COLLOQUIUM MATHEMATICUM

Online First version

Colloq. Math. 150 (2) (2017) 229-241

MATLIS' SEMI-REGULARITY IN TRIVIAL RING EXTENSIONS OF INTEGRAL DOMAINS

BҮ

KHALID ADARBEH (Nablus) and SALAH KABBAJ (Dhahran)

Abstract. This paper contributes to the study of homological aspects of trivial ring extensions (also called Nagata idealizations). Namely, we investigate the transfer of the notion of (Matlis') semi-regular ring (also known as IF-ring) along with related concepts, such as coherence, to trivial ring extensions of integral domains. All along the paper, we provide new families of examples subject to semi-regularity.

1. Introduction. Throughout, all rings considered are commutative with identity and all modules are unital. A ring R is *coherent* if every finitely generated ideal of R is finitely presented. The class of coherent rings includes strictly the classes of Noetherian rings, von Neumann regular rings (i.e., every module is flat), valuation rings, and semi-hereditary rings (i.e., every finitely generated ideal is projective). During the past three decades, the concept of coherence developed towards a full-fledged topic in commutative algebra under the influence of homology; and several notions grew out of coherence (e.g., finite conductor property, quasi-coherence, v-coherence, and n-coherence). For more details on coherence see [18, 19], and for coherent-like properties see, for instance, [26, 27].

In 1982, Matlis proved that a ring R is coherent if and only if $\hom_R(M, N)$ is flat for any injective R-modules M and N [31, Theorem 1]. In 1985, he defined a ring R to be *semi-coherent* if $\hom_R(M, N)$ is a submodule of a flat R-module for any injective R-modules M and N. Then, inspired by this definition and von Neumann regularity, he defined a ring to be *semi-regular* if any module can be embedded in a flat module (or equivalently, if every injective module is flat) [32]. He then proved that semi-regularity is a local property in the class of coherent rings [32, Proposition 2.3]. Moreover, he proved that in the class of reduced rings, von Neumann regularity reduces

Received 12 July 2016; revised 7 December 2016.

Published online 4 August 2017.

²⁰¹⁰ Mathematics Subject Classification: Primary 13C10, 13C11, 13E05, 13F05, 13H10; Secondary 16A30, 16A50, 16A52.

Key words and phrases: trivial ring extension, idealization, semi-regular ring, IF-ring, coherent ring, quasi-Frobenius ring, von Neumann regular ring.

to semi-regularity [32, Proposition 2.7]; and under Noetherian assumption, semi-regularity equals the self-injective property; i.e., R is quasi-Frobenius if and only if R is semi-regular and Noetherian [32, Proposition 3.4]. Beyond Noetherian settings, examples of semi-regular rings arise as factor rings of Prüfer domains over non-zero finitely generated ideals [32, Proposition 5.3]. It is worth noting, at this point, that semi-regular rings were briefly mentioned by Sabbagh (1971) in [43, Section 2] and studied in non-commutative settings by Jain (1973) in [25], Colby (1975) in [9], and Facchini & Faith (1995) in [15], among others, where they were always termed IF-rings. Also, they were extensively studied (under IF terminology) in (commutative) valuation settings by Couchot [10–12]. Finally, recall that an R-module E is fp-injective (or absolutely pure) if $\operatorname{Ext}_{R}^{1}(M, E) = 0$ for every finitely presented R-module M [17, IX-3]; and R is self fp-injective if it is fp-injective over itself. Also, R is semi-regular if and only if R is self fp-injective and coherent ([25, Theorem 3.10] or [9, Theorem 2]).

For a ring A and an A-module E, the trivial ring extension of A by E is the ring $R := A \ltimes E$ where the underlying group is $A \times E$ and multiplication is defined by (a, e)(b, f) = (ab, af + be). The ring R is also sometimes called the (Nagata) idealization of E over A and denoted by A(+) E. This construction was first introduced, in 1962, by Nagata [33] in order to facilitate interaction between rings and their modules, and also to provide various families of examples of commutative rings containing zero-divisors. The literature abounds on trivial extensions dealing with the transfer of ring-theoretic notions in various settings (see, for instance, [1, 3, 13, 16, 20– 22, 28, 29, 36–41, 44]). For more details on commutative trivial extensions (or idealizations), we refer the reader to Glaz's and Huckaba's books [18, 24], and also to Anderson & Winders relatively recent and comprehensive survey [2].

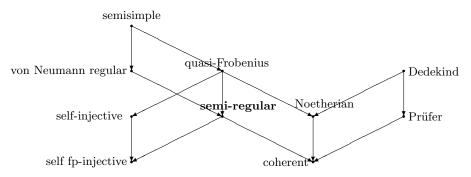


Fig. 1. A ring-theoretic perspective for semi-regularity

This paper contributes to the study of homological aspects of trivial ring extensions. Namely, we investigate the transfer of the notion of (Matlis') semi-regular ring (also known as IF-ring) along with related concepts, such as coherence, to trivial ring extensions of integral domains. All along the paper, we provide new families of examples subject to semi-regularity.

For the reader's convenience, Figure 1 displays a diagram of implications summarizing the relations among the main notions involved in this work.

2. Main result. We investigate the transfer of semi-regularity to trivial ring extensions of domains. We first state some preliminary results which will make up the proof of the main result of this paper (Theorem 2.10).

Recall that a module over a domain is *divisible* if each element of the module is divisible by every non-zero element of the domain [42]. The first lemma asserts that fp-injectivity and, a fortiori, divisibility of the module E are necessary conditions for the trivial extension $A \ltimes E$ to be semi-regular.

LEMMA 2.1. Let A be a ring, E an A-module, and $R := A \ltimes E$. If R is self fp-injective, then E is fp-injective. In particular, if A is a domain and R is semi-regular, then E is divisible.

Proof. Let $M := \sum_{i=1}^{n} Am_i$ be a finitely generated submodule of A^n for some positive integer n, and let $f : M \to E$ be an A-map. One can identify R^n with $A^n \ltimes E^n$ as R-modules under natural scalar multiplication. Consider the finitely generated submodule of R^n given by $N := \sum_{i=1}^{n} R(m_i, 0)$ along with the R-maps

$$N \xrightarrow{p} M \xrightarrow{f} E \xrightarrow{u} R$$

where p is defined by

$$p\left(\sum_{i=1}^{n} (a_i, e_i)(m_i, 0)\right) = \sum_{i=1}^{n} a_i m_i$$

and u is the canonical embedding. Then $g := u \circ f \circ p$ extends to \mathbb{R}^n as \overline{g} , since \mathbb{R} is self fp-injective. It follows that f extends to the A-map

$$\overline{f}: A^n \stackrel{\imath}{\hookrightarrow} R^n \stackrel{\overline{g}}{\to} R \stackrel{\pi}{\twoheadrightarrow} E$$

where *i* is the canonical embedding and π is the canonical surjection. Therefore, *E* is fp-injective [17, Theorem IX-3.1]. The second statement of the lemma is straightforward since a semi-regular ring is self fp-injective; and an fp-injective module is divisible.

REMARK 2.2. The second statement of the lemma is still valid if A is an arbitrary ring (i.e., possibly with zero-divisors) and divisibility of E is taken over all non-zero-divisors of A.

The next lemma shows that divisibility of the module E controls the finitely generated ideals of the trivial extension $R := A \ltimes E$.

LEMMA 2.3. Let A be a domain, E a divisible A-module, and $R := A \ltimes E$. Then, for any finitely generated ideal \mathcal{I} of R, either $\mathcal{I} = I \ltimes E$ for some non-zero finitely generated ideal I of A, or $\mathcal{I} = 0 \ltimes E'$ for some finitely generated submodule E' of E.

Proof. First, note that if E' is a finitely generated submodule of E, then $0 \ltimes E'$ is a finitely generated ideal of R. Also, let $I := \sum_{i=1}^{n} Aa_i$ with $0 \neq a_i \in A$ for all i, and let $e \in E$. Then, by divisibility, $e = a_1e'$ for some $e' \in E$, and hence $(0, e) = (a_1, 0)(0, e')$. It follows that

$$I \ltimes E = \sum_{i=1}^{n} (a_i, 0)R.$$

That is, $I \ltimes E$ is a finitely generated ideal of R.

Next, let $\mathcal{I} = \sum_{i=1}^{n} (x_i, e_i) R$ with $x_i \in A$ and $e_i \in E$ for $i = 1, \ldots, n$. If $x_i = 0$ for all *i*, then

$$\mathcal{I} = \sum_{i=1}^{n} 0 \ltimes A e_i = 0 \ltimes E'$$

with $E' := \sum_{i=1}^{n} Ae_i$, as desired. Next, assume the x_i 's are not all null and (relabeling if necessary) let $r \in \{1, \ldots, n\}$ be such that $x_i \neq 0$ for $i \leq r$ and $x_i = 0$ for $i \geq r+1$. We claim that $\mathcal{I} = I \ltimes E$ with $I := \sum_{i=1}^{r} Ax_i$. Indeed, for all $i \in \{1, \ldots, r\}$ and $j \in \{r+1, \ldots, n\}$, we have

 $(x_i, e_i)R \subseteq Ax_i \ltimes (Ex_i + Ae_i) \subseteq I \ltimes E, \quad (x_j, e_j)R = 0 \ltimes Ae_j \subseteq I \ltimes E,$

so that $\mathcal{I} \subseteq I \ltimes E$. For the reverse inclusion, let $z := (\sum_{i=1}^{r} a_i x_i, e) \in I \ltimes E$. We can write

$$z := (a_1 x_1, e) + \sum_{i=2}^{r} (a_i x_i, 0).$$

So, it suffices to show that $(a_i x_i, e) \in (x_i, e_i)R$ for any given $e \in E$ and $i \in \{1, \ldots, r\}$. This holds if there is $e' \in E$ such that

$$e = x_i e' + a_i e_i.$$

Indeed, recall that E is divisible and suppose e = 0. If $a_i e_i = 0$, take e' := 0; and if $a_i e_i \neq 0$, then $a_i e_i = x_i e'_i$ for some $e'_i \in E$ and hence take $e' := -e'_i$. Suppose $e \neq 0$ and let $e = x_i e''_i$ for some $e''_i \in E$. If $a_i e_i = 0$, take $e' := e''_i$; and if $a_i e_i \neq 0$, take $e' := e''_i - e'_i$, proving the claim.

REMARK 2.4. Notice that the converse of the above lemma is always true; namely, if all finitely generated ideals of R have the two aforementioned forms, then E is divisible. For, let x be a non-zero element of A. Then $(x,0)R = xA \ltimes xE$ is a finitely generated ideal of R with $xA \neq 0$, which forces E = xE. Next, we examine the transfer of coherence to trivial extensions of domains by divisible modules. We will use Fuchs–Salce's definition of a coherent module: all finitely generated submodules are finitely presented [17, Chapter IV] (i.e., the module itself does not have to be finitely generated). In Bourbaki, such a module is called "pseudo-coherent" [7] and Wisbauer calls it "locally coherent" [45].

We first isolate the simple case when A is trivial. Namely, if A := k is a field and E is a k-vector space, then a combination of [27, Theorem 2.6] and [2, Theorem 4.8] shows that $k \ltimes E$ is coherent if and only if $k \ltimes E$ is Noetherian if and only if dim_k $E < \infty$. The next result handles the case when A is a non-trivial domain.

PROPOSITION 2.5. Let A be a domain which is not a field, E a divisible A-module, and $R := A \ltimes E$. Then R is coherent if and only if A is coherent, E is torsion coherent, and $Ann_E(x)$ is finitely generated for all $x \in A$.

Proof. Assume R is coherent. Then so are its retract A by [18, Theorem 4.1.5] and E by [18, remark following Theorem 4.4.4]. Now, assume there is a torsion-free element $e \in E$ and let $0 \neq a \in A$. Then

$$\operatorname{Ann}_R(0, e) = \operatorname{Ann}_A(e) \ltimes E = 0 \ltimes E$$

is a finitely generated ideal of R. So E is a finitely generated A-module. Let e_1, \ldots, e_n be a minimal generating set for E. By divisibility, we obtain $e_1 = a \sum_{i=1}^n a_i e_i$ for some $a_1, \ldots, a_n \in A$. If $1 - aa_1 \neq 0$, then

$$e_1 = (1 - aa_1) \sum_{i=1}^n b_i e_i$$

for some $b_1, \ldots, b_n \in A$, forcing

$$e_1 \in \sum_{i=2}^n Ae_i,$$

which is absurd. So, necessarily, $1 - aa_1 = 0$. It follows that A is a field, the desired contradiction. Hence, E is a torsion module. Finally, let $0 \neq x \in A$. Then $\operatorname{Ann}_R(x,0) = 0 \ltimes \operatorname{Ann}_E(x)$ is finitely generated in R. So $\operatorname{Ann}_E(x)$ is a finitely generated submodule of E.

Conversely, we first show that the intersection of any two finitely generated ideals of R is finitely generated. Let I_1 and I_2 be non-zero finitely generated ideals of A, and let E_1 and E_2 be finitely generated submodules of E. Since A is a coherent domain, $I_1 \cap I_2$ is a non-zero finitely generated ideal of A. By Lemma 2.3,

$$(I_1 \ltimes E) \cap (I_2 \ltimes E) = (I_1 \cap I_2) \ltimes E$$

is a finitely generated ideal of R. Further, obviously,

$$(I_1 \ltimes E) \cap (0 \ltimes E_1) = 0 \ltimes E_1$$

is finitely generated. Moreover, since E is coherent, $E_1 \cap E_2$ is a finitely generated submodule of E [17, (D), p. 128]. Hence,

$$(0 \ltimes E_1) \cap (0 \ltimes E_2) = 0 \ltimes (E_1 \cap E_2)$$

is a finitely generated ideal of R. In view of Lemma 2.3, we are done. By [18, Theorem 2.3.2(7)], it remains to show that $\operatorname{Ann}_R(x, e)$ is finitely generated for any $(x, e) \in R$. Indeed, if $x \neq 0$, then

$$\operatorname{Ann}_R(x, e) = 0 \ltimes \operatorname{Ann}_E(x)$$

is finitely generated in R (since by hypothesis $\operatorname{Ann}_E(x)$ is finitely generated). Next, assume x = 0. In view of the exact sequence

$$0 \to \operatorname{Ann}_A(e) \to A \to Ae \to 0,$$

since E is torsion coherent, $\operatorname{Ann}_A(e)$ is a non-zero finitely generated ideal of A. By Lemma 2.3,

$$\operatorname{Ann}_R(0, e) = \operatorname{Ann}_A(e) \ltimes E$$

is a finitely generated ideal of R, completing the proof of the proposition.

In the above result, the assumption that $\operatorname{Ann}_E(x)$ is finitely generated for all $x \in A$ is not superfluous in the presence of the other assumptions, as shown by the next example. Throughout, for a domain A, Q(A) will denote its quotient field.

EXAMPLE 2.6. Let A be a coherent domain which is not a field (e.g., any non-trivial Prüfer domain) and $E := \bigoplus_{n\geq 0} E_n$ with $E_n := Q(A)/A$. Then E is a divisible coherent A-module [17, (C), p. 37 & (B), p. 128], and clearly E is torsion. However, the condition "Ann $_E(x)$ is finitely generated for all $x \in A$ " does not hold. Indeed, let x be any non-zero non-unit element of A. Then one can easily check that

$$\operatorname{Ann}_{E}(x) = \bigoplus_{n \ge 0} \overline{(1/x)},$$

which is not finitely generated.

In order to proceed further, we need to extend, to A-modules, Matlis' double annihilator condition in a ring A; i.e., $\operatorname{Ann}_A(\operatorname{Ann}_A(I)) = I$ for each finitely generated ideal I of A [32, Section 4, Definition].

DEFINITION 2.7. Let A be a ring. An A-module E is said to satisfy the *double annihilator condition* (for short, DAC) if the following two assertions hold:

(DAC1) $\operatorname{Ann}_{E}(\operatorname{Ann}_{E}(I)) = I$ for every finitely generated ideal I of A. (DAC2) $\operatorname{Ann}_{E}(\operatorname{Ann}_{A}(E')) = E'$ for every finitely generated submodule E' of E. Obviously, this definition coincides with Matlis' double annihilator condition when E = A. Moreover, all these conditions are unrelated in general, as shown by the following basic examples.

EXAMPLE 2.8. Let A be a ring and E a non-zero A-module.

- (1) Assume A := K is a field. Then E satisfies (DAC1). Moreover, E satisfies (DAC2) if and only if $\dim_K(E) = 1$. Indeed, the first statement is straightforward, and the second holds as $\operatorname{Ann}_E(\operatorname{Ann}_K(e)) = E$ for any non-zero $e \in E$.
- (2) Assume (A, \mathfrak{m}) is local and $E := A/\mathfrak{m}$. Then E satisfies (DAC2). Moreover, E satisfies (DAC1) if and only if $l(\mathfrak{m}) = 1$. Indeed, the first statement is clear since E has no non-zero proper submodules. The second statement holds since $\operatorname{Ann}_A(\operatorname{Ann}_E(x)) = \mathfrak{m}$ for any $x \in \mathfrak{m}$.
- (3) Assume A satisfies Matlis' double annihilator condition (e.g., is semiregular) and E has a torsion-free element. Then E satisfies (DAC) if and only if $E \cong A$. This is so because $\operatorname{Ann}_E(\operatorname{Ann}_A(e)) = E$ for any given torsion-free element $e \in E$.

We also need the next lemma which characterizes the double annihilator condition in a trivial ring extension via the (DAC) property of its divisible module.

LEMMA 2.9. Let A be a domain, E a divisible A-module, and $R := A \ltimes E$. Then R satisfies Matlis' double annihilator condition if and only if E satisfies (DAC).

Proof. First, notice that $\operatorname{Ann}_A(\operatorname{Ann}_E(0)) = \operatorname{Ann}_A(E) = 0$, since aE = E when $0 \neq a \in A$. Now, by Lemma 2.3, the finitely generated ideals of R have the forms $I \ltimes E$ or $0 \ltimes E'$, where I is a non-zero finitely generated ideal of A and E' is a finitely generated submodule of E. Moreover, one can easily check that

 $\operatorname{Ann}_R(I \ltimes E) = 0 \ltimes \operatorname{Ann}_E(I), \quad \operatorname{Ann}_R(0 \ltimes E') = \operatorname{Ann}_A(E') \ltimes E.$ It follows that

$$\operatorname{Ann}_R(\operatorname{Ann}_R(I \ltimes E)) = \operatorname{Ann}_A(\operatorname{Ann}_E(I)) \ltimes E,$$

 $\operatorname{Ann}_{R}(\operatorname{Ann}_{R}(0 \ltimes E')) = 0 \ltimes \operatorname{Ann}_{E}(\operatorname{Ann}_{A}(E')),$

leading to the conclusion. \blacksquare

Finally, we are ready to state the main theorem of this section on the transfer of semi-regularity to trivial ring extensions.

THEOREM 2.10. Let A be a domain and E an A-module. Then $R := A \ltimes E$ is semi-regular if and only if either A is a field with $E \cong A$, or A is a coherent domain, E is a divisible (resp., fp-injective) torsion coherent module which satisfies (DAC), and $\operatorname{Ann}_E(x)$ is finitely generated for all $x \in A$.

Proof. Let us first isolate the simple case when A is trivial. Namely, let A := k be a field and E a non-zero k-vector space. Then, by Example 2.8(1), $\dim_k E = 1$ if and only if $k \ltimes E$ satisfies (DAC) if and only if $k \ltimes E$ is semi-regular. Now, assume that A is a domain which is not a field, and combine Lemma 2.1, Proposition 2.5, and Lemma 2.9 with Matlis' result that a ring is semi-regular if and only if it is coherent and satisfies the double annihilator condition (on finitely generated ideals) [32, Proposition 4.1].

At this point, recall that a non-zero fractional ideal I of a domain A is disorial if $I = I_v := (I^{-1})^{-1}$. A domain is called divisorial if all its non-zero (fractional) ideals are divisorial. Divisorial domains have been studied by, among others, Bass [4] and Matlis [30] for the Noetherian case, Heinzer [23] for the integrally closed case, Bastida–Gilmer [5] in the transfer to D + M constructions, and Bazzoni [6] in more general settings. It is worth recalling that a domain in which all finitely generated ideals are divisorial is not necessarily divisorial [6, Example 2.11]. Finally, recall that a domain A is totally divisorial if every overring of A is a divisorial domain; and A is stable if every non-zero ideal of A is projective over its ring of endomorphisms [17, 35]. A domain A is totally divisorial if and only if A is a stable divisorial domain [35, Theorem 3.12].

As an application of Theorem 2.10, the next corollary will provide new families of examples subject to semi-regularity. If I and J are (fractional) ideals of a domain A, let

$$(I:J) = \{ x \in Q(A) \mid xJ \subseteq I \}, \quad (I:_A J) = \{ a \in A \mid aJ \subseteq I \}.$$

COROLLARY 2.11. Let A be a coherent domain which is not a field and I a non-zero finitely generated fractional ideal of A. Then:

- (1) $A \ltimes (Q(A)/I)$ is semi-regular if and only if (I : (I : J)) = J for each non-zero finitely generated (fractional) ideal J of A.
- (2) In particular, $A \ltimes (Q(A)/A)$ is semi-regular if and only if each non-zero finitely generated (fractional) ideal of A is divisorial.

Proof. (1) First, notice that Q(A) is a coherent A-module since it is torsion-free [17, IV-2, Lemma 2.5]. Further, given any exact sequence $0 \to M' \to M \to M'' \to 0$ of modules over a coherent ring, if any two of M', M, M'' are finitely presented, then so is the third [17, IV-2, Exercise 2.5]. It follows that E := Q(A)/I is coherent, with I regarded as a finitely generated submodule of Q(A). Moreover, E is clearly a divisible torsion module, and $\operatorname{Ann}_E(x) = \overline{(1/x)I}$ for any non-zero $x \in A$. Therefore, by Theorem 2.10, $A \ltimes E$ is semi-regular if and only if E satisfies (DAC). So, we just need to prove the following claim.

CLAIM. Q(A)/I satisfies (DAC) if and only if (I : (I : J)) = J for each non-zero finitely generated (fractional) ideal J of A.

Indeed, assume (I : (I : J)) = J for each non-zero finitely generated (fractional) ideal J of A. Note first that for J := A, we get

$$A = (I : (I : A)) = (I : I).$$

Next, let \overline{J} be a non-zero finitely generated submodule of E; that is, J is a non-zero finitely generated fractional ideal of A containing I. Then $(I:J) \subseteq (I:I) = A$, and hence

$$\operatorname{Ann}_{A}(\overline{J}) = A \cap (I:J) = (I:_{A}J) = (I:J).$$

Moreover, let K be a non-zero finitely generated ideal of A. Then

$$\operatorname{Ann}_E(K) = \overline{(I:K)}.$$

Therefore, since $KI \subseteq I$, we obtain

$$\operatorname{Ann}_{A}(\operatorname{Ann}_{E}(K)) = \operatorname{Ann}_{A}(\overline{(I:K)}) = (I:(I:K)) = K$$

and

$$\operatorname{Ann}_{E}(\operatorname{Ann}_{A}(\overline{J})) = \overline{(I:(I:_{A}J))} = \overline{(I:(I:J))} = \overline{J}$$

proving the "if" assertion.

Conversely, assume that E satisfies (DAC), and let $0 \neq a \in A$ be such that $aI \subseteq A$. Since $Q(A)/aI \cong Q(A)/I$ as A-modules and (aI : (aI : J)) = (I : (I : J)) for each J, we may assume without loss of generality that I is an (integral) ideal of A. Then (DAC2), applied to J := A, yields

$$\overline{A} = \operatorname{Ann}_E(\operatorname{Ann}_A(\overline{A})) = \overline{(I:(I:_AA))} = \overline{(I:I)},$$

so that A = (I : I). Now, let J be a non-zero finitely generated ideal of A. Then, via the basic fact $I \subseteq (I : J)$, (DAC1) yields

$$J = \operatorname{Ann}_{A}(\operatorname{Ann}_{E}(J)) = \operatorname{Ann}_{A}(\overline{(I:J)}) = (I:_{A}(I:J)) = (I:(I:J)),$$

completing the proof of (1).

(2) Straightforward via (1) with I := A and the fact $(A : (A : J)) = J_v$.

The above proof reveals that $A \ltimes (Q(A)/I)$ is semi-regular if and only if Q(A)/I satisfies (DAC). So, let A be a coherent domain which is not a field and I a non-zero finitely generated fractional ideal of A. By Lemma 2.1, if Q(A)/I satisfies (DAC), then it is fp-injective. We do not know if the converse holds in general.

A von Neumann regular ring is a reduced semi-regular ring [32, Proposition 2.7]. Matlis noticed that "(von Neumann) regular rings and quasi-Frobenius rings are seen to have a common denominator of definition they are both extreme examples of semi-regular rings." Next, we provide various examples of semi-regular trivial ring extensions which are neither von Neumann regular (being non-reduced) nor quasi-Frobenius (being non-Noetherian). EXAMPLE 2.12. Let A be a coherent domain which is not a field and let $R := A \ltimes (Q(A)/A)$. Note that R is not Noetherian since Q(A)/A is not finitely generated.

(1) Assume A is integrally closed. Then

R is semi-regular $\Leftrightarrow A$ is Prüfer.

Indeed, combine Corollary 2.11 with the fact that every invertible ideal is divisorial and Krull's result that an integrally closed domain in which all non-zero finitely generated ideals are divisorial is Prüfer (cf. [23, proof of Theorem 5.1]). For an example, take A to be any non-trivial Prüfer domain (e.g., $A := \mathbb{Z} + X \mathbb{Q}[X]$).

- (2) If A is a divisorial domain, then R is semi-regular by Corollary 2.11. For an example, take A to be any pseudo-valuation domain issued from a valuation domain (V, M) with M finitely generated and [V/M:k] = 2. Then A is a (non-integrally-closed) divisorial domain [5, Theorem 2.1 & Corollary 4.4], which is coherent ([14, Theorem 3] or [8, Theorem 3]).
- (3) Next, we provide a non-integrally-closed non-divisorial domain A in which every finitely generated ideal is divisorial; and hence R is semi-regular by Corollary 2.11. Indeed, let D be a non-integrally-closed pseudo-valuation domain which is divisorial and coherent (e.g., take D to be the domain A of (2) above) and let K be its quotient field. By [34, Theorem 2.6], D is not stable and hence not totally divisorial by [35, Theorem 3.12]. Let V be a valuation domain of the form K + M and let A := D + M. Then A is a non-integrally-closed non-divisorial domain [5, Theorem 2.1 & Corollary 4.4] which is coherent ([14, Theorem 3] or [8, Theorem 3]). Moreover, since D is divisorial, every finitely generated ideal of A is divisorial by [5, Theorems 2.1(k) & 4.3].

Other examples stem from Prüfer domains via Corollary 2.11. For instance, for any Prüfer domain A and non-zero finitely generated (fractional) ideal I of A, the trivial ring extension $A \ltimes (Q(A)/I)$ is semi-regular. Indeed, let J be a non-zero finitely generated ideal of A. Then the basic facts $(IJ^{-1})J \subseteq I$ and $J(I : J) \subseteq I$ yield $(I : J) = IJ^{-1}$. It follows that $(I : (I : J)) = (I : IJ^{-1}) = I(IJ^{-1})^{-1} = J_v = J$, as desired.

Observe that for an example of a module E which is not of the form Q(A)/I, one may appeal to non-standard uniserial modules. From [17, X-3], a uniserial module over a valuation domain with quotient field Q is *standard* if it is isomorphic to J/I for some ideals $0 \subseteq I \subseteq J \subseteq Q$. A uniserial module is *non-standard* if it is not isomorphic to such a quotient. In this connection, recall that torsion-free uniserial modules are necessarily standard. Next, by [17, Example VII-4.1 & Theorem X-4.5 & following comment], let A be a valuation domain for which there exists a divisible non-standard

uniserial module E whose non-zero elements have principal annihilators. Then the trivial ring extension $R := A \ltimes E$ is a chained ring that is not a homomorphic image of a valuation domain [17, Theorem X-6.4]. Moreover, by [10, Theorem 10], R is semi-regular: Indeed, let $0 \neq e$ be a non-zero torsion element of E with $\operatorname{Ann}_A(e) = aA$ for some $0 \neq a \in A$. Since E is divisible, it is easily seen that $\operatorname{Ann}_R(0, e) = \operatorname{Ann}_A(e) \ltimes E = aA \ltimes E = (a, 0)R$, as desired.

Acknowledgements. This work was funded by NSTIP Research Award # 14-MAT71-04. We thank François Couchot for his comments which helped to improve the quality of this paper. We also thank the referee for a very careful reading of the manuscript and useful suggestions.

REFERENCES

- [1] J. Abuihlail, M. Jarrar, and S. Kabbaj, *Commutative rings in which every finitely generated ideal is quasi-projective*, J. Pure Appl. Algebra 215 (2011), 2504–2511.
- [2] D. D. Anderson and M. Winders, *Idealization of a module*, J. Commut. Algebra 1 (2009), 3–56.
- [3] C. Bakkari, S. Kabbaj, and N. Mahdou, Trivial extensions defined by Pr
 üfer conditions, J. Pure Appl. Algebra 214 (2010), 53–60.
- [4] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28.
- [5] E. Bastida and R. Gilmer, Overrings and divisorial ideals of rings of the form D+M, Michigan Math. J. 20 (1973), 79–95.
- [6] S. Bazzoni, Divisorial domains, Forum Math. 12 (2000), 397–419.
- [7] N. Bourbaki, *Elements of Mathematics. Commutative Algebra*, Addison-Wesley, Reading, MA, 1972.
- J. W. Brewer and E. A. Rutter, D+M constructions with general overrings, Michigan Math. J. 23 (1976), 33–42.
- [9] R. R. Colby, Rings which have flat injective modules, J. Algebra 35 (1975), 239–252.
- [10] F. Couchot, Injective modules and fp-injective modules over valuation rings, J. Algebra 267 (2003), 359–376.
- F. Couchot, Localization of injective modules over arithmetical rings, Comm. Algebra 37 (2009), 3418–3423.
- F. Couchot, Finitistic weak dimension of commutative arithmetical rings, Arab. J. Math. 1 (2012), 63–67.
- [13] R. Damiano and J. Shapiro, Commutative torsion stable rings, J. Pure Appl. Algebra 32 (1984), 21–32.
- [14] D. E. Dobbs and I. J. Papick, When is D + M coherent?, Proc. Amer. Math. Soc. 56 (1976), 51–54.
- [15] A. Facchini and C. Faith, FP-injective quotient rings and elementary divisor rings, in: Commutative Ring Theory (Fez, 1995), P.-J. Cahen et al. (eds.), Lecture Notes in Pure Appl. Math. 185, Dekker, New York, 1997, 293–302.
- [16] R. Fossum, Commutative extensions by canonical modules are Gorenstein rings, Proc. Amer. Math. Soc. 40 (1973), 395–400.
- [17] L. Fuchs and L. Salce, Modules over Non-Noetherian Domains, Math. Surveys Monogr. 84, Amer. Math. Soc., Providence, RI, 2001.

- [18] S. Glaz, Commutative Coherent Rings, Lecture Notes in Math. 1371, Springer, Berlin, 1989.
- [19] S. Glaz, Finite conductor rings, Proc. Amer. Math. Soc. 129 (2001), 2833–2843.
- [20] S. Goto, Approximately Cohen-Macaulay rings, J. Algebra 76 (1982), 214–225.
- [21] S. Goto, N. Matsuoka, and T. T. Phuong, Almost Gorenstein rings, J. Algebra 379 (2013), 355–381.
- [22] T. H. Gulliksen, A change of ring theorem with applications to Poincaré series and intersection multiplicity, Math. Scand. 34 (1974), 167–183.
- [23] W. Heinzer, Integral domains in which each non-zero ideal is divisorial, Mathematika 15 (1968), 164–170.
- [24] J. A. Huckaba, Commutative Rings with Zero-Divisors, Dekker, New York, 1988.
- [25] S. Jain, Flat and fp-injectivity, Proc. Amer. Math. Soc. 41 (1973), 437–442.
- [26] S. Kabbaj and N. Mahdou, *Trivial extensions of local rings and a conjecture of Costa*, in: Commutative Ring Theory and Applications (Fez, 2001), M. Fontana et al. (eds.), Lecture Notes in Pure Appl. Math. 231, Dekker, New York, 2003, 301–311.
- [27] S. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions, Comm. Algebra 32 (2004), 3937–3953.
- [28] F. Kourki, Sur les extensions triviales commutatives, Ann. Math. Blaise Pascal 16 (2009), 139–150.
- [29] G. Levin, Modules and Golod homomorphisms, J. Pure Appl. Algebra 38 (1985), 299–304.
- [30] E. Matlis, *Reflexive domains*, J. Algebra 8 (1968), 1–33.
- [31] E. Matlis, Commutative coherent rings, Canad. J. Math. 34 (1982), 1240–1244.
- [32] E. Matlis, Commutative semi-coherent and semi-regular rings, J. Algebra 95 (1985), 343–372.
- [33] M. Nagata, *Local Rings*, Interscience Tracts in Pure Appl. Math. 13, Interscience Publ., New York, 1962.
- [34] B. Olberding, On the classification of stable domains, J. Algebra 243 (2001), 177– 197.
- [35] B. Olberding, Stability, duality, 2-generated ideals and a canonical decomposition of modules, Rend. Sem. Mat. Univ. Padova 106 (2001), 261–290.
- [36] B. Olberding, A counterpart to Nagata idealization, J. Algebra 365 (2012), 199–221.
- [37] B. Olberding, Prescribed subintegral extensions of local Noetherian domains, J. Pure Appl. Algebra 218 (2014), 506–521.
- [38] I. Palmér and J.-E. Roos, Explicit formulae for the global homological dimensions of trivial extensions of rings, J. Algebra 27 (1973), 380–413.
- [39] D. Popescu, General Néron desingularization, Nagoya Math. J. 100 (1985), 97–126.
- [40] I. Reiten, The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc. 32 (1972), 417–420.
- [41] J. E. Roos, Finiteness conditions in commutative algebra and solution of a problem of Vasconcelos, in: Commutative Algebra (Durham, 1981), R. Y. Sharp (ed.), London Math. Soc. Lecture Note Ser. 72, Cambridge Univ. Press, Cambridge, 1982, 179–204.
- [42] J. J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979.
- [43] G. Sabbagh, Embedding problems for modules and rings with applications to modelcompanions, J. Algebra 18 (1971), 390–403.
- [44] L. Salce, Transfinite self-idealization and commutative rings of triangular matrices, in: Commutative Algebra and Its Applications (Fez, 2008), M. Fontana et al. (eds.), de Gruyter, Berlin, 2009, 333–347.

[45] R. Wisbauer, Foundations of Module and Ring Theory, a Handbook for Study and Research, Gordon and Breach Sci. Publ., Philadelphia, PA, 1991.

Khalid Adarbeh Department of Mathematics An-Najah National University Nablus, Palestine E-mail: khalid.adarbeh@najah.edu Salah Kabbaj (corresponding author) Department of Mathematics and Statistics King Fahd University of Petroleum and Minerals Dhahran 31261, Saudi Arabia E-mail: kabbaj@kfupm.edu.sa