
Zaks’ conjecture on rings with semi-regular proper
homomorphic images

K. Adarbeh1, S. Kabbaj1,∗

Department of Mathematics and Statistics
King Fahd University of Petroleum & Minerals

Dhahran 31261, Saudi Arabia

Abstract

In this paper, we prove an extension of Zaks’ conjecture on integral domains with
semi-regular proper homomorphic images (with respect to finitely generated ideals) to
arbitrary rings (i.e., possibly with zero-divisors). The main result extends and recovers
Levy’s related result on Noetherian rings [23, Theorem] and Matlis’ related result on
Prüfer domains [26, Theorem]. It also globalizes Couchot’s related result on chained
rings [10, Theorem 11]. New examples of rings with semi-regular proper homomorphic
images stem from the main result via trivial ring extensions.
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1. Introduction

Throughout this paper, all rings considered are commutative with identity and all mod-
ules are unital. A ring R is coherent if every finitely generated ideal of R is finitely
presented. The class of coherent rings includes strictly the classes of Noetherian rings,
von Neumann regular rings, valuation domains, and semi-hereditary rings. The concept
of coherence stemmed up from the study of coherent sheaves in algebraic geometry;
and later developed towards a full-fledged topic in commutative algebra under the in-
fluence of homology. For more details on coherence, see please [15, 16].

In 1982, Matlis proved that a ring R is coherent if and only if homR(M,N) is flat
for any injective R-modules M and N [25]. In 1985, he defined a ring R to be semi-
coherent if homR(M,N) is a submodule of a flat R-module for any injective R-modules
M and N. Then, inspired by this definition and von Neumann regularity, he defined
a ring to be semi-regular if any module can be embedded in a flat module. He then
provided a connection of this notion with coherence; namely, a ring R is semi-regular
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if and only if R is coherent and RM is semi-regular for every maximal ideal M of R.
Moreover, he proved that in the class of reduced rings, semi-regularity coincides with
von Neumann regularity; and under Noetherian assumption, semi-regularity coincides
with self-injectivity [26]. It is worth noting, at this point, that the notion of semi-regular
ring was briefly mentioned by Sabbagh (1971) in [30, Section 2] and studied in non-
commutative settings by Jain (1973) in [18], Colby (1975) in [8], and Facchini & Faith
(1995) in [12], among others, where it was always termed as IF ring. Also, it was
extensively studied -under IF terminology- in valuation settings by Couchot in [10].
Recall here that a semi-regular ring is self fp-injective [18, Theorem 3.3].

A domain R is Dedekind if every ideal of R is projective. In 1966, Levy proved
a dual version for this result stating that, for a Noetherian ring R (possibly with zero-
divisors), every proper homomorphic image of R is self-injective if and only if R is a
Dedekind domain or a principal ideal ring with descending chain condition or a local
ring whose maximal ideal M has composition length 2 with M2 = 0 [23, Theorem]. In
1985, Matlis proved that if R is a Prüfer domain, then R/I is semi-regular for every
nonzero finitely generated ideal I of R [26, Proposition 5.3]. Then Abraham Zaks
conjectured that the converse of this result should be true; i.e., an integral domain R
is Prüfer if and only if R/I is semi-regular for every nonzero finitely generated ideal
I of R . This was proved by Matlis in [26, Theorem, p. 371]; extending thus Levy’s
theorem in the case of integral domains.

In this paper, we prove an extension of Zaks’ conjecture on integral domains with
semi-regular proper homomorphic images (with respect to the finitely generated ide-
als) to arbitrary rings (i.e., possibly with zero-divisors). The main result (Theorem 2.1)
globalizes Couchot’s related result on chained rings [10, Theorem 11]; and also ex-
tends and recovers Matlis’ related result on Prüfer domains (Corollary 2.10) and Levy’s
related result on Noetherian rings (Corollary 2.11). New examples of rings with semi-
regular proper homomorphic images stem from the main result via trivial ring exten-
sions.

For the reader’s convenience, the following diagram of implications summarizes
the relations among the main notions involved in this paper:

?

HHH
HHHHj

���
�����

? ?

���
����� ?�
���

����

HHH
HHHHj

���
�����

qQuasi-Frobenius

qSelf-injective q
Semi-regular

qNoetherian

qSelf fp-injective q
Coherent

qDedekind

q Prüfer domain

Throughout, for a ring R, let Q(R) denote its total ring of quotients, Z(R) the set of
its zero-divisors, and Max(R) the set of its maximal ideals. For an ideal I of R, Ann(I)
will denote the annihilator of I.
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2. Main result

A ring R is arithmetical if every finitely generated ideal of R is locally principal [13,
19, 21]; and R is a chained ring if R is local and arithmetical [6, 7, 17]. In the domain
setting, these two notions coincide with Prüfer and valuation domains, respectively. In
[10], Couchot investigated semi-regularity (termed as IF-ring) in the class of chained
rings (termed as valuation rings). It is worthwhile recalling that, in a Noetherian setting,
semi-regularity coincides with self-injectivity [26, Proposition 3.4]; and under coher-
ence, it coincides with the double annihilator condition (i.e., Ann(Ann(I)) = Ann(I),
for every finitely generated ideal I) [26, Proposition 4.1].

Throughout, for a ring R and an R-module M, l(M) will denote the composition
length of M (= ∞, if M has no composition series).

A ring R is called residually semi-regular if R/I is semi-regular, for every nonzero
finitely generated proper ideal I of R. Levy (resp., Matlis) proved that a Noetherian do-
main (resp., a domain) R is residually semi-regular if and only if R is Dedekind (resp.,
Prüfer) [23, Theorem(1)] and [26, Proposition 5.3]. In the non-domain setting, Levy’s
result [23, Theorem(2)&(3)] also ensures that a Noetherian ring with zero-divisors is
residually semi-regular if and only if R is principal Artinian or (R,M) is local with
M2 = 0 and l(M) = 2. Also, recall Couchot’s result that a chained ring is residually
semi-regular [10, Theorem 11].

In order to proceed to the main result, we need the notion of residual coherence.
Namely, a ring R is residually coherent if R/I is coherent, for every nonzero finitely
generated proper ideal I of R. Obviously, coherent rings and residually semi-regular
rings are residually coherent. Also, note that while chained rings are always residually
coherent by [9, Corollary II.14] (or [10, Theorem 11]), arithmetical rings are not; see
[9, Theorem II.15] and Example 3.2.

The following result extends (and solves) Zaks’ conjecture to arbitrary rings (i.e.,
possibly with zero-divisors), generalizing thus Levy’s, Matlis’, and Couchot’s afore-
mentioned results. Recall, for convenience, that a semi-regular ring, being equal to its
total ring of quotients, is always a Prüfer ring.

Theorem 2.1. Let R be a ring and consider the following conditions:

(C1) (R,M) is local with M2 = 0 and l(M)≤ 2.
(C2) R is arithmetical and residually coherent, and RM is a semi-regular ring for every

M ∈Max(R) such that Ker(R→ RM) 6= 0.

Then, R is residually semi-regular if and only if R satisfies (C1) or (C2).

Notice, at this point, that a coherent arithmetical ring is not residually semi-regular,
in general. This is evidenced by Example 3.1, which shows that the assumption “RM is
semi-regular for every M ∈Max(R) such that Ker(R→ RM) 6= 0” is not redundant with
R being arithmetical and residually coherent; and hence a global version for Couchot’s
result is not always true (even in the class of coherent rings). Moreover, the residual
coherence cannot be omitted from (C2) as shown by Example 3.2, which exhibits an
example of an arithmetical and locally semi-regular ring that is not residually coherent
(and, a fortiori, not residually semi-regular).

We break down the proof of the theorem into several lemmas.
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Lemma 2.2. Let R be a local residually semi-regular ring and let I1 and I2 be two
finitely generated ideals of R with I1∩ I2 6= 0. Then:

(i) I1∩ I2 is finitely generated.
(ii) I1 and I2 are comparable.

PROOF. (i) Let 0 6= x∈ I1∩I2. Without loss of generality, we may assume that Rx$ I1∩
I2 and consider the semi-regular ring R := R/Rx which is coherent by [26, Proposition
3.3]. Then, I1∩ I2 = I1∩ I2 is finitely generated in R. Hence I1∩ I2 is finitely generated
in R.

(ii) First, note that if 0 6= I,J, and K are three finitely generated ideals of R with
I ⊆ J and I ⊆ K, then, by [26, Proposition 4.1], R/I satisfies the double annihilator
condition on J/I and

Ann R
I
(

J
I
)+Ann R

I
(

K
I
) = Ann R

I
(

J∩K
I

)

that is,
(I : (I : J)) = J (1)

and
(I : J)+(I : K) = (I : J∩K) (2)

where by (I : J) we mean (I :R J) =
{

x ∈ R | xJ ⊆ I
}

. Now, 0 6= I1 ∩ I2 is finitely
generated by (i). Hence, by (2), we obtain

(I1∩ I2 : I1)+(I1∩ I2 : I2) = (I1∩ I2 : I1∩ I2) = R.

Therefore, 1 = x+ y, for some x ∈ (I1∩ I2 : I1) and y ∈ (I1∩ I2 : I2). It follows that, for
any a1 ∈ I1 and a2 ∈ I2, we have (1− y)a1 = xa1 ∈ I2 and ya2 ∈ I1. Since R is local,
either y or 1− y is a unit, forcing I1 and I2 to be comparable. �

Lemma 2.3. Let (R,M) be a local residually semi-regular ring and let x,y ∈ R.

(i) x2 6= 0 and y2 6= 0⇒ xy 6= 0⇒ (x) and (y) are comparable.
(ii) x2 = 0 and y2 6= 0⇒ (x)⊆ (y).

PROOF. (i) In view of Lemma 2.2, we only need to prove the first implication. Assume
x2 6= 0 and y2 6= 0. Clearly, x 6= 0 and y 6= 0. Suppose, by way of contradiction, that
xy = 0. Then, necessarily, (x) and (y) are incomparable. Next, let I := (x,y). Then,
for any z ∈ Ann(y), (x,z)∩ I 6= 0. By Lemma 2.2, z ∈ I since y /∈ (x,z). Therefore,
Ann(y) ⊆ I. Further, y /∈ I2; otherwise, y = ax2 + by2 for some a,b ∈ R yields y =
ax2(1− by)−1 ∈ (x), absurd. So, y 6= 0 in R := R/I2. We claim that Ann(y) = I in R.
Indeed, let t ∈ Ann(y). Then, there exist a,b ∈ R such that y(t−by) = ax2 ∈ (x)∩ (y).
By Lemma 2.2, y(t− by) = 0. Hence t− by ∈ Ann(y) ⊆ I. Hence t ∈ I. The reverse
inclusion is obvious, proving the claim. Now, the fact that R is semi-regular yields

I ⊆ Ann(I) = Ann(Ann(y)) = (y)⊆ I. (3)

It follows that (y) = I and therefore

I = (y)+ I2 = (y)+MI. (4)
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By Nakayama’s lemma, we get I = (y), the desired contradiction.
(ii) Assume x2 = 0 and y2 6= 0. Clearly, y 6= 0. Without loss of generality, we

may assume x 6= 0 and y is not a unit. If xy 6= 0, then (x) and (y) are comparable and
necessarily (x) ⊆ (y). Next, suppose that xy = 0 and let I := (x,y). Similarly to (i),
we have Ann(y)⊆ I, and y 6= 0 in R := R/I2; otherwise, y = ay2 for some a ∈ R yields
y(1− ay) = 0, absurd (since 1− ay is a unit). Also, ty = ay2 for some a ∈ R yields
t−ay ∈ Ann(y)⊆ I and so t ∈ I. That is, Ann(y) = I in R. Similar arguments as in (3)
and (4) lead to I = (y), as desired. �

Lemma 2.4. Let R be a local residually semi-regular ring and I a finitely generated
ideal of R. Then, either I is principal or I is generated by two elements with I2 = 0.

PROOF. Notice first that, for any 0 6= x,y,z ∈ R, (x,y) and (x,z) are comparable by
Lemma 2.2. It follows that any finitely generated ideal is generated by at most two
elements. So, I = (x,y) for some x,y ∈ R. If xy 6= 0 or x2 6= 0 or y2 6= 0, then I is
principal by Lemma 2.2 and Lemma 2.3, completing the proof of the lemma. �

Recall that a ring R is Gaussian if c( f g) = c( f )c(g) for any polynomials f ,g in
R[X ], where c( f ) denotes the content of f (i.e., the ideal of R generated by the co-
efficients of f ). The class of Gaussian rings lies strictly between the two classes of
arithmetical rings and Prüfer rings [6, 7, 31].

Lemma 2.5. Let (R,M) be a local residually semi-regular ring. Then, R is Gaussian.
Moreover, if Z(R) is not uniserial and (Z(R))2 = 0, then Z(R) = M.

PROOF. By [7, Theorem 2.2], R is Gaussian if and only if, ∀ a,b ∈ R, (a,b)2 = (a2) or
(b2), and if (a,b)2 = (a2) and ab = 0, then b2 = 0. Next, let a,b ∈ R. The case a2 6= 0
and b2 6= 0 is handled by Lemma 2.3(i) and the case a2 6= 0 and b2 = 0 is handled
by Lemma 2.3(ii). If a2 = b2 = 0, then ab = 0 by Lemma 2.2, whence (a,b)2 = 0,
completing the proof of the first statement.

Next, suppose that Z(R) is not uniserial and (Z(R))2 = 0. The latter assumption
yields Z(R) = Ann(a), for every a ∈ Z(R). Further, by Lemma 2.2, there exist two
nonzero elements a,b ∈ Z(R) with (a)∩ (b) = 0. So, we obtain

Z(R) = Ann(b) = ((a)∩ (b) : b) = ((a) : b).

Since R/(a) is semi-regular and, hence, coherent, we deduce that Z(R) is finitely gen-
erated. Further, Z(R) is a prime ideal since R is local Gaussian. It follows that R/Z(R)
is a semi-regular integral domain and, hence, a field. That is, Z(R) = M, completing
the proof of the lemma. �

Let R be a ring and M an R-module. An R-module V is M-projective if the natural
map HomR(V,M)→ HomR(V,M/N) is surjective for every submodule N of M; and
V is quasi-projective if V is V -projective. A ring R is an fqp-ring if every finitely
generated ideal of R is quasi-projective [1, 11]. We always have:

Arithmetical⇒ fqp⇒ Gaussian
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and the fqp notion is a local property in the class of coherent rings [11, Proposition 4.4]
or [1, Corollary 3.15].

Lemma 2.6. Let (R,M) be a local residually semi-regular ring. Then, Ann(x) =
Ann(y), for any nonzero x,y ∈ R such that (x) and (y) are incomparable.

PROOF. If M2 = 0, then M = Ann(x) for every x ∈ M and the result trivially holds.
Next, assume M2 6= 0 and let x,y be two nonzero elements of R such that (x) and (y)
are incomparable. By Lemmas 2.2 and 2.3, we get

(x)∩ (y) = 0 and x2 = y2 = xy = 0.

Hence x,y ∈ Ann(x)∩Ann(y). Further, as seen in the proof of Lemma 2.5, Ann(x) =
((x)∩ (y) : x) = ((y) : x) is finitely generated; and likewise so is Ann(y). Hence, by
Lemma 2.2, Ann(x) and Ann(y) are comparable; say, Ann(x) ⊆ Ann(y). Next, we
prove the reverse inclusion. Let t ∈ Ann(y) and assume, by way of contradiction, that
tx 6= 0. First, notice that, via (1), we have

(tx,y)⊆
(
(tx) :

(
(tx) : (y)

))
⊆
(
(tx) :

(
(tx) : (tx,y)

))
= (tx,y).

Moreover,
(
(tx) : (x)

)
and

(
(tx) : (y)

)
are finitely generated by coherence of R/(tx);

and 0 6= x ∈
(
(tx) : (x)

)
∩
(
(tx) : (y)

)
. So, by Lemma 2.2,

(
(tx) : (x)

)
and

(
(tx) : (y)

)
are comparable. If

(
(tx) : (x)

)
⊆
(
(tx) : (y)

)
, then we obtain via (1)

(tx,y) =
(
(tx) :

(
(tx) : (y)

))
⊆
(
(tx) :

(
(tx) : (x)

))
= (x)

yielding (y)⊆ (x), absurd. So, suppose
(
(tx) : (y)

)
⊆
(
(tx) : (x)

)
. Then same argument

as above yields (x) ⊆ (tx,y). That is, x− atx ∈ (x)∩ (y) = 0, for some a ∈ R. Hence,
x(1−at) = 0, whence 1−at ∈ Ann(x)⊆ Ann(y). It follows that y = yat = 0, absurd.
�

Lemma 2.7. A local residually semi-regular ring is an fqp-ring.

PROOF. Let I be a finitely generated ideal of R. We shall prove that I is quasi projec-
tive. By [1, Theorem 2.3], we only need to prove that I ∼=

(R
J

)n, for some ideal J of R
and integer n≥ 0. By Lemma 2.4, either I is principal or I is generated by two elements
with I2 = 0. If I = Rx, then I ∼= R

Ann(x) , as desired. Next, suppose that I = (x,y) is not
principal. We claim that

I ∼=
(

R
Ann(x)

)2

.

To this purpose, consider the surjective R-map ϕ : R2→ I defined by ϕ(a,b) = ax+by.
Now, ϕ(a,b) = 0 yields ax = −by ∈ (x)∩ (y) = 0 by Lemma 2.2 since (x) and (y)
are incomparable. Therefore, a ∈ Ann(x) and b ∈ Ann(y) = Ann(x) by Lemma 2.6. It
follows that

Ker(ϕ) = Ann(x)×Ann(x)
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and thus

I ∼=
R2

Ann(x)×Ann(x)
∼=
(

R
Ann(x)

)2

completing the proof of the lemma. �

Lemma 2.8. Let (R,M) be a local ring with M2 = 0. Then, R is semi-regular if and
only if l(M)≤ 1.

PROOF. Assume R is semi-regular. We may assume that R is not a field and let 0 6= x ∈
M. Then, we have

xR = AnnR(AnnR(xR))
= AnnR(M)
= M.

Consequently, l(M) = 1. Conversely, assume that l(M) = 1 and let 0 6= x ∈M. Then,
we have

xR = M
= AnnR(M)
= AnnR(AnnR(xR)).

It follows that R satisfies the double annihilator condition on finitely generated ideals.
Since R is coherent (in fact, principal), then R is semi-regular by [26, Proposition 4.1].
�

Finally, we proceed to the proof of the theorem.

PROOF OF THEOREM 2.1. We first prove sufficiency. Let I be a nonzero finitely gen-
erated proper ideal of R. Assume that (C1) holds. Therefore, l(M/I) ≤ 1 and hence,
by Lemma 2.8, R/I is a semi-regular ring, as desired. Next, assume that (C2) holds.
Then, R/I is coherent. Next, let M ∈Max(R) with I ⊆ M and IRM = rRM , for some
0 6= r ∈ R. If rRM 6= 0, then

(R/I)M/I
∼= RM/rRM

is semi-regular by [10, Theorem 11(1)]. If rRM = 0, then

(R/I)M/I
∼= RM

is semi-regular by hypothesis. Therefore, by [26, Proposition 2.3], R is a residually
semi-regular ring.

Conversely, assume R is residually semi-regular and let us envisage two cases.
Case 1: Assume there is M ∈ Max(R) such that M2 = 0. Necessarily, (R,M) is

local with M being the only prime ideal of R. We will show that either R is a chained
ring or l(M) = 2. Without loss of generality, we may assume that R is not a field
(i.e., M 6= 0). If (a)∩ (b) 6= 0 for every nonzero a,b ∈M, then, by Lemma 2.2, R is a
chained ring. Further, let I be a nonzero proper ideal of R, 0 6= a ∈ I, and x ∈M. Then
either x ∈ (a) or a ∈ (x). The second case yields a = ux for some unit u ∈ R, hence
I = M = (a); i.e., l(M) = 1. By Lemma 2.8, R is semi-regular so that (C2) is satisfied.
Next, assume that there exist nonzero ao,bo ∈M such that

(ao)∩ (bo) = 0.
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Then, (ao) and (bo) are incomparable and, moreover, the assumption M2 = 0 yields the
following property for any 0 6= a,b ∈M:

(b)* (a)⇒M = (a,b). (5)

Indeed, we obviously have

M ⊆ (a : b) and M ⊆ (a : M).

Hence (a : b) = M since (a : b) 6= R and whence (a : (a : b)) = (a : M) = M since
(a : M) 6= R. So, we obtain

M = (a : (a : b))⊆ (a : (a : (a,b))) = (a,b)⊆M

where the second equality is ensured by (1), yielding M = (a,b), as claimed. It follows
that M = (ao,bo) and thus R is Artinian. Hence

2≤ l(M)< ∞.

Next, let I be an ideal of R with 0 $ I $ M and let 0 6= a ∈ I. Therefore, for any b ∈ R,
if b /∈ (a), then M = (a,b) by (5). It follows that I = (a) and no ideal can be inserted
between I and M. Consequently, l(M) = 2 so that (C1) is satisfied.

Case 2: Assume that M2 6= 0, for every M ∈ Max(R) (and observe that M2RM
might be null). Let M ∈Max(R) and, without loss of generality, assume that RM is not
a field. Note first that if r/1 = 0 for some nonzero r ∈ R, then

RM ∼= RM/rRM ∼= (R/rR)M/rR

is semi-regular, as desired. It remains to show that RM is a chained ring. To this pur-
pose, let us envisage two subcases. SUBCASE 2.1: Suppose that M2RM = 0. Necessar-
ily, RM ∼= (R/M2)M/M2 is semi-regular. Hence, by Lemma 2.8, l(MRM) = 1; whence
xRM = MRM , for any 0 6= x ∈ MRM . In particular, RM is a chained ring. SUBCASE
2.2: Suppose that M2RM 6= 0. By Lemma 2.7, RM is an fqp-ring. Assume, by way of
contradiction, that RM is not a chained ring. Then, by [1, Lemmas 3.12 & 4.5], we have

(Nil(RM))2 = 0 and Z(RM) = Nil(RM).

That is, (Z(RM))2 = 0. But, by Lemma 2.3, Z(RM) is not uniserial and therefore,
by Lemma 2.5, Z(RM) = MRM , the desired contradiction. So, in both cases RM is a
chained ring. Therefore, R is an arithmetical ring and, consequently, (C2) is satisfied
(since R is trivially residually coherent). �

As a first application of Theorem 2.1, the next corollary handles the special case of
reduced rings.

Corollary 2.9. Let R be a reduced ring. Then, R is residually semi-regular if and only
if R is either a Prüfer domain or a von Neumann regular ring.
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PROOF. An arithmetical reduced ring has weak global dimension ≤ 1 [6, Theorem
3.5], and hence it is locally a (valuation) domain [6, Theorem 3.4]. A combination
of this result with the basic fact “that a semi-regular domain is a field” leads to the
conclusion via Theorem 2.1.

As a straightforward application of Theorem 2.1 or Corollary 2.9, we recover
Matlis’ result which solved Zaks’ conjecture on residually semi-regular domains.

Corollary 2.10 ([26, Theorem, p. 371]). A domain R is residually semi-regular if and
only if R is Prüfer.

Next, we recover Levy’s result on Noetherian rings with self-injective proper homo-
morphic images. In this vein, recall for convenience that, under Noetherian assumption,
semi-regularity coincides with self-injectivity.

Corollary 2.11 ([23, Theorem]). Let R be a Noetherian ring and consider the follow-
ing conditions:

(C1) R is a Dedekind domain.
(C2) R is a principal Artinian ring.
(C3) (R,M) is local with M2 = 0 and l(M) = 2.

Then, R is residually semi-regular if and only if R satisfies (C1) or (C2) or (C3).

PROOF. In view of Corollary 2.10, we may assume that R is not a domain. For suffi-
ciency, it suffices to consider the case where R is principal Artinian. Then, obviously,
R is arithmetical. Moreover, let M ∈Max(R). Then, MRM = (t) for some 0 6= t ∈ RM
with tn = 0 for some minimal integer n≥ 2. So, the only nonzero ideals of RM are (tk)
where k = 1, . . . ,n−1, and one can easily check that

AnnRM (AnnRM (t
k)) = AnnRM (t

n−k) = (tk).

Therefore, RM is semi-regular and thus Theorem 2.1 leads to the conclusion. For ne-
cessity, in view of Theorem 2.1, we only need to consider the case when R is an arith-
metical residually semi-regular ring and check that R is principal Artinian. Indeed, let
M ∈Max(R). So, RM is a chained Noetherian ring. If RM is a domain, then it is semi-
regular (since R is not a domain) and a fortiori a field. If RM is not a domain, assume P
is a non-maximal prime ideal of RM . Then,

0 $ P⊆ ∩n≥1MnRM = 0

which is absurd. So, in both cases, we have dim(RM) = 0. Consequently, dim(R) =
0 and thus R is Artinian. It follows that R is principal by the structure theorem for
Artinian rings (since the arithmetical property is stable under factor rings), completing
the proof of the corollary. �

Another application of Theorem 2.1 shows that, in the class of semi-regular rings,
the arithmetical property coincides with the notion of residually semi-regular ring.
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Corollary 2.12. Let R be a semi-regular ring. Then, R is arithmetical if and only if R
is residually semi-regular.

PROOF. Combine Theorem 2.1 with Lemma 2.8 for sufficiency and [26, Proposition
2.1] for necessity. �

We will appeal to this corollary, in the next section, to provide new examples of
residually semi-regular rings, arising as arithmetical semi-regular rings.

3. Examples

We first provide an example of a coherent arithmetical ring which is not residually
semi-regular. This shows that the assumption “RM is semi-regular for every M ∈
Max(R) such that Ker(R→ RM) 6= 0” within Condition (C2) of Theorem 2.1 is not
redundant with the arithmetical property; and then Couchot’s result [10, Theorem 11]
that “a chained ring is residually semi-regular” does not carry up to (coherent) arith-
metical rings.

A ring is semi-hereditary if all its finitely generated ideals are projective. We have
the following (irreversible) implications [6, 15, 16]:

Prüfer domain arithmetical ring
↘ ↗

semi-hereditary ring → reduced ring
↗ ↘

von Neumann regular ring coherent ring

Example 3.1. A straightforward application of Corollary 2.9 shows that any semi-
hereditary ring with zero-divisors which is not a von Neumann regular ring is a basic
example of a coherent arithmetical ring that is not residually semi-regular.

The next example shows that the residual coherence cannot be omitted from Condi-
tion (C2) of Theorem 2.1; namely, we exhibit an arithmetical and locally semi-regular
ring that is not residually coherent (and, a fortiori, not residually semi-regular).

Example 3.2. We borrow our construction from [2, Example 2.5]. Let k be a field,
A := ∏i∈N Fi and I :=

⊕
i∈N Fi, where Fi = k ∀ i ∈ N. Let R := An A

I be the trivial
ring extension of A by A/I. Any prime ideal P of R has the form P := pn A

I , for some
prime ideal p of A. So, we have RP ∼= Ap n

Ap
Ip

, which is isomorphic to k if I * p or to
kn k if I ⊆ p. But, kn k is clearly principal (since it has a unique nonzero proper ideal
0n k) and quasi-Frobenius by [22, Theorem 3.6] or [2, Corollary 2.2]. It follows that R
is arithmetical and locally semi-regular, as desired. Now, let 0 6= x ∈ I and observe that

(x,0)R = xAn (0) so that Ann R
(x,0)R

(
(0,1)

)
=

In A
I

(x,0)R
is not finitely generated in R

(x,0)R

since In A
I is not finitely generated in R (due to the fact that I is not finitely generated

in A). So, R is not residually coherent, as desired.
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Next, we use Theorem 2.1 to construct original examples of non-local coherent
residually semi-regular rings beyond Matlis’, Levy’s, and Couchot’s contexts. For this
purpose, we investigate the transfer of this notion to trivial extensions.

Recall that the trivial extension of a ring A by an A-module E is the ring R := AnE,
where the underlying group is A×E and the multiplication is given by (a,e)(b, f ) =
(ab,a f + be). The ring R is also called the (Nagata) idealization of E over A and is
denoted by A(+)E [3, 27]. For more details on trivial ring extensions, we refer the
reader to Glaz’s book [15] and Huckaba’s books [17]. Recent works investigating
various ring-theoretic aspects of these constructions are [3, 5, 21, 22, 24, 28, 29].

Let us first recall an important result from [2] which establishes the transfer of
coherence to trivial ring extensions issued from domains. In this result, we use Fuchs-
Salce’s definition of a coherent module; that is, all its finitely generated submodules
are finitely presented [14, Chapter IV] (i.e., the module itself doesn’t have to be finitely
generated).

Lemma 3.3 ([2, Proposition 3.5]). Let A be a domain which is not a field, E a divis-
ible A-module, and R := An E. Then, R is coherent if and only if A is coherent, E is
torsion coherent, and AnnE(x) is finitely generated for all x ∈ A.

The next result investigates the transfer of the notion of residually semi-regular ring
to trivial ring extensions issued from local rings.

Proposition 3.4. Let (A,M) be a local ring, E a nonzero A-module, and R := An E.
Consider the following conditions:

(C1) A is a field and dimA(E)≤ 2.
(C2) M2 = 0 with l(M) = 1 and E ∼= A/M.
(C3) A is a non-trivial valuation domain, E is a uniserial divisible torsion coherent

module, and AnnE(x) is finitely generated for all x ∈ A.

Then, R is a coherent residually semi-regular ring if and only if any one of the above
three conditions holds.

PROOF. Assume that R is residually semi-regular. By Theorem 2.1, (MnE)2 = 0 with
l(MnE) = 2 or R is a chained ring. The first case yields M2 = 0 and ME = 0 (i.e., E
is an A/M-vector space) with l(M)+ l(E) = 2. It follows that either A is a field with
l(E) = 2 (i.e., dimA(E) = 2) or l(M) = 1 and l(E) = 1 (i.e., E ∼= A/M). Next, assume
that R is a chained ring. If A is a field, then dimA(E) = 1 by [4, Theorem 3.1]. If A
is not a field, then a combination of [11, Proposition 1.1] and Lemma 3.3 leads to the
conclusion. Conversely, suppose that (C1) or (C2) holds. Then, R is coherent by [20,
Theorem 2.6], and (MnE)2 = 0 with l(MnE) = 2. By Theorem 2.1, R is residually
semi-regular. Next, suppose that (C3) holds. By Lemma 3.3, R is coherent and, by [11,
Proposition 1.1], R is a chained ring and hence residually semi-regular by Theorem 2.1.
�

Notice that coherent residually semi-regular rings issued via (C1) or (C2) of Propo-
sition 3.4 are necessarily Noetherian. However, one may use (C3) to provide examples
of non-local non-Noetherian coherent residually semi-regular rings with zero-divisors
(i.e., beyond Matlis’, Levy’s, and Couchot’s contexts), as shown below.
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Example 3.5. Let A be a non-local non-Noetherian Prüfer domain, E := Q(A)
A , and

R := AnE. Then R is a non-local non-reduced non-Noetherian coherent residually
semi-regular ring. Indeed, R is not reduced (as it is the case of any trivial extension)
and it is neither local nor Noetherian since A is not. Moreover, R is a semi-regular
(and, a fortiori, coherent) ring by [2, Example 3.12]. Next, let M ∈ Max(R). Then,
M =mnE, for some maximal ideal m of A and hence

RM = AmnEm = Amn
Q(Am)

Am

with Am being a valuation domain. Now, Q(Am) is a coherent Am-module (since it is
torsion-free) and so is Em. Moreover, Em is clearly a divisible torsion module and

AnnEm(x) = (1/x)Am

for any nonzero x ∈ Am. It follows that RM is residually semi-regular by Proposi-
tion 3.4. Consequently, R is locally residually semi-regular and hence residually semi-
regular by Corollary 2.12, since semi-regularity is stable under localization and the
arithmetical notion is a local property.
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