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Abstract. Let A be an integral domain and S a torsion-free can- 

cellative Abelian semigroup. By analogy with known results on 

polynomial rings and group rings, results are sought for a num- 

ber of properties of the semigroup ring A[S]: The properties of 

interest include coequidimensionality, (universal) catenarity, (sta- 

bly strong) S-domain, and (locally, residually, totally) Jaffard do- 

main. Positive results, leading to new examples of rings with some 

of the above properties, are obtained in case (the quotient group 

of) S has rank 1 or S is finitely generated. An example shows 

that some results do not carry over in case S has rank 2 but is 

not finitely generated. 
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2560 AMEZIANE, DOBBS, AND KABBAJ 

1. Introduction. Let A be a commutative ring (with 1) and S an Abelian 

semigroup. As usual, A[S] denotes the semigroup ring associated to A and 

S; as a set, A[S] = {x a ,X8(a ,  E A for each s E S, a, = 0 for all but finitely 

many s). Our purpose here is to study several properties related to the 

order-theoretic structure of Spec(A[S]), the set of-all prime ideals of A[S]. 

These properties include coequidimensionality (in the sense of [BDFl]), cate- 

narity, universal catenarity [BDFl], S- and strong S-domains [Kap], stably 

strong S-domains [MM], f i s t  and second chain conditions [R2], and (locally, 

residually, totally) Jaffard domains ([ABDFK], [C]). As many of these prop- 

erties are best studied when A[S] is an integral domain, we often impose the 

corresponding restrictions on A and S (cf. [G3, Theorem 8.1]), namely that 

A is an integral domain and that S is torsion-free and cancellative. 

One benefit of the above assumptions on S is that S then has an associated 

quotient group, denoted (S), into which S embeds (cf. [G3, p. 61). It 

will be convenient to refer to the rank of S; by this, we mean the usual 

(torsion-free) rank of (S). If rank(S) = r and A[S] is an integral domain, 

a fundamental result that we often need is due to Arnold and Gilmer [AG]: 

dim(A[S]) = dim(A[(S)]) = dim(A(X1,. . . ,X,]). (We use dim to denote 

Krull dimension; dim, denotes valuative dimension.) This result illustrates 

that it is appropriate to organize a study of the above properties for A[S] by 

analogy with earlier work on the special cases of p u p  rings and polynomial 

rings. (Of course, polynomial rings over A are examples of semigroup rings 

over A, since A[Wn] E AIX1,. . . , X,] for each positive integer n. Here W := 

{x E Zlx > 0). Often, it is convenient to assume 0 E S for the ambient 

semigroup, i.e., that S is a monoid, but interesting technicalities axe possible, 

as in the proofs of Lemmas 2.4 and 2.8, without this hypothesis.) 

A considerable literature has developed regarding the transfer between A 

and AIX1,. . . , X,] of properties such as catenarity, strong S-, . -. , etc.: see 

[BDFl], [MM], [ABDFK]; we cite such work as needed. The only correspond- 
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COMMUTATIVE SEMIGROUP RINGS 2561 

ing work regarding transfer between A and group rings over A is the recent 

preprint [ACKZ]. The present work depends heavily on [ACKZ], both for its 

organization and for specific facts, such as those recalled in Remark 2.6(c). 

The interplay between A[S],  A[(S)], and A[X,, . . . , X,]  leads to a number 

of positive results analogous to the work on group rings A[G] in [ACKZ]. 

While most of [ACKZ] is deveoped for groups G of arbitrary finite rank, our 

positive results on semigroup rings A[S] are mostly in case rank(S) = 1 (in 

Section 2) or S is finitely generated (in Section 3). The work in Section 2 is 

developed by means of Proposition 2.2(b) and the above-cited lemmas, which 

strongly use the hypothesis that rank(S) = 1. As explained in Remark 2.3(b), 

the conclusion of Proposition 2.2(b) was obtained (in a different formulation) 

by Arnold and Gilmer [AG, Theorem 4.11 for finitely generated S. Thus, it 

is not surprising that Section 3 relies heavily on results from [AG]. 

The results of Sections 2 and 3 permit, in Section 4, the development 

of new examples of universally catenarian, stably strong S-, locally Jaffard, 

and residually JaiTard domains. Perhaps more importantly, Example 4.5(a) 

shows that the L'rank(S) = 1" or "S is finitely generated" hypotheses cannot 

be deleted from some of the results in Sections 2 and 3; and Example 4.5(b) 

shows that a key result on group rings from IACKZ] does not extend to 

semigroup rings A[S] with rank(S) = 2. We conclude that further positive 

work on A[S] with rank(S) = 2 will require fundamentally new insights. 

Any unexplained material is standard, as in [G2] or [Kap]. For instance, 

following [Kap, p. 281 we use LO, GU, INC, and GD to denote the lying- 

over, going-up, incomparable, and going-down properties, respectively; and 

c denotes proper inclusion. 

2. Results for semigroups of rank 1. The results on semigroup rings 

A[S] in this section are analogues of the transfer results on group rings in 

IACKZ] for the case rank(S) = 1. We begin with a result which is valid for 
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2562 AMEZIANE, DOBBS, AND KABBAJ 

any finite rank and which generalizes a fundamental result in the dimension 

theory of polynomial rings (cf. [Kap, Theorem 371). 

Lemma 2.1. Let A be a commutative ring, n a nonnegative integer, and S 

a torsion-free cancellative Abelian semigroup such .that rank(S) = n. Then 

there does not exist a chain Q1 C Q2 C . . . C Qn+2 of n + 2 distinct prime 

ideab of A[S] such that Q1 n A = Qn+2 n A. 

Proof. Deny. Put q := Q1 f l  A and T := A\q. As A[SIT = Aq[S], we may 

replace A with Aq, and thus assume that A is quasi-local, with maximal ideal 

q. Since 

qA[S] c QI C Qz C .. . C Qn+2, 

ht(Qn+~/qA[S]) 2 n + 1, and SO (A/q)[S] A[S]/QA[S] has ( K d l )  di- 

mension at  least n + 1. Now, let G be the quotient group of S; that is, 

G = (S), using the notation introduced above. According to the principal 

result of [AG], dim((A/q)[S]) = dim((A/q)[G]); and if {Xx) is a set of al- 

gebraically independent indeterminates whose cardinality is rank(G), then 

[GI, Corollary 11 yields that dim((A/q)[G]) = dim((A/q)[{Xx)]). Since A/q 

is a field, dim((A/q)[(X~)]) = rank(G) = rank(S) = n. The upshot is that 

dim((A/q)[S]) = n, the desired contradiction. 

Proposition 2.2. Let A be a commutative ring and S a torsion-free can- 

cellative Abelian semigroup of rank 1 .  Then: 

(a) ht(p) < ht(pA[S]) < 2 . ht(p) for each p E Spec(A). 

(b) If P E Spec(A[S]) and p := P n A ~atisfies pA[S] # P,  then ht(P) = 

ht(pA[S]) + 1. 

Proof. Let G := (S), the quotient group of S. 

(a) For each p E Spec(A), pA[S] E Spec(A[S]) since the hypotheses on 

S ensure that A[S]/pA[S] S (A/p)[S] is an integral domain [G3, Theorem 

8.11. Since S is torsion-free, so is G [G3, pp. 6-71. According to [ACKZ, 

Proposition 2.l(a)J1 it now follows that ht(p) < ht(pA[G]) < 2ht(p). Thus, it 
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suffices to show that ht(pA[S]) = ht(pA[G]). For this, recall (cf. [AG, p. 3001) 

that A[G] = A[SIT, where T is the multiplicative subset T = {XdJs E S) of 

A[S]; then, since pA[S] n T = 0, we have ht(pA[S]) = ht((pA[S])A[SIT) = 

ht(~A[slA[G]) = ht(~A[Gl), as desired. 

(b) Let h := ht(p). As ht(pA[S]) 2 h, we may suppose that h < oo. The 

proof proceeds by induction on h. 

For the induction basis, h = 0; that is, p is a minimal prime of A. Since 

A[S]A\p % Ap[S], we may replace A with Ap and, thus, assume that A is 

quasi-local, with maximal ideal p. Also, as p is minimal and A[S]/pA[q E 

(A/p)[S], we may replace A with Alp and, thus, assume that A is a field. As 

0 = pA[S] 5 P, it is enough to show that ht(P) 5 1 and, for this, it suffices 

to prove that dim(A[S]) = 1. Appealing to [AG] and [GI] as in the proof of 

Lemma 2.1, we have dim(A[S]) = dim(A[G]) = dim(A[X]) = 1, the last two 

equalities holding since rank(G) = rank(S) = 1 and A is a field. 

For the induction step, h 2 1, and we suppose the assertion for d l  Q E 

Spec(A[S]) with ht(Q n A) < h - 1. Let rn := ht(P). As h < oo, it follows 

from Lemma 2.1 that m < m. Choose a saturated chain of prime ideals of 

A[S]: 

Q O C Q I C  ... C Q m = P .  

The "saturated" condition ensures that ht(Qm-1) = m - 1. Put q := Qm-1 0 

A. Evidently, q C P n A = p. We next consider two cases. 

If q = p, then pA[S] = qA[S] C Qmml 5 P, so that Lemma 2.1 gives 

Qm-1 = pA[S], whence ht(P) = m = ht(Q,-l) + 1 = ht(pA[S]) + 1, as 

desired. In the remaining case, q 5 p. It suffices to prove that ht(P) < 
ht(pA[S]) + 1, as the reverse inequality is clear. Since q c p, we have that 

ht(q) 5 ht(p) - 1 = h - 1 and ht(qA[S]) I ht(pA[S]) - 1. Then, by the 

induction hypothesis, ht(Q,-1) 2 ht(qA[S]) + 1, and so ht(P) = m = 

ht(Qm-1) + 1 I ht(qA[S]) + 2 < ht(pA[S]) + 1. 0 
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Remark 2.3. (a) Let n 2 2 be a positive integer. Then the analogue of 

Proposition 2.2(b) is false for torsion-free cancellative Abelian semigroups of 

rank n. To see this, let S := Nn = N $ - - .  $ W (n summands), let A be a 

one-dimensional Noetherian integral domain, and let p be a nonzero prime 

ideal of A. Then there exist P, Q E Spec(A[S]) such that P n A = p = Q n A, 

pA[S] S; P, and ht(P) < ht(Q) = ht(pA[S]) + n. 

For a proof, observe that A[S] = A[Xl,. . . , X,]. Since A is Noetherian, 

it follows from [Kap, Theorem 1491 and the Hilbert Basis Theorem that 

ht(pA[S]) = ht(pAIX1,. . . , X,]) = ht(pAIX1,. . . , Xn-l]) = -.  . = ht(p) = 1. 

Put P := (p, X1)A[X2,. . . , X,]. Since XI E P\pA[S], we have pA[S] 5 P 

(and P n A[S] = p). Since A is Noetherian, it follows from [Kap, Theorem 

1491 that ht(p, XI) = ht(p)fl = 2. Thus, again invoking [Kap, Theorem 1491 

and the Noetherianness of A, we have ht(P) = ht((p, Xl)A[X?, . . . , X,-I]) = 

... = ht(p,X1) = 2 < 1 + n = ht(pA[S]) + n. Finally, to find a suitable Q, 

observe via [Kap, Theorem 1491 that since Ap is one-dimensional Noetherian, 

A[S]A\~ = Ap[S] = Ap[Xl,. . . , X,] has dimension 1 + n; it suffices to choose 

W E spe~(A[S]~\ , )  with ht(W) = 1 + n and put Q := f-'(W), where f 

denotes the canonical ring-homomorphism A[S] -+ A[S]A\p. 

(b) Let A be a commutative ring, S a torsion-free cancellative Abelian 

semigroup, P E Spec(A[S]), and p := P n A. A reformulation of Proposition 

2.2(b) states that if rank(S) = 1, then ht(P) = ht(pA[S]) + ht(P/pA[S]). 

According to [AG, Theorem 4.11, the same conclusion holds if S is finitely 

generated, but not in general [AG, pp. 311-3121. (In the counter-example 

of Arnold and Gilmer, one begins with rationally independent positive real 

numbers XI,. . . , A n ,  for some n > 1, and then lets S denote the additive 

semigroup of all nonnegative real numbers of the form il A1 + +in&,, with 

each i j  E Z. Of course, rank(S) # 1 and S is not finitely generated.) Thus, 

our emphasis in Section 2 may be viewed as our pursuit of consequences of a 

property of polynomial rings which, although not valid when generalized to 
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COMMUTATIVE SEMIGROUP RINGS 2565 

the context of finitely generated semigroups, does remain valid in the rank 1 

context. 

Adapting terminolgy introduced in [BDFl] for integral domains, we say 

that a commutative ring is coequidimens;onaI in case all its maximal ideals 

have the same height. Theorem 2.5 characterizes the coequidimensional semi- 

group rings in case rank(S) = 1. First, we give a preparatory result. Its proof 

is included for lack of a convenient reference. 

Lemma 2.4. Let A be a commutative ring and S a torsion-free cancellative 

Abelian ~emigroup of rank 1 .  If there ezists t E S\{O) such that -t E S, 

then S is a group. If no such t ezists, then there ezists a sub~emigroup T of 

S such that T E N\{O) and A[S] is integral over A[T]. 

Proof. Let G := (S). Suppose first that -t E S for some t E S\{O). 

It is enough to show that if x E S, then -x E S. Now, rank(G/Zt) = 

rank(G) - rank(Zt) = rank(S) - rank(Z) = 1 - 1 = 0, where we have used 

the torsion-free condition on S (equivalently on G [G3, pp. 6-71) to conclude 

that Zt 2 Z has rank 1. Hence, G / Z t  is a torsion group. Thus, given x E S, 

there exist n E N\{O) and m E Z such that nx = mt. As x # 0 without 

loss of generality, the torsion-free hypothesis ensures that m # 0. If n = 1, 

then x = mt and so -x = (-m)t = m(-t) E (N\{O))t U (N\{O))(-t) E S.  

I f n > 1 , t h e n - x = ( n - 1 ) x - n x = ( n - l ) x + ( ~ m ) t € S + S ~ S .  

Next, suppose that -t @ S for each t E S\{O). Choose y E S\{O) and put 

T := (N\{O))y. Since S is torsion-free, T r N\{O). Arguing as above, we see 

that G/Zy is a torsion group. It follows that A[S] is integral over A[Zy n S] 

(cf. [G3, p. 1511). Thus, it suffices to show that Zy n S = T. Of course, 

Zy n S _> T. For the reverse inclusion, consider z = ky E S, with k E Z. As 

S is torsion-free, t # 0 and so k # 0. If k < 0, then t := z E S\{O) satisfies 

- t  = (-k)y E T C S, contrary to hypothesis. Therefore, k > 0, whence 

z E (N\{O))y = T, as desired. 0 
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Theorem 2.5. Let A be a commutative ring and S a torsion-free cancellative 

Abelian semigroup of rank 1 .  Then A[S] is coequidimensional if and only if 

A[X] is coequidimensional. 

Proof. [ACKZ, Corollary 2.61 dispatches the case in which S is a group. Thus, 

without loss of generality, S is not a group; by Lemma 2.4, A[S] is integral 

over A[T] for some subsemigroup T of S such that T 2 N\{O). Observe that 

A[T] S A[X]; it will be convenient to identify A[T] with A[X]. As usual, put 

G := (S). 

Suppose, first, that A[S] is coequidimensional, with e := dim(A[S]). As in 

the proof of Lemma 2.1, it follows from [AG] and [GI] that e = dim(A[G]) = 

dim(A[X]), the last equality holding since rank(G) = 1. It suffices to show 

that if M is a maximal ideal of A[X], then ht(M) = e. Let h := ht(M). 

If h = co, then it follows from LO and GU that for each positive integer n, 

there exists a prime ideal N of A[S] such that NnA[X] = M and ht(N) > n. 

By integrality, N is a maximal ideal and so, since A[S] is coequidirnensional, 

e = ht(N). As n was arbitrary, e = m; that is, ht(M) = e if h = m. 

Thus, without loss of generality, h < oo. Then, by [Kap, Theorem 461, it 

follows from GU and INC that ht(W) = h for some W E Spec(A[S]) such 

that W n A[X] = M. As above, W is a maximal ideal and e = ht(W). It 

follows that h t ( M )  = e if h < m ,  thus completing the proof of the "only if" 

assertion. 

For the converse, suppose that A[X] is coequidimensional, with d := 

dim(A[X]). It suffices to show that if N is a maximal ideal of A[S], then 

ht(N) = d. By integrality, M := N n A[X] is a maximal ideal of A[X], 

whence ht(M) = d, since A[X] is coequidimensional. Put p := N fi A. As 

pA[S] is not a maximal ideal, pA[S] N ,  and so Proposition 2.2(b) yields 

that ht(N) = ht(pA[S]) + 1. Similarly, ht(M) = ht(pA[X]) + 1. As in the 

proof of Proposition 2.2(a), we have ht(pA[S]) = ht(pA[G]). Thus, it suffices 

to prove that ht(pA[G]) = ht(pA[X]). Now, by the general reasoning preced- 
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ing the statement of [ACKZ, Proposition 2.11, there exists an indeterminate 

Y such that B := A[Y] E A[G] is an integral extension, A[G] is a free B- 

module, pA[G] n B = pB, and ht(pA[G]) = ht(pB). AS ht(pB) = ht(~A[Xl),  

the proof is complete. 

Remark 2.6. (a) Let n be a positive integer and, as usual, let Qn := Q @ 

- .  . @ Q (n summands) and Q+ := {a: E Q1x 2 0). Notice, as an application 

of Theorem 2.5, that the semigroup ring Z[Q+] is coequidimensional; indeed, 

rank(Q+) = 1 and it is known that Z[X] is coequidimensional. As another 

application of Theorem 2.5, we claim that if K is a field, then the semigroup 

ring A := K[Qn $ Q+] is coequidimensional. Indeed, since A 2 K[Qn][Q+] 

(cf. [G3, Theorem 7.11) and rank(Q+) = 1, Theorem 2.5 reduces the assertion 

to proving that B := K[Qn][X] is coequidimensional. As B 2 K[X][Qn] 

and Qn is torsion-free and of finite rank, [ACKZ, Corollary 2.61 reduces the 

assertion to the well-known fact that KIX][XI,. . . , X,] 2 K[Yl,. . . , Yn+l] 

is coequidimensional, thus proving the claim. 

(b) Example 4.5 will show that one cannot delete the hypothesis that 

rank(S) = 1 in Theorem 2.5. 

(c) The final step in the proof of Theorem 2.5 appealed to the general 

reasoning preceding the statement of [ACKZ, Proposition 2.11. For the ease 

of later references, it is convenient to restate that material for arbitrary 

finite rank n, as follows. If A is a commutative ring and G is a torsion-free 

Abelian group of rank n, then there exist indeterminates Yl,. . . , Yn such 

that B := A[Yl,. . . , Yn] A[G] is an integral ring extension and A[G] is a 

free B-module. In particular, the extension B C_ A[G] satisfies LO, GU, INC, 

and GD; PA[G] n B = P for each P E Spec(B); and ht(Q) = ht(Q f~ B) for 

each Q E Spec(A[G]). 

Recall from [Kap, p. 261 that an integral domain A is called an S-domain 

in case ht(PA[X]) = 1 for all P E Spec(A) such that ht(P) = 1. It was 
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shown in [FK, Proposition 2.11 that A[X] is an S-domain for any integral 

domain A. This result is generalized in Theorem 2.7. 

Theorem 2.7. If A is an integral domain and S is a torsion-free cancellative 

Abelian ~emigroup of rank 1,  then A[S] is an S-domain. 

Proof. k t  G := (S). By [ACKZ, Theorem 3.11, we may assume that S is not 

a group; that is, G # S.  Hence, by Lemma 2.4, there exists an indeterminate 

X such that the ring extension A[X] A[S] is integral. (More precisely, 

A[T] E A[S] is integral for some subsemigroup T of S such that T Z N\{O); it 

is convenient here, and in similar arguments later, to identify A[T] = A[X].) 

The assertion follows if A is integrally closed, by an application of [MM, 

Corollary 4.101, as we have recalled that A[X] is an S-domain and A[X] 

inherits the property of being integrally closed from A. 

For the general case, consider P E Spec(A[S]) such that ht(P) = 1; our 

task is to show that ht(PA[S][Z]) = 1, where Z is an indeterminate over A[S]. 

Put p := P n A. As in the proof of Proposition 2.2(a), pA[S] E Spec(A[S]). 

We next consider two subcases. 

Suppose, first, that pA[S] = P. As in the proof of Proposition 2.2(a), 

ht(~A[s])  = ht(pA[G]); and by the reasoning recalled in Remark 2.6(c), 

ht(~A[Gl) = ht(~A[Yj). Thus, ht(pA[Y]) = ht(P) = 1. Since A[Y] is an 

S-domain, it now follows that ht(pA[Y]A[Z]) = 1. Viewing A[G] = A[SIT as 

in the proof of Proposition 2.2(a), we have pA[G][Z] = pA[S][ZIT, whence 

Now, recall from Remark 2.6(c) that A[Y] A[G] is an integral ring extension 

making A[G] free as an A[Y]-module. These conditions are inherited by the 

extension A[Y] [Z] C A[G] [Z]. Since pA[G] [Z ]  n A[Y] [Z] = pA[Y][Z] by faith- 

ful flatness, it follows via GD and INC that ht(pA[G][Z]) = ht(pA[Y][Z]). 

Therefore, 
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completing the proof of the first subcase. 

Suppose, finally, that PA[S] # P. By Proposition 2.2(b), ht(P) = ht(pA[S])+ 

1. As ht(P) = 1, we have ht(pA[S]) = 0, whence p = 0 (since A[S] is an 

integral domain). Consider K := AA\{ol, the quotient field of A. Since K is 

integrally closed, K[S] is an S-domain, by the first case treated above. As 

P n A = p = 0, we have PA[S][Z] n A = 0, whence 

the last equality holding since ht(PK[S]) = ht(P) = 1 and K[S] is an S- 

domain. The proof is complete. 0 

Recall from [Kap, p. 261 that an integral domain A is called a strong 

S-domain in case A /P  is an S-domain for each P E Spec(A); equivalently, 

in case ht(P2A[X]/PlA[X]) = 1 for all prime ideals PI C P2 of A such that 

ht(PzlP1) = 1. Before studying semigroup rings which are strong S-domains, 

we need the following result. 

L e m m a  2.8. Let A be a commutative ring, S a torsion-free cancellative 

Abelian semigroup of rank 1, and P E Spec(A[S]). Let T := {XSls E S), 

T' := T\{XO), and p := P n A. If P n T # 0, then P = (p,{Xdls E 

S\{Oll) = (P, T'). 

Proof. Choose X t  E P f l  T. If -t E S, then 1 = X t X - '  E PA[S] = P ,  

a contradiction. Thus, -t 4 S, and so S is not a group. Put G := (S). 

As in the proof of Lemma 2.4, rank(G/Zt) = 0; that is, G/Zt is a torsion 

group. Thus, given s E S\{O), there exist n E N\{O) and m E Z such that 

ns = mt. If -m E N\{O), then -ns = (-m)t E S\{O) and ns E S\{O), a 

contradiction to Lemma 2.4, since S is not a group. Thus, m E N\{O). Hence 
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(X8)" = Xn" = Xmf  = E P and, since P is a prime ideal, X8  E P. 

We thus have a chain of prime ideals pA[S] G (p, {X'ls E S\{O)) G (p, TI) C 

P in A[S]. (Of course, (p, T') is prime since A[S]/(p, T') Alp is an integral 

domain.) Now, X i  E (p, T1)\pAIS] since 1 @ p, and so pA[S] (p, TI) C P. 

Lemma 2.1 ensures that ht(P/pA[S]) = 1, whence P = (p, TI). 

Theorem 2.9. Let A be an integral domain and S a torsion-free cancellative 

Abelian semigroup of rank 1 .  Put G = (S). Then A[q  h a strong S-domain 

if and only if A[G] h a strong S-domain. 

Proof. Put T := {X"ls E S). Since A[G] = A[S]T, it follows from [MM, 

Corollary 2.41 that if A[S] is a strong S-domain, then A[G] is a strong S- 

domain. 

Conversely, suppose that A[G] is a strong S-domain, and consider prime 

ideals Q1 c Q2 of A[S] such that ht(Q2/Q1) = 1; our task is to show 

that ht(QzA[S][Y]/Q1A[S][Y]) = 1. If Q2 f l  T = 8, the primes Q1A[SIT C 

QzA[S]T of A[G] satisfy ~~(Q~A[S]T /QIA[S]T)  = 1 and so, since A[G] is a 

strong S-domain, ~ ~ ( Q Z A [ S ] ~ [ Y ] / Q ~ A [ S ] T [ Y ] )  = 1; i.e., 

ht(Q2 A[S][Y]T/QI A[S][Y]T) = 1 and the assertion follows. Thus, without 

loss of generality, Q2 n T # 0. 

By the proof of Lemma 2.8, S is not a group and so, by Lemma 2.4, 

there exists an indeterminate X such that A[X] s A[S] is an integral ring 

extension; that proof shows that we may choose X = X"  for some s E S\{O). 

Put pz := QZ n A. We see via Lemma 2.8 that Q2 = (B ,  {X81s E S\{O))). 

Put Pi = Qi n A[X] for i = 1,2. We claim that ht(Pz/Pl) = 1. 

Of course, Pl # P2 by INC. If the claim fails, consider a chain of prime 

ideals Pl 5 P 2 P2 in A[X]. Now, X E Q2 nA[X] = Pz. It follows that P2 = 

(p2,X) by [Kap, Theorem 371 (or Lemma 2.1). Next, since the extension 

A[X] s A[S] satisfies GU (and LO), there exist prime ideals Q1 C Q c Q: 

of A[S] such that Q1 n A[X] = PI,  Q n A[X] = P, and Q; n A[X] = P2. 
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Notice that Qa n T # 0. (Indeed, Lemma 2.4 allows us to pick X = X t  

for some t E S\{O) at the outset, so that X E Qi n T.) Hence, it follows 

from Lemma 2.8 that Qi = (pz,{Xals E S\{O))), and so Q: = Qz. Thus 

1 = ht(Q2/Q1) = ht(Q&/Q1) 2 2: this contradiction establishes the claim 

that ht(Pz/Pl) = 1. 

Since A[G] is a strong S-domain, [ACKZ, Proposition 3.2(a)] gives that 

A[X] is a strong S-domain. Hence, ht(PzAIX][Y]/PIAIX][Y]) = 1. Since 

the ring extension A[X][Y] C A[S][Y] is integral and QiA[S][Y] n A[X][Y] = 

PiA[X][Y], it follows via INC that ht(Q2 A[S][Y]/QIA[S][Y]) = 1 (cf. [MM, 

Lemma 4.11). 0 

As in [MM], we say that an integral domain A is a stably strong S-domain 

in case AIX1,. . . , X,] is a strong S-domain for each positive integer n. We 

next study some semigroup rings which are stably strong S-domains. 

Corollary 2.10. Let A be an integral domain, S a torsion-free cancellative 

Abelian semigroup of rank 1, and G := (S). Then A[S] is a stably strong 

S-domain if and only if A[G] is a stably strong S-domain. 

Proof. Since AIU][Xl,. . . , X,] = A[X*, . . . ,X,][U] for any semigroup U, an 

application of Theorem 2.9 competes the proof. 0 

Corollary 2.11. Let A be an integral domain and S a torsion-free cancella- 

tive Abelian semigroup of rank 1. Then: 

(a) Suppose that dim(A) < 1. Then A[S] is a strong S-domain if and 

only if A[X] is a strong S-domain. 

(b) IfA is Noetherian, then A[S] is a stably strong S-domain. 

Proof. (b) Let G := (S). By [ACKZ, Proposition 3.4(b)], A[G] is a stably 

strong S-domain. Hence, without loss of generality, S # G; that is, S is not 

a group. Thus, by Lemma 2.4, there exists an indeterminate X such that the 

ring extension A[X] A[S] is integral. By Hilbert Basis Theorem, A[X] is 

Noetherian, and so the assertion now follows from [MM, Proposition 4.201. 
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(a) Any stably strong S-domain is a strong S-domain. (Indeed, any factor 

domain of a strong S-domain is a strong S-domain: cf. [MM, p. 2611.) 

Thus, if dim(A) = 0 (that is, if A is a field), the assertion in (a) follows from 

(b). Hence, without loss of generality, dim(A) = 1. Then, with G := (S), 

[ACKZ, Proposition 3.4(a)] yields that A[X] is a strong S-domain if and only 

if A[G] is a strong S-domain. An application of Theorem 2.9 completes the 

proof. 0 

As in [BDFl], a commutative ring A is called locally finite-dimensional (in 

short, LFD) if ht(P) < m for each P E Spec(A). 

Remark 2.12, It is convenient next to record the following result. If A is an 

LFD commutative ring and S is a torsion-free cancellative Abelian semigroup 

of finite rank n, then A[S] is LFD. For a proof, consider P E Spec(A[S]) and 

put p := P n A. To show that ht(P) < m,  it is enough to consider the height 

of PA[S]A\p = PA,[$], and so we may suppose that A is quasi-local, with 

unique maximal ideal p. Hence, dim(A) = ht(p) < m. With G := (S), we 

may appeal to [AG] and [GI, Corollary 11, as in the proof of Lemma 2.1, to 

show that ht(P) 5 dim(A[S]) = dim(A[G]) = dim(A[XI,. . . ,X,]) < oo, as 

asserted. 

Using terminology from [BDFlJ, we say that an integral domain A is 

catenarian if, for each pair P C Q of prime ideals of A, all saturated chains 

of primes from P to Q have a common finite length. Evidently, if A is a 

catenarian integral domain, then A is LFD. 

Theorem 2.13. Let A be an integral domain, S a torsion-free cancellative 

Abelian semigroup of rank 1,  and G := (S). Then A[S] is catenarian if and 

only if A[G] is catenarian. 

Proof. As the catenarian property is preserved by localization, the "only if" 

assertion is immediate. 
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Conversely, suppose that A[G] is catenarian. Since A[G] is then LFD by 

the above comment, it follows easily that A is LFD and so, by Remark 2.12, 

A[S] is LFD. Thus, it suffices to show that if Q1 C Q2 are prime ideds of 

A[S] such that ht(Qz/Ql) = 1, then ht(Q2) = ht(Q1) + 1. As usual, put 

T := {Xa(s E S). If Q2 fl T = 0, view matters in A[S]T = A[G], where 

ht(QzA[G]/QlA[G]) = ht(Qz/Ql) = 1; as A[G] is catenarian, ht(QzA[G]) = 

ht(QrA[G]) + 1, that is, ht(Q2) = ht(Q1) + 1, since ht(Q,A[G]) = ht(Qi). 

Thus, we may suppose that Q2 nT # 0. We see, as in the proof of Lemma 2.8, 

that S is not a group and Q2 = (pz, {X8(s E S\{O))), where pz := Q2 n A. 

By Lemma 2.4, there exists an indeterminate X such that A[X] C A[S] 

is an integral ring extension. Put Pi := Q; n A[X]. As in the proof of 

Theorem 2.9, ht(P2lPl) = 1 and so, since [ACKZ, Proposition 3.2(b)] ensures 

that A[X] inherits catenarity from A[G], we have ht(P2) = ht(Pl) + 1. By 

adjusting X as in the proof of Theorem 2.9, we have P2 = (pz,X) and so 

ht(P2) = ht(pzA[X]) + 1. Moreover, since p2A[S] # Q2, Proposition 2.2(b) 

yields that ht(Q2) = ht(pzA[S]) + 1. Put pl := Ql n A. Observe that 

plA[S] C Q1 c Q2. We next consider two cases. 

Suppose, first, that P~A[S]  = Q1. As pl 5 p2, we have Q1 E p2A[S] 5 Q:! 

and so, since ht(Q2/Q1) = 1, it follows that Q1 = p2A[S]. Then ht(Qz) = 

ht(pzA[S]) + 1 = ht(Q1) + 1, as desired. 

In the remaining case, plA[S] # Q1. Therefore, by Proposition 2.2(b), 

ht(Q1) = ht(~]A[Sl) + 1. Thus, it suffices to show that ht(pzA[S]) = 

ht(plA[S]) + 1. It is helpful to note that if p E Spec(A), then ht(pA[S]) = 

ht(pA[S]~) = ht(pA[G]) = ht(pA[X]), the final equality holding by Remark 

2.6(c). Hence 

to complete the proof. El 
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As in [BDFl], we say that an integral domain A is universally catenarian 

if AIXI,. . . , X,] is catenarian for each positive integer n. Important ex- 

amples of universally catenarian domains include arbitrary one-dimensional 

Noetherian integral domains (cf. [Rl, (2.6)], [BDFl, Corollary 6.41) and LFD 

Priifer domains (cf. [BDFl, Theorem 6.21). 

Corollary 2.14. Let A be a n  integral domain, S a torsion-free cancella- 

tive Abelian semigroup of rank 1, and G := (S). T h e n  A[S] is  universally 

catenarian if and only i f  A[G] is universally catenarian. 

Proof. As in the proof of Corollary 2.10, we need only note AIU][X1,. . . , X,] = 

A[Xl,. . . , X,][U] and apply the preceding theorem. 

Corollary 2.15. For a Noetherian integral domain A, the following condi- 

tions are equivalent: 

(1) A[S] is universally catenarian for each torsion-free cancellative Abelian 

semigroup S of rank 1; 

(2) A[G] is universally catenarian for each torsion-free Abelian group G; 

(3) A[S] i~ univer~al ly  catenarian for some torsion-free cancellative Abelian 

sernigroup S of rank 1; 

(4) A[G] is universally catenarian for some torsion-free Abelian group G 

of rank 1; 

(5) A is universally catenarian. 

Proof. It is trivial that (1) =+ (3). Moreover, Corollary 2.14 yields that (3) 

(4) and that (2) + (1). Since (2) (4) * (5) by [ACKZ, Theorem 3.31, 

the proof is complete. 

Recall that a commutative ring A of (Krull) dimension d is said to satisfy 

the first chain condition (in short, f.c.c.) in case each maximal chain of prime 

ideals in A has length d. If A is a finite-dimensional integral domain, then 

A satisfies the f.c.c. if and only if A is coequidimensional and catenarian (cf. 

[R2, Remark (1.2.2), (1.2.3)]). 
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Corollary 2.16. Let A be a finite-dimensional integral domain, S a torsion- 

free cancellative Abelian semigroup of rank 1, and G := (S). Then: 

(a) A[S] satisfies the f.c.c. if and only if AIG] satisfies the f.c.c. 

(b) Suppose, i n  addition, that A is Noetherian and universally catenar- 

ian. T h e n  the following conditions are equivalent: 

(1) A[S] satisfies the f.c.c.; 

(2) A[G] satisfies the f.c.c.; 

(3) A[X] satisfies the f.c.c. 

Proof. For (a), the above remark allows us to consider transfer of the "co- 

equidimensional" and "catenarian" properties. The former is handled by 

Theorem 2.5 and [ACKZ, Corollary 2.61; the latter, by Theorem 2.13. Then 

(b) follows from (a) and [ACKZ, Corollary 3.71. 

Remark  2.17. Let K be a field and, as usual, Q+ := {x E QIx > 0). 

As K[X] satisfies the f.c.c., Corollary 2.16(b) yields that the semigroup ring 

K[Qf] satisfies the f.c.c. We see, in the same way, that Z[Q+] also satisfies 

the f.c.c. For another application of Corollary 2.16(b), we have that K[S] 

and Z[S] each satisfy the f.c.c., where S := !jN f $N = {z E QI there exist 

m, n E N such that x = m/2 + n/3). 

Recall that an integral domain A is said to satisfy the second chain condi- 

tion (in short, s.c.c.) if B satisfies the f.c.c. for each integral domain B _> A 

such that B is integral over A. 

Proposition 2.18. Let A be a n  integral domain, S a torsion-free cancellative 

Abelian semigroup of rank 1, and G := ( S ) .  T h e n  the following conditions 

are equivalent: 

(1) A[S] satisfies the 3.c.c.; 

(2) A[G] satisfies the 3.c.c.; 

(3) A[X] satisfies the S.C.C. 
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Proof. By [ACKZ, Proposition 3.91, (2) (3). Thus we may suppose that 

S is not a group and so, by Lemma 2.4, there exists an indeterminate X 

such that the extension A[X] A[S] is integral. As the "s.c.c." property is 

inherited by the smaller partner of an integral extension (cf. [W, Remark 

1.3.4]), (1) =+ (3). Finally, (3) + (1) since "integrality" is transitive. 0 

Remark 2.19. Let K be a field, n a positive integer and, as usual, N := 

{z E Z1x 2 0). As an application of Proposition 2.18, we see that the 

semigroup ring K [N $ Z] satisfies the s.c.c. Indeed, K [N $ Z] 2 K [W[Z] 

(g K[X][Z]) by [G3, Theorem 7.11 and so an appeal to either Propposition 

2.18 or [ACKZ, Proposition 3.91 reduces the assertion to the classical fact 

that K [ X ,  Y] satisfies the s.c.c. 0 

Let A be an integral domain, with d := dim(A) < m. As in [ABDFK], A is 

called a JafTard domain if d is also the valuative dimension of A. This concept 

is related to some properties studied above by the following nonreversible 

implications noted in [ABDFK, Section 0] (for finite-dimensional A): 

A is universally catenarian + A is a stably strong S-domain + 
A satisfies the altitude inequality formula 9 A is a JafFard domain. 

To motivate Theoerm 2.20, observe the following consequence of [ABDFK, 

Corollary 1.181. If A is an integral domain, S a torsion-free cancellative 

Abelian semigroup of rank 1, and G := (S), then: A[S] is a JafFard domain 

H A[G] is a Jaffard domain A[X] is a JafTard domain. 

The analogues studied in Theorem 2.20 depend on the following concepts 

introduced in [C]. Let A be an integral domain. We say that A is locally 

J d a r d  if Ap is a JafTard domain for each P E Spec(A); that A is residually 

JafTard if A/P  is a Jaffard domain for each P E Spec(A); and that A is totally 

JafFard if Ap is residually JafFard for each P E Spec(A) or, equivalently, 

if AJP is locally Jaffard for each P E Spec(A). It is well known (as a 
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consequence of [K, Lemme 1.41) that an LFD integral domain A is locally 

Jaffard if and only if A satisfies the altitude inequality formula. 

Theorem 2.20. Let A be a finite-dimensional integral domain and S a 

torsion-free cancellative Abelian semigroup of rank 1. Then: 

(a) A[S] is locally Jaffard if and only if A[X] is locally Jaflard. 

(b) A[S] i~ residually Jaffard if and only if A[X] is residually Jaffard. 

(c) If A[S] is totally Jaffard, then A[X] is totally Jaflard. 

Proof. Let G := (S). By [ACKZ, Theorem 4.11, we may suppose that S # G; 

that is, S is not a group. By Remark 2.4, there exists an indeterminate X 

such that the ring extension A[X] C A[S] is integral. Applying the results on 

transfer of the "locally Jaffard," "residually Jaffard," and "totally Jaffard" 

properties for integral extensions in [ACKZ, Lemma 4.31, we immediately 

obtain (b), (c), and the "only if" assertion in (a). Thus, it remains only to  

prove that if A[X] is locally Jaffard, then A[S] is locally Jaffard. 

By the usual combination of [AG] and [GI], observe that A[S] is finite- 

dimensional, hence LFD. Therefore, by [K, Lemme 1.41, it suffices to prove 

that ht(P[Y]) = ht(P) for all P E Spec(AIS][X1,. . . , X,]) and all positive 

integers n. As A[S][Xl,. . . , X,] A[Xl,. . . ,X,][S] canonically, we may 

view P E Spec(A[Xl,. . . , X,][S]). For convenience, put 

A' := AIXl, . . . , X,], p := PnA',  and p' := P[Y]~A' [Y]  = (PnA1)[Y] = p[Y]. 

By the reformulation of Proposition 2.2(b) noted in Remark 2.3(b), we have 

that ht (P)  = ht(~A'[Sl) + ht(PlpA1[S]) and ht(P[Y]) = ht(plA1[S))+ 

ht(P[Y]lp'A1[S]), where we have identified A1[S][Y] with A1[Y][S]. 

Next, if Z is an indeterminate, note that 

with the first equality holding as in the proof of Proposition 2.2(a) and the 

second holding via Remark 2.6(c). Similarly, 
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We claim that ht(pA1[S]) = ht(pl[S]). To prove the claim, it suffices to 

show that ht(p[Z]) = ht(p[Y][Z]). As p[Y][Z] = p[Z][Y], [K, Lemme 1.41 

reduces our task to showing that Af[Z] S AIZ][X1,. . . ,X,] satisfies the 

altitude inequality formula. Now, since A[Z] E A[X] is locally Jaffard, A[Z] 

satisfies the altitude inequality formula and so, by [C, Proposition l(ii)], 

A[Z] [XI, . . . , X,] also satisfies the altitude inequality formula. Thus, the 

claim has been established. To complete the proof, it is enough to show that 

ht(P/pA1[S]) = ht(P[Y]/p'Af[S]). 

View P/pA1[S] inside (A' /p)[S] E A'[S]/pA1[S] and, similarly, PIY]/plA'[S] 

= PIY]/pA1[S][Y] E (A1/p)[S][Y]. As these prime ideals are each disjoint 

from the multiplicatively closed set T := (Af/p)\{O}, their heights are not af- 

fected by localizing at T. With K denoting the quotient field of A1/p, we thus 

have (P/pAf[S])= E (A1/p)[S]~ = K [ S ]  and, similarly, (PIY]/plA'[S])~ E 

K[S][Y]. Hence, it suffices to prove that if q E Spec(K[S]), then ht(q) = 

ht(q[Y]). Now, by Corollary 2.11 (or by combining Corollary 2.15 with 

[BDFl, Theorem 2.4]), K[S] is a stably strong S-domain. In particular, 

K[S] is a strong S-domain, and so one way to finish the proof is to appeal 

to [Kap, Theorem 391. For an alternate finish, using that K[S] is a stably 

strong S-domain, use [K, Th6orkme 1.61 to see that K[S] satisfies the alti- 

tude inequality formula; then, an application of [K, Lemme 1.41 completes 

the proof. 0 

3. Results for finitely generated semigroups. This section is devoted 

to the semigroup rings A[S], where A is an integral domain and S is a finitely 

generated torsion-free cancellative Abelian semigroup. It is clear that if S 

can be generated by n elements, then A[S] E A[Xl,. . . , X,]/P for some 

prime ideal P such that P n A = 0. 
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Proposition 3.1. Let A be an integral domain and S a finitely denerated 

torsion-free cancellative Abelian semigroup. Then A[S] is a stably strong S- 
domain (resp. universally catenarian) if and only if A is  a stably strong 

S-domain (resp., universally catenarian). 

Proof. The classes of stably strong S-domains and of universally catenarian 

domains are each stable with respect to localization, factor domains, and 

adjunction of finitely many indeterminates (cf. [MM, Theorem 3.21, [BDFl, 

Corollary 3.31). Writing A[S] as A[Xl,. . . , X,,]/P as above, we thus obtain 

the "if" assertions. For the converses, it suffices to observe that A is a 

homomorphic image of a ring of fractions of A[S]. 0 

Proposition 3.2. Let A be a finite-dimensional integral domain. Then 

A[S] is coequidimensional for each finitely generated torsion-free cancellative 

Abelian semigroup S if and only if AIXI,. . . , X,] is coequidimensional for 

each positive integer n .  

Proof. The "only if" assertion is trivial because A[Nn] A[Xl, . . . , X,]. 

Conversely, for S as in the statement, we have A[S] 2 A[Xl,. . . , X,]/P, 

with P prime such that P n A = 0 and AIXI,. . . , Xk] coequidimensional 

for each k. Put G := (S) and r := rank(S) = rankG. Since S is finitely 

generated, so is G, whence r < CQ. Without loss of generality, S # 0, and 

so r 2 1, It suffices to show that if M is a maximal ideal of A[S], then 

ht(M) = dim(A[S]). Put m := M n A. Note that under the standard A- 

algebra isomorphism A[S] S :'[XI,. . . , Xn]/P,  we have M r N I P  for some 

maximal ideal N of AIXI,. . . , X,], whence N n A = M n A = m. Now, since 

AIX1,. . . , X,] is coequidimensional and finite-dimensional (this is the only 

place we use the hypothesis that dim(A) < oo), it follows from (the second 

assertion in) [AG, Corollary 4.31 that m is a maximal ideal of A. Also, since 

AIX1,. . . , X,] is coequidimensional, dim(AIX1,. . . , X,]) = ht (Q) ,  where Q 

is any maximal ideal containing mAIX1,. . . , X,]. - Now, as m is maximal, 
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ht(Q) = ht(mA(X1,. . . , X,]) + r (cf. Lemma 2.1). Since [AG] and [Gl] com- 

bine, as in the proof of Lemma 2.1, to show that dim(A[S]) = dim(A[G]) = 

dim(AIX1,. . . ,X,]), the upshot is that dim(A[S]) = ht(mA[XI,. . . ,X,])+r. 

It remains only to prove that ht(M) = ht(mA[Xl,. . . , X,]) + r. 
By (the first assertion in) [AG, Corollary 4.31, ht(M) = ht(mA[S]) + r,  

and so it suffices to show that ht(mA[S]) = ht(mA[Xl,. . . , X,]). For this, 

note that ht(mA[S]) = ht(mA[G]) as in the proof of Proposition 2.2(a); and 

ht(mA[G]) = ht(mA[XI, . . . , X,]) by Remark 2.6(c). 0 

It may be of some technical value to record that the preceding proof ac- 

tually established the following statement. Let A be a finite-dimensional 

integral domain and S an n-generated torsion-free cancellative Abelian semi- 

group of rank r. If both A[Xl,. . . , X,] and A[Xl,. . . , X,] are coequidimen- 

sional, then so is A[S]. (In the preceding assertion, if A is also assumed 

to be a stably strong S-domain, then we may delete the hypothesis that 

AIXl, . . . , X,] is coequidimensional. Indeed, since r 5 n, the coequidimen- 

sionality of A[Xl,. . . ,X,] would follow from that of A[Xl,. . . ,X,]. More 

generally, we have the following result, of independent interest. If A is a 

strong S-domain such that A[X] is coequidimensional, then A is coequidi- 

mensional. This may be proved by using the fact [Kap, Theorem 391 that if 

a maximal ideal M of A has ht(M) = d, then (M,X) is a maximal ideal of 

A[X] with height d + 1.) 

Corollary 3.3. Let A be a finite-dimensional integral domain. Then A[S] 

satisfies the f.c.c. (first chain condition) for each finitely generated torsion- 

free cancellative Abelian semigroup S if and only if AIXl , . . . , X,] satisfies 

the f.c.c. for each positive integer n. 

Proof. Recall that a finite-dimensional domain satisfies the f.c.c. if and only 

if it is coequidimensional and catenarian. Moreover, by the usual combina- 

tion of [AG] and [GI], each of the semigroup rings (and polynomial rings) 
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mentioned in the statement is finite-dimensional. The statement now follows 

easily from Propositions 3.1 and 3.2, in light of the following two observa- 

tions. First, if each A[S] of the above type is catenarian, then it is universally 

catenarian, for AIS][X1,. . . , X,] A[S][Nn] A[S@ Nn] and S@ Nn is also 

a semigroup of the above type. Second, if A is universally catenarian, then 

so is AIX1,. . . , X,] for each positive integer n. 0 

Example 4.5 will show that one cannot delete the hypothesis that S is 

finitely generated in Proposition 3.2 or Corollary 3.3. 

Remark 3.4. As Z is universally catenarian and ZIX1,. . . , X,] is known 

to be coequidimensional for each positive integer n, Z[Xl,. . . , X,] satis- 

fies the f.c.c. Therefore, by Corollary 3.3, Z[S] satisfies the f.c.c. for each 

finitely generated torsion-free cancellative Abelian semigroup S. Similarly, 

if K is any field and S is as above, we may verify that K[S] satisfies the 

f.c.c. Indeed, any such K[S] satisfies the s.c.c., by [BCL, Theorem C], since 

K[S] 2 KIXl , . . . , Xn] /P  is an &ne domain. 

A word is in order regarding the techniques of proof in the find two re- 

sults in this section. In dealing with finitely generated semigroups, we cannot 

automatically use results developed for the rank 1 case, such as Lemma 2.4, 

Lemma 2.8, and Proposition 2.2(b). Recall that Proposition 2.2(b) was re- 

formulated in Remark 2.3(b) to state that ht(P) = ht(pA[S]) + ht(P/pA[S]) 

for A, S, P and p as in the hypothesis of Proposition 2.2(b). According to 

[AG, Theorem 4.11, the same conclusion holds for A, S as in this section, and 

so it will be exploited below. As in earlier proofs, we shall also exploit [AG], 

[GI] and Remark 2.6(c). 

Theorem 3.5. If A is an integral domain and S is a nonzero finitely gener- 

ated torsion-free cancellative Abelian ~emigroup, then A[S] is an S-domain. 

Proof. We show that if P E Spec(A[S]) and ht(P) = 1, then ht(P[X]) = 1. 
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Put p := P n A. Evidently, pA[S] E Spec(A[S]) and pA[S] E P. There are 

two cases. 

Suppose, f i s t ,  that pA[S] = P. Put G := (S) and r = rank(S) = 

rank(G). As in the proof of Proposition 2.2(a), ht(pA[S]) = ht(pA[G]); 

and by Remark 2.6(c), ht(pA[G]) = ht(pA[Xl,. . . ,X,]). In particular, 

ht(pAIX1, . . . , X,]) = ht(P) = 1. As [FK, Proposition 2.11 ensures that 

AIX1,. . . , X,] is an S-domain, ht(pAIX1,. . . , X,][X]) = 1. Now, by set- 

ting T := {Xals E S) as usual, we have ht(P[X]) = ht(pA[SJ[X]) = 

ht(pA[s][X]~) = ht(pA[S]~[Xl) = ht(pA[Gl[X]) = ht(pA[GI[W) = ht(pA[G@ 

q). As (G @ N) = G $ Z, it follows from the proof of Proposition 2.2(a) 

that ~ ~ ( P A [ G  $ q) = ht(pA[G $ Z]). Moreover, since rank(G $ Z) = 

rank(G) + rank(Z) = r + 1, Remark 2.6(c) yields that ~ ~ ( P A [ G  @ Z]) = 

ht(pAIX1,. . . ,X,+l]), which is the same as ht(~A[Xl, .  . . ,X,][X]) = 1. 

Thus, ht(P[X]) = 1, as desired. 

In the remaining case, pA[S] 5 P. As A[S] is an integral domain and 

ht(P) = 1, it follows that PA[S] = 0, and sop = 0. Let K be the quotient field 

of A. Then ht(P[X]) = ht(PA[S][X]A\{o}) = h t ( P ~ \ { ~ ) A ~ \ { ~ ) [ S ] [ X I )  = 

ht(PA\{o)KIS][X]). Observe that PA\{o)KIS] =  PA\{^) is a height 1 prime 

ideal of K[S]. Thus, it suffices to show that K[S] is an S-domain. In fact, 

since S is finitely generated, K[S] % K(X1,. . . , X,]/Q for some positive 

integer n and prime ideal Q; by Hilbert Basis Theorem, K[S] is Noetherian 

and, hence, a (stably strong) S-domain. 

Theorem 3.6. Let A be a finite-dimensional integral domain and S a finitely 

generated torsion-free cancellative Abelian semigroup, with r := rank(S). 

Then A[S] is locally Jaflard if and only if AIX1,. . . , X,] is locally Jaflard. 

Proof. By following the strategy enunciated prior to the statement of Theo- 

rem 3.5, one need only rework the proof of Theorem 2.20. In doing so, the 

reader may find the following four comments to be helpful. First, the "lo- 
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cally Jaffard" property is preserved by localization at arbitrary multiplicative 

sets (cf. [ABDFK, Proposition 1.5)). Thus, if A[S] is locally J d a r d ,  then 

so is A[G], and by [ACKZ, Theorem 4.l(a)], so is A[Xl,. . . ,X,]. Second, 

to restate part of the strategy, avoid the appeal to Remark 2.3(b) by citing 

[AG, Theorem 4.11. Third, replace Z with 21,. . . , Z,, as in Remark 2.6(c). 

Finally, show that K[S] is a stably strong S-domain by arguing as at the 

close of the proof of Theorem 3.5. 0 

4. Examples and counterexamples. The material in this section serves 

two purposes. Examples 4.1-4.4 and 4.5(b) give some semigroup rings which 

are new examples of the following types of integral domains: universally 

catenarian, stably strong S-, locally JafTard, residually JafTard. On the 

other hand, Example 4.5(a) shows that one cannote delete the hypotheses 

"rank(S) = 1" or "S is finitely generated" in Theorem 2.5, Corollary 2.16, 

Proposition 3.2 and Corollary 3.3. Example 4.5(a) also illustrates that some 

results on group rings A[(S)], notably [ACKZ, Corollaries 2.6 and 3.71, do 

not generalize to semigroup rings A[S]. 

Example 4.1. Let V = F + M be a nontrivial discrete rank 1 valuation 

domain with maximal ideal M, where F is a field; let k be a proper subfield 

of F such that [F : k] < ca; and put A := k + M. (For instance, let K be a 

field, consider V = K(X)[Y](Y) = K(X)+  M with M = YV, let k = K(XZ) 

and put A = K(XZ) + YK(X)[Y](y).) Then A[Q+] is universally catenarian. 

Proof. Since Q+ is a torsion-free cancellative Abelian semigroup of rank 1, 

Corollary 2.15 shows that it is enough to prove that A is Noetherian and 

universally catenarian. Now, by standard facts about the classical D + M 

construction (cf. [G2]), A is Noetherian, since V is Noetherian, k is a field and 

[F : k] < co; also, dim(A) = dim(k) + dim(V) = 0 + 1 = 1. Finally, to verify 
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that A is universally catenarian, it suffices to note that A is a one-dimensional 

Noetherian integral domain, by [Rl, (2.6)]; or that A is a Cohen-Macaulay 

ring, by [M, Theorem 311; or that A is a going-down domain whose integral 

closure (namely, V) is an LFD Priifer domain, by [BDFl, Theorem 6.21; or 

that a pullback result such as [ADKM, Corollary 2.31 may be applied. 

The above argument shows that in Example 4.1, Q+ may be replaced, 

more generally, by any torsion-free cancellative Abelian sernigroup of rank 1. 

We have chosen the above specificity to make clearer the relations between 

the construction in Example 4.1 and those in Examples 4.2-4.4. Before devel- 

oping the latter examples, we make two additional remarks about Example 

4.1. 

First, the ring A[Q+] in Example 4.1 does not satisfy the f.c.c. Indeed, 

although A[Q+] is (universally) catenarian by Example 4.1, A[Q+] is not 

coequidimensional. To see this, it suffices, by Theorem 2.5, to show that 

A[U] is not coequidimensional, where U is an indeterminate over A. Now, 

since A is one-dimensional Noetherian, dim(A[U]) = 2, and so it is enough 

to find a height 1 maximal ideal of A[U]. This is done via [Kap, Theorem 241 

for, since A is a G-domain, some maximal ideal N of A[U] satisfies N n A  = 0 

and then, necessarily, h t ( N )  = 1 (cf. [Kap, Theorem 371). 

Second, we address the claim that the ring A[Q+] in Example 4.1 is a 

"new example" of a universally catenarian domain. Specifically, we show 

that [BDFS, Theorem 11 does not apply to A[Q+]. The result in question 

asserts that any LFD stably strong S-going-down domain must be universally 

catenarian. Now, in view of what was shown in Example 4.1, A[Q+] i s  an 

LFD stably strong S-domain. Accordingly, we must show that A[Q+] is not 

a going-down domain. If not, then since W is a subsemigroup of Q+, A[W 

is (isomorphic to) a factor domain of A[Q+], and so A[W is a going-down 

domain by [D2, Remarks 2.11 and 3.2(a), (b)]. It follows from [Dl, Theorem 
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2.21 that if Z is an indeterminate, then A[Z] A[W is a treed domain, a 

contradiction. 

The next result analyzes further Nagata's example of a two-dimensional 

Noetherian integral domain A which is not universally catenarian. 

Example 4.2. Let K be a field and W := KIX,Y](x-l,r). Let (V,P) be 

a Noetherian valuation overring of K[X, Y] such that P fl K[X, Y] = (X, Y) 

and VIP  S K. Put T := V n  W; and let M, N denote the two maximal ideals 

of T. Put A := K f ( M n  N). Then A[Q+] is a stably strong S-domain which 

is neither Noetherian nor catenarian. 

Proof. It is well known (cf. [N, Theorem 11.111, [Kap, Theorem 1071) that 

since V and W are incomparable, T has exactly two maximal ideals, which 

may be labeled M, N so that TM = V and TN = W. Since T is quasi- 

semilocal and its localizations at its maximal ideals are both Noetherian, it 

follows from [N, (El.l), p. 2031 that T is Noetherian. Moreover, TIM r 

T M / M T ~  = VIP = K and, similarly, TIN S K ,  so that T IM and TIN 

are each (trivially) finite-dimensional field extensions of K.  Accordingly, one 

may apply [N, (E2.1), p. 2041 to show that A is a (Noetherian) local ring. 

Now, use Remark 2.6(c) to find an indeterminate Z such that there is an 

integral ring extension A[Z] C A[Q]. Since A[Z] inherits the Noetherian 

property from A, [MM, Proposition 4.201 yields that A[Q] is a stably strong 

S-domain. As (Q+) = Q, Corollary 2.10 then shows that A[Q+] is also 

a stably strong S-domain, as asserted. Finally, [G3, Theorem 20.71 ensures 

that A[Q+] is not Noetherian, since Q+ is not a finitely generated semigroup; 

and since it is known that A[Q] is not catenarian [ACKZ, Example 5.3(c)], 

an application of Theorem 2.13 yields that A[Q+] is not catenarian. 

Example 4.3. If K is a field and A := KIXI] + XK(X1, X2)[X](x), then 

A[Q+ $ Z] is locally J d a r d  but not residually J d a r d .  
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Proof. A can be obtained via a classical D + M construction, as follows. Take 

(V, M)  := K(Xl,X2)[X](x) = K(X1,Xz) + M, with M = XV; then A = 

KIXl] + M. By the standard facts about the D + M construction (d. [BG, 

Theorem 2.11, [ABDFK, Theorem 2.11]), dim(A) = dim(K[Xl]) + dim(V) = 

I f 1  = 2 and dim,(A) = dim,(K[X1])+dimV(V)+t.d.(K(X1, Xz)/K(Xl)) = 

1+1+1 = 3. Thus, A is not a Jaffard domain. As A is (isomorphic to) afactor 

domain of A[Yl, &I, it follows that A[Yl, Yz] is not residually Jaffard. Thus, 

to prove that A[Q+ $ Z] is not residually Jaffard, [ACKZ, Lemma 4.3(b)] 

shows that it is enough to find (algebraically independent) indeterminates 

Yl , Y2 such that there is an integral ring extension AIYl, Yz] C A[Q+ $ Z]. 

Now, since Q+ is of rank 1 and is not a group, Lemma 2.4 may be applied, 

yielding an indeterminate Yl such that AIYl] C_ A[Q+] is an integral exten- 

sion. Thus, if Y2 is an indeterminate which is algebraically independent of Yl 

with respect to A, we infer an integral ring extension AIYl, Yz] G A[Q+][fi]. 

Put B := A[Q+]. It suffices to find an integral ring extension B[Y2] C 

A[Q+ $ Z]. To this end, identify A[Q+ $ Z] &! A[Q+] [Z] = B[Z] &! B[T, T-'1 

for a suitable indeterminate T. As noted in [ACKZ], U := T+T-' is indeter- 

minate over B and the ring extension B[U] C B[T, T-'1 is integral (essentially 

since T2 - UT + 1 = 0). Hence, B[Y2] % B[U] G B[T + T-'1 E A[Q+ $ Z] 

may be viewed as an integral ring extension. In this way, we have the desired 

integral ring extension A[Yl,Y2] 5 A[Q+ $ Z] and so, as explained above, 

A[Q+ $ Z] is not residually Jaffard. 

It remains to show that A[Q+ $ Z] is locally Jaffard. By [C, Proposition 

l(ii)], A[K,.  . . , Yd] is locally Jaffard for all integers d 2 dim,(A) - 1 = 2; 

in particular, A[Yl,Y2] is locally Jaffard. It follows from (ACKZ, Theo- 

rem 4.l(a)] that A[Yl][Z] E A[Z][Yl] is locally Jaffard. Hence, by Theorem 

2.20(a), so is A[Z][Q+] E A[Q+ $731. 0 

We turn to a construction whose properties are more fully developed than 

those in Example 4.3. For the reader's convenience, we give a self-contained 
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development of Example 4.4, which begins by aping the beginning of Example 

4.3. 

Example 4.4. Let K be a field and A := K + YK(X)[Y](y). Then A[Q+] 

is locally Jaffard; but A[Q+] is neither residually Jaffard, a strong S-domain, 

nor catenarian. 

Proof. A can be obtained via a classical D + M construction, as follows. Take 

(V, M) := K(X)[Y](y) = K(X) + M, with M = YV; then A = K + M. By 

the standard facts about the D + M construction (cf. [BG, Theorem 2.11, 

[ABDFK, Proposition 2.5(a)]), we have that A is quasi-local one-dimensional 

and dim,(A) = dim,(V)+t.d.(K(X)/K) = 1+1 = 2. Thus, A is not a locally 

J d a r d  domain; but, by [C, Proposition l(ii)], A[X] is locally Jaffard. Hence, 

by Theorem 2.20(a), A[Q+] is also locally J d a r d ,  as asserted. However, 

since a factor domain of A[X] (namely, A) is not a J d a r d  domain, A[X] is 

not residually J d a r d ,  and so by Theorem 2.20(b), A[Q+] is not residually 

JafFard. Finally, since (Q+) = (Q) and [ACKZ, Example 5.4(c), (d)] showed 

that A[Q] is neither a strong S-domain nor catenarian, Theorems 2.9 and 

2.13 yield the corresponding conclusions for A[Q+]. O 

We close with an example having many interesting features. Indeed, Ex- 

ample 4.5 studies additional properties of a construction due to Arnold and 

Gilmer [AG], which has already been mentioned in Remark 2.3(b). In the 

first paragraph of this section, we have explained the "counterexample" role 

played by Example 4.5(a) relative to four results in this paper and two results 

in [ACKZ]. However, Example 4.5(b) has an additional purpose, namely to 

give a new class of residually JafFard domains. As a companion for a result 

[ACKZ, Theorem 4.l(b)] on group rings A[G] and for the above result, The- 

orem 2.20(b), on semigroup rings A[S] where rank(S) = 1, Example 4.5(b) 

identifies a residually Jaffard semigroup ring A[S], such that rank(S) = 2 

and S is not finitely generated. Thus, together with Example 4.3, Example 
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4.5(b) gives reason to focus a future study of semigroup rings A[S] on the 

case of rank(S) = 2. 

Example 4.5. Let K be a field and for some positive integer n 2 2, let 

XI,. . . ,An be rationally independent positive real numbers. Let S denote 

the additive semigroup of all nonnegative real numbers of the form ilXl + 
. . + inXn, with each ij E Z. Then: 

(a) S is a torsion-free cancellative Abelian semigroup of rank n, S is 

not a group, and S is not finitely generated. For each positive integer m, 

K I X I , .  . . , X,] is coequidimensional and catenarian, and hence satisfies the 

f.c.c. However, K[S] is not coequidimensionai and so does not satisfy the 

f.c.c. 

(b) Assume, in addition, that n = 2. Then K[S] is residually Jaffard. 

Proof. (a) As (S) = Zn, rank(S) = n. The other assertions about S were 

noted earlier. Now, by the usual combination of [GI] and [AG], dim(K[S]) = 

dim(KIXl,. . . , X,]) = n > 1, although [AG, p. 3111 produces a maximal 

ideal P of K[S] such that ht(P) = 1. Thus, K[S] is not coequidimensional, 

and so K[S] does not satisfy the f.c.c. The assertions about K[Xl, .  . . , X,] 

are classical (cf. [S, Proposition 15, p. 111-231). 

(b) We show that B := K[S]/P is a Jaffard domain for each P E Spec(K[S]). 

This is clear if P = 0, for [ABDFK, Corollary 1.181 reduces the matter to 

observing that KIX1, X*] is (Noetherian and so) a J d a r d  domain. The 

assertion is also clear if ht(P) = 2, for B is then a field. 

It remains to consider the case ht(P) = 1. Without loss of generality, P 

is not a maximal ideal, and so dim(B) = 1. By [ABDFK, Theorem 1.101, 

it suffices to prove that B is an S-domain; i.e., that ht(Q[X]/P[X]) = 1 

for each prime ideal Q 3 P of K[S]. Now, Q[X] is not a maximal ideal of 

K[S][X], and the usual combination of [GI] and [AG] yields that K[S][X] 

K [ S  $ E K[X][S] is three-dimensional, whence ht(&[X]) _< 2. Hence, 

ht(Q[X]/P[X]) < 1. However, the reverse inequality also holds since PIX] C 

Q[X] are distinct prime ideals. The proof is complete. 0 
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