∼= K ⊗kE (TE=PE).
Note that if F is a 5eld; L = F(X1; : : : ; Xn) and D is a domain containing F; then
L⊗F D(∼= D[X1; : : : ; Xn]F[X1 ;:::;Xn]\{0}) is a domain. It follows that T=PET is an integral
domain; as desired; since it is a directed union of the domains kF ⊗kE (TE=PE); where
F is a 5nite subset of B containing E.
Let P ∈Spec(T ) and PE :=P ∩ TE , for each 5nite subset E of B. We claim that

there exists a 5nite subset E of B such that P=PET . Suppose by way of contradiction
that for each 5nite subset E of B we have PET ⊂ P. Let F be a 5nite subset of B.
Assume that PET =PFT for each 5nite subset E of B that contains F . Let x∈P. Since
x∈T = lim→ TE , there exists a 5nite subset E1 of B such that x∈TE1 . Then x∈PE1T .

Thus x∈PE1∪FT = PFT . It follows that P= PFT , a contradiction. Consequently, there
exists a 5nite subset E of B such that F ⊂ E and PFT ⊂ PET . Hence, by iterating the
above argument, we can construct an in5nite chain of prime ideals PE1T ⊂ PE2T ⊂
· · · ⊂ PEnT ⊂ · · · ⊂ P, where the Ej are 5nite subsets of B. This is a contradiction,
since, by Proposition 4.1, T is LFD. Therefore there exists a 5nite subset E of B such
that P = PET , proving the claim.
Let P ⊂ Q be a chain of prime ideals of T . Then there exists a common 5nite

subset E of B such that P = PET and Q =QET . We claim (∗): P ⊂ Q is saturated in
Spec(T ) if and only if PE ⊂ QE is saturated for each 5nite subset E of B such that
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P = PET and Q = QET . Indeed, assume that P ⊂ Q is saturated and consider a 5nite
subset E of B such that P=PET and Q=QET . Let J be a prime ideal of TE such that
PE ⊆ J ⊆ QE . Then PET = P ⊆ JT ⊆ QET =Q. Since ht(Q=P) = 1 and JT is a prime
ideal of T , we obtain that either JT = P= PET or JT =Q=QET . Since TE ,→ T is a
faithfully Qat homomorphism, we conclude that either J =PE or J =QE (see condition
(i) in [2, Exercise 16, p. 45]). Then PE ⊂ QE is saturated. Conversely, suppose that
PE ⊂ QE is saturated for each 5nite subset E of B such that P = PET and Q = QET .
Let P′ be a prime ideal of T such that P ⊆ P′ ⊆ Q. There exists a 5nite subset F of
B satisfying P = PFT , P′ = P′

FT and Q = QFT . Then PF ⊆ P′
F ⊆ QF . By hypothesis,

PF ⊂ QF is saturated, so either P′
F = PF or P′

F =QF . Hence, either P′ = P or P′ =Q.
Then P ⊂ Q is saturated. This establishes the claim.
Now assume that A is a stably strong S-ring and let P ⊂ Q be a saturated chain in

Spec(T ). Then PE ⊂ QE is saturated for each 5nite subset E of B such that P = PET
and Q = QET . Hence PE[X ] ⊂ QE[X ] is saturated, for each 5nite subset E of B such
that P = PET and Q = QET . We have

T [X ] = (K ⊗k A)[X ] = K ⊗k (A[X ]) ∼= lim→
E5nite; E⊆B

(TE[X ]):

In view of the equivalence (∗), replacing T by T [X ], P by P[X ] and Q by Q[X ], we
conclude that P[X ] ⊂ Q[X ] is saturated. Therefore, T is a strong S-ring. Let n¿ 1
be an integer. Since T [X1; : : : ; Xn] ∼= K ⊗k (A[X1; : : : ; Xn]) and A[X1; : : : ; Xn] is a stably
strong S-ring, by repeating the earlier argument with A replaced by A[X1; : : : ; Xn], we
can show that K ⊗k (A[X1; : : : ; Xn]) ∼= T [X1; : : : ; Xn] is a strong S-ring. Hence T is a
stably strong S-ring.
Now, suppose that A is universally catenarian. We 5rst recall (use E := ∅ in an

earlier part of the proof) that (K ⊗k A)=(K ⊗k p) ∼= K ⊗k (A=p) is a domain, for any
prime ideal p of A. Furthermore, as A ⊂ T satis5es GD, one can easily check that
Min(T )={K⊗k p : p∈Min(A)}. It follows that K⊗k A satis5es MPC, since A satis5es
MPC by hypothesis. Moreover, T is LFD by Proposition 4.1. Let P ⊂ Q be a saturated
chain of prime ideals of T . Then PE ⊂ QE is saturated for each 5nite subset E of B
such that P = PET and Q = QET . Take a 5nite subset E = {X1; : : : ; Xn} of B and set
SE= k[X1; : : : ; Xn]\{0}. Then TE

∼= S−1
E A[X1; : : : ; Xn] is (universally) catenarian, by the

hypothesis on A. Hence, ht(QE) = 1 + ht(PE) for each 5nite subset E of B such that
P = PET and Q =QET . On the other hand, we claim that ht(P) = sup{ht(PE): E is a
5nite subset of B such that P = PET} and ht(Q) = sup{ht(QE): E is a 5nite subset of
B such that Q = QET}.
Indeed, let E be a 5nite subset of B such that P = PET . Since the homomorphism

TE ,→ T satis5es GD, we have ht(PE)6 ht(P). Hence sup {ht(PE): E is a 5nite subset
of B such that P=PET}6 ht(P). Since T is LFD, ht(P) is 5nite. Let P0 ⊂ P1 ⊂ · · · ⊂
Ph=P be a chain of prime ideals of T such that h=ht(P). There exists a common 5nite
subset E of B such that Pi = PiET , for i = 0; : : : ; h. Then P0E ⊂ P1E ⊂ · · · ⊂ PhE is a
chain of distinct prime ideals in TE , since the homomorphism TE → T is faithfully Qat.
Hence h= ht(P)6 ht(PhE) = ht(PE). It follows that ht(P)6 sup{ht(PE): E is a 5nite
subset of B such that P = PET}. This establishes the above claim. We conclude that
ht(Q) = 1 + ht(P). Hence T is catenarian. Since T [X1; : : : ; Xn] ∼= K ⊗k (A[X1; : : : ; Xn]);
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an argument similar to the above, with A replaced by A[X1; : : : ; Xn], shows that T is
universally catenarian and the proof is complete.

Proof of Theorem 4.13. We have K⊗k A ∼= K⊗k(B)(k(B)⊗k A) ∼= K⊗L(L⊗k(B)(k(B)⊗k

A)). Since [L : k(B)]¡∞; we have K = k(B)(x1; : : : ; xn) for some x1; : : : ; xn ∈L. So
L ∼= k(B)[X1; : : : ; Xn]=I ; for some prime ideal I of k(B)[X1; : : : ; Xn]. It follows that
L ⊗k(B) (k(B) ⊗k A) ∼= (k(B) ⊗k A)[X1; : : : ; Xn]=J ; where J = I ⊗k(B) (k(B) ⊗k A). By
Proposition 4.14; k(B)⊗k A is a stably strong S-ring (resp.; universally catenarian) if A
is. Thus; if A is a stably strong S-ring (resp.; universally catenarian); L⊗k(B) (k(B)⊗k A)
is so (we have just used the easy fact that the class of stably strong S-rings is closed
under formation of factor rings). Then; by Proposition 4.5; the result follows; since K
is a purely inseparable extension of L.

5. Examples

This section displays some examples showing that several results of Section 4 con-
cerning the strong S-property and catenarity of K ⊗k A fail, in general, when the 5eld
extension K is no longer algebraic over k. Our last example, Example 5.5, shows
clearly that the study of the spectrum of A⊗k B becomes more intricate if one moves
beyond the context where at least one of A; B is a 5eld extension of k.
In order to provide some background for the present section, we recall the following

de5nitions and results from [26]. A domain A is called an AF-domain if A is a k-algebra
of 5nite transcendence degree over k such that ht(p) + t:d:(A=p : k) = t:d:(A : k) for
each p∈Spec(A). Finitely generated k-algebras (that are domains) and 5eld extensions
of 5nite transcendence degree over k are AF-domains. Let A be a k-algebra, p a prime
ideal of A and 06d6 s be integers. Set

�(s; d; p) := ht(p[X1; : : : ; Xs]) + min
(
s; d+ t:d:

(
A
p
: k

))
;

D(s; d; A) :=max{�(s; d; p): p∈Spec(A)}:
Wadsworth’s main two results relative to the Krull dimension of tensor products of
AF-domains read as follows. If A is an AF-domain and R is any k-algebra, then
dim(A ⊗k R) = D(t:d:(A : k); dim(A); R) [26, Theorem 3.7]. If, in addition, R is an
AF-domain, then dim(A ⊗k R) = min(dim(A) + t:d:(R : k); t:d:(A : k) + dim(R)) [26,
Theorem 3.8].
We turn now to our examples. It is still an open problem to know whether K ⊗k A

is a strong S-ring (resp., catenarian) when K is an algebraic 5eld extension of k and
A is a strong S-ring (resp., catenarian such that K ⊗k A satis5es MPC). However, for
the case where K is a transcendental 5eld extension of k, the answer is negative, as
illustrated by the following two examples.

Example 5.1. Let k be a 5eld. There exists a strong S-domain A that is a k-algebra
such that L ⊗k A is a strong S-ring for any algebraic 5eld extension L of k; while
K ⊗k A is not a strong S-ring for some transcendental 5eld extension K of k.
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Our example draws on [8, Example 3], which we assume that the reader has at hand.
Let k be a 5eld and k ′ an algebraic closure of k. Let (V1; M ′

1) be the valuation domain
of the Y3-adic valuation on k ′(Y1; Y2)[Y3]. Let V ∗ be a discrete rank-one valuation
domain of k ′(Y1; Y2) of the form k ′ + N and let V be the pullback ’−1(V ∗), where
’: V1 → k ′(Y1; Y2) is the canonical homomorphism. It is easily seen that V is a
rank-two valuation domain of the form k ′+M1. Moreover, if p1 is the height 1 prime
ideal of V; Vp1 = V1. Finally, let W be the valuation domain of the (Y3 + 1)-adic
valuation on k ′(Y1; Y2)[Y3]. Then W is a DVR of the form k ′(Y1; Y2) + M2. Set A =
k ′+M , where M =M1∩M2. It is shown in [8, Example 3] that A is a two-dimensional
local strong S-domain with the following features: dimA[X; Y ] = 5 (hence A[X ] is not
a strong S-domain), the quotient 5eld of A is k ′(Y1; Y2; Y3), and the prime ideals of
A are (0) ⊂ p ⊂ M with Ap = V1. By Proposition 4.6, L ⊗k A is a strong S-ring,
for any algebraic 5eld extension L of k. On the other hand, by [26, Theorem 3.7],
dim((k(X )⊗k A)[Y ])=dim(k(X )[Y ]⊗k A)=D(2; 1; A), since k(X )[Y ] is an AF-domain.
We have

�(2; 1; (0)) =min(2; 1 + t:d:(A : k))
=min(2; 4) = 2:

�(2; 1; p) = ht(p[X; Y ]) + min
(
2; 1 + t:d:

(
A
p
: k

))

= ht(pAp[X; Y ]) + min
(
2; 1 + t:d:

(
Ap

pAp
: k

))

= ht(pAp) + min
(
2; 1 + t:d:

(
V1
M ′
1
: k

))
(since Ap is a DVR)

= 1 + min(2; 3) = 3:

�(2; 1; M) = ht(M [X; Y ]) + min
(
2; 1 + t:d:

(
A
M
: k

))

= dimA[X; Y ]− 2 + min(2; 1) = 4:
Hence dim(k(X )⊗k A)[Y ]) = 4. Furthermore, dim(k(X )⊗k A) = D(1; 0; A): We have

�(1; 0; (0)) =min(1; t:d:(A : k))
=min(1; 3) = 1:

�(1; 0; p) = ht(p[X ]) + min
(
1; t:d:

(
A
p
: k

))

= ht(pAp[X ]) + min(1; 2)

= ht(pAp) + 1 = 2 (since Ap is a DVR):

�(1; 0; M) = ht(M [X ]) + min
(
1; t:d:

(
A
M
: k

))

= ht(M) + min(1; 0) = 2 (since A is a strong S-domain):
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Hence, dim(k(X )) ⊗k A) = 2. Consequently, dim((k(X ) ⊗k A)[Y ]) = 4 
=1 + 2 = 1 +
dim(k(X )⊗k A). Let K=k(X ). Therefore, by [18, Theorem 39], K⊗k A is not a strong
S-ring.

Example 5.2. Let k be a 5eld. There exists a catenarian domain A that is a k-algebra
such that L⊗k A is a catenarian for any algebraic 5eld extension L of k; while K ⊗k A
is not catenarian for some transcendental 5eld extension K of k.

Let k be a 5eld and k ′ an algebraic closure of k. Let V := k ′(X1; X2)[Y ](Y )=k ′(X1; X2)
+m, where m :=YV . Let A := k ′(X1) + m. Clearly, A is catenarian while A[Z] is not
catenarian, as the following chains of prime ideals of A[Z] are saturated:

where P is an upper to (0) (cf. [8, Example 5]). By Proposition 4.6, L⊗k A is catenarian
for any algebraic 5eld extension L of k. On the other hand, S−1A[Z]=S−1m[Z] ∼=
(k(Z)⊗k A)=(k(Z)⊗k m) ∼= k(Z)⊗k

A
m
∼= k(Z)⊗k k ′(X1); let S = k[Z] \ {0}: Therefore

dim(S−1A[Z]=S−1m[Z]) = 1 by [23, Theorem 3.1]. Hence S−1m[Z] is not a maximal
ideal of S−1A[Z], whence there exists an upper M1 to m such that M1 ∩ S = ∅. By
[9, Theorem B, p. 167], l(M) = l(M1), where l(M) (resp., l(M1)) denotes the set of
lengths of saturated chains of prime ideals between (0) and M (resp., M1). Then there
exist two saturated chains of prime ideals in A[Z] of the form:

where Q1 in an upper to (0). Consequently, K⊗k A ∼= S−1A[Z] is not catenarian, where
K := k(Z).
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The next two examples show that Proposition 4.4 fails in general when K is no
longer algebraic over k.

Example 5.3. There exists a k-algebra A which is not an S-domain and a 5eld extension
K of k such that 16 t:d:(K : k)¡∞ and K ⊗k A is a strong S-ring.

Let V := k(X )[Y ](Y ) = k(X ) + m, where m :=YV , and let A := k + m. We have
ht(m)=1 and ht(m[Z])=ht(m[Z; T ])=2 [8, Example 5]. Thus, A is not an S-domain. Let
K := k(Z). We claim that K⊗kA ∼= S−1A[Z] is a strong S-domain, where S := k[Z]\{0}:
Notice 5rst that S−1m[Z] is a maximal ideal of S−1A[Z], as S−1A[Z]=S−1m[Z] ∼=
(k(Z) ⊗k A)=(k(Z) ⊗k m) ∼= k(Z) ⊗k (A=m) ∼= k(Z). Now, let P ⊂ Q be a pair of
adjacent prime ideals of A[Z] that are disjoint from S. Two cases are possible. If
P = (0), then ht(Q) = 1. Since k(Z) ⊗k A ∼= S−1A[Z] is an S-domain, ht(Q[T ]) = 1.
If P is an upper to (0), Q necessarily contracts to m in A and hence Q = m[Z],
since Q ∩ S = ∅ and S−1m[Z]∈Max(S−1A[Z]). Therefore (0) ⊂ P ⊂ m[Z] = Q is a
saturated chain in Spec(A[Z]). Then (0) ⊂ P[T ] ⊂ m[Z; T ] =Q[T ] is a saturated chain
in Spec(A[Z; T ]). Consequently, in both cases, P[T ] ⊂ Q[T ] is saturated. It follows
that K ⊗k A ∼= S−1A[Z] is a strong S-domain, as desired.

Example 5.4. There exists a k-algebra A which is not a catenarian domain and a 5eld
extension K of k such that 16 t:d:(K : k)¡∞ and K ⊗k A is catenarian.

Let V := k(X )[Y ](Y ) = k(X ) + m, where m :=YV . Let R := k + m. Clearly, R is a
one-dimensional integrally closed domain. There exist two saturated chains of prime
ideals of R[Z], as in Example 5.2, of the form:

Let A :=R[Z]. Then A is not catenarian. We next prove that K ⊗k A ∼= S−1R[Z; T ] is
catenarian, where K := k(T ) and S := k[T ] \ {0}.
Notice 5rst that ht(m[Z; T ]) = 2 [8, Example 5]. Further, one may easily check,

via [26, Theorem 3.7], that dim(K ⊗k A) = dim(k(T )[Z] ⊗k R) = D(2; 1; R) = 3, since
k(T )[Z] is an AF-domain. Now, let P ⊆ Q be a pair of prime ideals of R[Z; T ] such
that Q∩ S = ∅. We claim that ht(Q)= ht(P)+ ht(Q=P). Without loss of generality, we
may assume that ht(Q) = 3. Necessarily, Q contracts to m in R = k + m. Moreover,
Q cannot be an upper to an upper to m in R[Z; T ]; otherwise ht(Q) = 4. Hence,
either Q = M1[T ] or Q = M2[Z], where M1 is an upper to m in R[Z] and M2 is an
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upper to m in R[T ]. Assume that Q = M [T ], where M is an upper to m in R[Z].
In case P ∩ R = m, we are done, since here P = m[Z; T ]. We may then assume that
P ∩ R= (0). Three cases are possible. If P is an upper to an upper to (0) in R[Z; T ],
then ht(P) = 2, and we are done. If P = P1[Z], where P1 is an upper to (0) in R[T ],
then P∩R[T ]=P1 ⊂ Q∩R[T ]= (M ∩R)[T ]=m[T ]. Hence P=P1[Z] ⊂ m[Z; T ]: Thus
ht(Q=P) = 2 and ht(P) = 1, as desired. Assume now that P = P2[T ], where P2 is an
upper to (0) in R[Z]. We have Q=M [T ] is an upper to m[T ] in (R[T ])[Z] and P is an
upper to (0) in (R[T ])[Z]. If ht(Q=P)=1¡ ht((m[T ])[Z])=2, then by [9, Proposition
2.2] and [14, Proposition 1.1, p. 742], P ⊂ m[Z; T ] (since R[T ] is integrally closed), a
contradiction. Thus, ht(Q=P)=2 and ht(P)=1, as desired. A similar argument applies
to the case where Q=M [Z], where M is an upper to m in R[T ]. Consequently, K⊗k A
is catenarian.

To emphasize the importance of K being a 5eld in Theorem 4.13, we close this
section with an example of two discrete rank-one valuation domains, hence universally
catenarian, the tensor product of which is not catenarian.

Example 5.5. There exists a discrete rank-one valuation domain V such that t:d:(V :
k)¡∞ and V ⊗k V is not catenarian.

Consider the k-algebra homomorphism ’: k[X; Y ] → k[[t]] such that ’(X ) = t and
’(Y ) = s :=

∑
n¿1 t

n!. Since s is known to be transcendental over k(t); ’ is injective.
This induces an embedding S’ : k(X; Y )→ k((t)) of 5elds. Put V= S’−1(k[[t]]). It is easy
to check that V is a discrete rank-one valuation overring of k[X; Y ] of the form k+m,
where m :=XV . For convenience, put A=B :=V . We have dim(A⊗k B)=dim(V ⊗k V )
=dim(V ) + t:d:(V : k)= 1+2=3 [26, Corollary 4.2] and ht(m⊗k V )= ht(m[X; Y ])=
ht(m) = 1 [4, Lemma 1.4]. Since ht((m⊗k V + V ⊗k m)=(m⊗k V ))6 dim((V ⊗k V )=
(m⊗kV ))=dim(V )=1, we obtain ht((m⊗kV+V⊗km)=(m⊗kV ))=1. On the other hand,
in view of [26, Proposition 2.3], the height of no prime ideal of A⊗k B contracting to
(0) in A and to (0) in B can reach dim(A⊗k B)=3, since dim(k(X; Y )⊗k k(X; Y ))=2.
Therefore, ht(m⊗k V + V ⊗k m) = 3. Hence Spec(V ⊗k V ) contains the following two
saturated chains:

where Pi ∩ A= Pi ∩ B= (0); for i = 1; 2: Consequently, V ⊗k V is not catenarian.
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