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MATLIS’ SEMI-REGULARITY IN TRIVIAL RING EXTENSIONS OF
INTEGRAL DOMAINS

BY

KHALID ADARBEH (Nablus) and SALAH KABBAJ (Dhahran)

Abstract. This paper contributes to the study of homological aspects of trivial ring
extensions (also called Nagata idealizations). Namely, we investigate the transfer of the
notion of (Matlis’) semi-regular ring (also known as IF-ring) along with related concepts,
such as coherence, to trivial ring extensions of integral domains. All along the paper, we
provide new families of examples subject to semi-regularity.

1. Introduction. Throughout, all rings considered are commutative
with identity and all modules are unital. A ring R is coherent if every finitely
generated ideal of R is finitely presented. The class of coherent rings includes
strictly the classes of Noetherian rings, von Neumann regular rings (i.e.,
every module is flat), valuation rings, and semi-hereditary rings (i.e., every
finitely generated ideal is projective). During the past three decades, the
concept of coherence developed towards a full-fledged topic in commutative
algebra under the influence of homology; and several notions grew out of
coherence (e.g., finite conductor property, quasi-coherence, v-coherence, and
n-coherence). For more details on coherence see [18, 19], and for coherent-like
properties see, for instance, [26, 27].

In 1982, Matlis proved that a ringR is coherent if and only if homR(M,N)
is flat for any injective R-modules M and N [31, Theorem 1]. In 1985, he
defined a ring R to be semi-coherent if homR(M,N) is a submodule of a
flat R-module for any injective R-modules M and N . Then, inspired by this
definition and von Neumann regularity, he defined a ring to be semi-regular
if any module can be embedded in a flat module (or equivalently, if every
injective module is flat) [32]. He then proved that semi-regularity is a local
property in the class of coherent rings [32, Proposition 2.3]. Moreover, he
proved that in the class of reduced rings, von Neumann regularity reduces
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to semi-regularity [32, Proposition 2.7]; and under Noetherian assumption,
semi-regularity equals the self-injective property; i.e., R is quasi-Frobenius
if and only if R is semi-regular and Noetherian [32, Proposition 3.4]. Beyond
Noetherian settings, examples of semi-regular rings arise as factor rings of
Prüfer domains over non-zero finitely generated ideals [32, Proposition 5.3]. It
is worth noting, at this point, that semi-regular rings were briefly mentioned
by Sabbagh (1971) in [43, Section 2] and studied in non-commutative set-
tings by Jain (1973) in [25], Colby (1975) in [9], and Facchini & Faith (1995)
in [15], among others, where they were always termed IF-rings. Also, they
were extensively studied (under IF terminology) in (commutative) valuation
settings by Couchot [10–12]. Finally, recall that anR-moduleE is fp-injective
(or absolutely pure) if Ext1R(M,E) = 0 for every finitely presented R-module
M [17, IX-3]; and R is self fp-injective if it is fp-injective over itself. Also, R is
semi-regular if and only if R is self fp-injective and coherent ([25, Theorem
3.10] or [9, Theorem 2]).

For a ring A and an A-module E, the trivial ring extension of A by E is
the ring R := AnE where the underlying group is A×E and multiplication
is defined by (a, e)(b, f) = (ab, af + be). The ring R is also sometimes
called the (Nagata) idealization of E over A and denoted by A (+) E.
This construction was first introduced, in 1962, by Nagata [33] in order to
facilitate interaction between rings and their modules, and also to provide
various families of examples of commutative rings containing zero-divisors.
The literature abounds on trivial extensions dealing with the transfer of
ring-theoretic notions in various settings (see, for instance, [1, 3, 13, 16, 20–
22, 28, 29, 36–41, 44]). For more details on commutative trivial extensions
(or idealizations), we refer the reader to Glaz’s and Huckaba’s books [18,
24], and also to Anderson & Winders relatively recent and comprehensive
survey [2].
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Fig. 1. A ring-theoretic perspective for semi-regularity

This paper contributes to the study of homological aspects of trivial ring
extensions. Namely, we investigate the transfer of the notion of (Matlis’)
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semi-regular ring (also known as IF-ring) along with related concepts, such
as coherence, to trivial ring extensions of integral domains. All along the
paper, we provide new families of examples subject to semi-regularity.

For the reader’s convenience, Figure 1 displays a diagram of implications
summarizing the relations among the main notions involved in this work.

2. Main result. We investigate the transfer of semi-regularity to trivial
ring extensions of domains. We first state some preliminary results which
will make up the proof of the main result of this paper (Theorem 2.10).

Recall that a module over a domain is divisible if each element of the
module is divisible by every non-zero element of the domain [42]. The first
lemma asserts that fp-injectivity and, a fortiori, divisibility of the module E
are necessary conditions for the trivial extension AnE to be semi-regular.

Lemma 2.1. Let A be a ring, E an A-module, and R := An E. If R is
self fp-injective, then E is fp-injective. In particular, if A is a domain and
R is semi-regular, then E is divisible.

Proof. Let M :=
∑n

i=1Ami be a finitely generated submodule of An for
some positive integer n, and let f : M → E be an A-map. One can identify
Rn with AnnEn as R-modules under natural scalar multiplication. Consider
the finitely generated submodule of Rn given by N :=

∑n
i=1R(mi, 0) along

with the R-maps

N
p
�M

f→ E
u
↪→ R

where p is defined by

p
( n∑
i=1

(ai, ei)(mi, 0)
)

=

n∑
i=1

aimi

and u is the canonical embedding. Then g := u ◦ f ◦ p extends to Rn as g,
since R is self fp-injective. It follows that f extends to the A-map

f : An
i
↪→ Rn

g→ R
π
� E

where i is the canonical embedding and π is the canonical surjection. There-
fore, E is fp-injective [17, Theorem IX-3.1]. The second statement of the
lemma is straightforward since a semi-regular ring is self fp-injective; and
an fp-injective module is divisible.

Remark 2.2. The second statement of the lemma is still valid if A is
an arbitrary ring (i.e., possibly with zero-divisors) and divisibility of E is
taken over all non-zero-divisors of A.

The next lemma shows that divisibility of the module E controls the
finitely generated ideals of the trivial extension R := An E.
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Lemma 2.3. Let A be a domain, E a divisible A-module, and R := AnE.
Then, for any finitely generated ideal I of R, either I = I n E for some
non-zero finitely generated ideal I of A, or I = 0 n E′ for some finitely
generated submodule E′ of E.

Proof. First, note that if E′ is a finitely generated submodule of E,
then 0 n E′ is a finitely generated ideal of R. Also, let I :=

∑n
i=1Aai with

0 6= ai ∈ A for all i, and let e ∈ E. Then, by divisibility, e = a1e
′ for some

e′ ∈ E, and hence (0, e) = (a1, 0)(0, e′). It follows that

I n E =

n∑
i=1

(ai, 0)R.

That is, I n E is a finitely generated ideal of R.

Next, let I =
∑n

i=1(xi, ei)R with xi ∈ A and ei ∈ E for i = 1, . . . , n. If
xi = 0 for all i, then

I =
n∑
i=1

0 nAei = 0 n E′

with E′ :=
∑n

i=1Aei, as desired. Next, assume the xi’s are not all null and
(relabeling if necessary) let r ∈ {1, . . . , n} be such that xi 6= 0 for i ≤ r and
xi = 0 for i ≥ r + 1. We claim that I = I n E with I :=

∑r
i=1Axi. Indeed,

for all i ∈ {1, . . . , r} and j ∈ {r + 1, . . . , n}, we have

(xi, ei)R ⊆ Axi n (Exi +Aei) ⊆ I n E, (xj , ej)R = 0 nAej ⊆ I n E,

so that I ⊆ I nE. For the reverse inclusion, let z := (
∑r

i=1 aixi, e) ∈ I nE.
We can write

z := (a1x1, e) +

r∑
i=2

(aixi, 0).

So, it suffices to show that (aixi, e) ∈ (xi, ei)R for any given e ∈ E and
i ∈ {1, . . . , r}. This holds if there is e′ ∈ E such that

e = xie
′ + aiei.

Indeed, recall that E is divisible and suppose e = 0. If aiei = 0, take e′ := 0;
and if aiei 6= 0, then aiei = xie

′
i for some e′i ∈ E and hence take e′ := −e′i.

Suppose e 6= 0 and let e = xie
′′
i for some e′′i ∈ E. If aiei = 0, take e′ := e′′i ;

and if aiei 6= 0, take e′ := e′′i − e′i, proving the claim.

Remark 2.4. Notice that the converse of the above lemma is always
true; namely, if all finitely generated ideals of R have the two aforementioned
forms, then E is divisible. For, let x be a non-zero element of A. Then
(x, 0)R = xA n xE is a finitely generated ideal of R with xA 6= 0, which
forces E = xE.
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Next, we examine the transfer of coherence to trivial extensions of do-
mains by divisible modules. We will use Fuchs–Salce’s definition of a co-
herent module: all finitely generated submodules are finitely presented [17,
Chapter IV] (i.e., the module itself does not have to be finitely generated).
In Bourbaki, such a module is called “pseudo-coherent” [7] and Wisbauer
calls it “locally coherent” [45].

We first isolate the simple case when A is trivial. Namely, if A := k is
a field and E is a k-vector space, then a combination of [27, Theorem 2.6]
and [2, Theorem 4.8] shows that k n E is coherent if and only if k n E is
Noetherian if and only if dimk E < ∞. The next result handles the case
when A is a non-trivial domain.

Proposition 2.5. Let A be a domain which is not a field, E a divisible
A-module, and R := AnE. Then R is coherent if and only if A is coherent,
E is torsion coherent, and AnnE(x) is finitely generated for all x ∈ A.

Proof. Assume R is coherent. Then so are its retract A by [18, Theorem
4.1.5] and E by [18, remark following Theorem 4.4.4]. Now, assume there is
a torsion-free element e ∈ E and let 0 6= a ∈ A. Then

AnnR(0, e) = AnnA(e) n E = 0 n E

is a finitely generated ideal of R. So E is a finitely generated A-module.
Let e1, . . . , en be a minimal generating set for E. By divisibility, we obtain
e1 = a

∑n
i=1 aiei for some a1, . . . , an ∈ A. If 1− aa1 6= 0, then

e1 = (1− aa1)
n∑
i=1

biei

for some b1, . . . , bn ∈ A, forcing

e1 ∈
n∑
i=2

Aei,

which is absurd. So, necessarily, 1− aa1 = 0. It follows that A is a field, the
desired contradiction. Hence, E is a torsion module. Finally, let 0 6= x ∈ A.
Then AnnR(x, 0) = 0nAnnE(x) is finitely generated in R. So AnnE(x) is a
finitely generated submodule of E.

Conversely, we first show that the intersection of any two finitely generated
ideals of R is finitely generated. Let I1 and I2 be non-zero finitely generated
ideals of A, and let E1 and E2 be finitely generated submodules of E. Since
A is a coherent domain, I1 ∩ I2 is a non-zero finitely generated ideal of A.
By Lemma 2.3,

(I1 n E) ∩ (I2 n E) = (I1 ∩ I2) n E

is a finitely generated ideal of R. Further, obviously,

(I1 n E) ∩ (0 n E1) = 0 n E1
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is finitely generated. Moreover, since E is coherent, E1 ∩ E2 is a finitely
generated submodule of E [17, (D), p. 128]. Hence,

(0 n E1) ∩ (0 n E2) = 0 n (E1 ∩ E2)

is a finitely generated ideal of R. In view of Lemma 2.3, we are done. By [18,
Theorem 2.3.2(7)], it remains to show that AnnR(x, e) is finitely generated
for any (x, e) ∈ R. Indeed, if x 6= 0, then

AnnR(x, e) = 0 n AnnE(x)

is finitely generated in R (since by hypothesis AnnE(x) is finitely generated).
Next, assume x = 0. In view of the exact sequence

0→ AnnA(e)→ A→ Ae→ 0,

since E is torsion coherent, AnnA(e) is a non-zero finitely generated ideal
of A. By Lemma 2.3,

AnnR(0, e) = AnnA(e) n E

is a finitely generated ideal of R, completing the proof of the proposition.

In the above result, the assumption that AnnE(x) is finitely generated
for all x ∈ A is not superfluous in the presence of the other assumptions, as
shown by the next example. Throughout, for a domain A, Q(A) will denote
its quotient field.

Example 2.6. Let A be a coherent domain which is not a field (e.g.,
any non-trivial Prüfer domain) and E :=

⊕
n≥0En with En := Q(A)/A.

Then E is a divisible coherent A-module [17, (C), p. 37 & (B), p. 128], and
clearly E is torsion. However, the condition “AnnE(x) is finitely generated
for all x ∈ A” does not hold. Indeed, let x be any non-zero non-unit element
of A. Then one can easily check that

AnnE(x) =
⊕
n≥0

(1/x),

which is not finitely generated.

In order to proceed further, we need to extend, to A-modules, Matlis’
double annihilator condition in a ring A; i.e., AnnA(AnnA(I)) = I for each
finitely generated ideal I of A [32, Section 4, Definition].

Definition 2.7. Let A be a ring. An A-module E is said to satisfy the
double annihilator condition (for short, DAC) if the following two assertions
hold:

(DAC1) AnnA(AnnE(I)) = I for every finitely generated ideal I of A.
(DAC2) AnnE(AnnA(E′)) = E′ for every finitely generated submodule E′

of E.
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Obviously, this definition coincides with Matlis’ double annihilator con-
dition when E = A. Moreover, all these conditions are unrelated in general,
as shown by the following basic examples.

Example 2.8. Let A be a ring and E a non-zero A-module.

(1) AssumeA := K is a field. Then E satisfies (DAC1). Moreover, E satisfies
(DAC2) if and only if dimK(E) = 1. Indeed, the first statement is
straightforward, and the second holds as AnnE(AnnK(e)) = E for any
non-zero e ∈ E.

(2) Assume (A,m) is local and E := A/m. Then E satisfies (DAC2). More-
over, E satisfies (DAC1) if and only if l(m) = 1. Indeed, the first state-
ment is clear since E has no non-zero proper submodules. The second
statement holds since AnnA(AnnE(x)) = m for any x ∈ m.

(3) Assume A satisfies Matlis’ double annihilator condition (e.g., is semi-
regular) and E has a torsion-free element. Then E satisfies (DAC) if and
only if E ∼= A. This is so because AnnE(AnnA(e)) = E for any given
torsion-free element e ∈ E.

We also need the next lemma which characterizes the double annihilator
condition in a trivial ring extension via the (DAC) property of its divisible
module.

Lemma 2.9. Let A be a domain, E a divisible A-module, and R :=
A n E. Then R satisfies Matlis’ double annihilator condition if and only if
E satisfies (DAC).

Proof. First, notice that AnnA(AnnE(0)) = AnnA(E) = 0, since aE = E
when 0 6= a ∈ A. Now, by Lemma 2.3, the finitely generated ideals of R have
the forms I n E or 0 n E′, where I is a non-zero finitely generated ideal of
A and E′ is a finitely generated submodule of E. Moreover, one can easily
check that

AnnR(I n E) = 0 n AnnE(I), AnnR(0 n E′) = AnnA(E′) n E.

It follows that

AnnR(AnnR(I n E)) = AnnA(AnnE(I)) n E,

AnnR(AnnR(0 n E′)) = 0 n AnnE(AnnA(E′)),

leading to the conclusion.

Finally, we are ready to state the main theorem of this section on the
transfer of semi-regularity to trivial ring extensions.

Theorem 2.10. Let A be a domain and E an A-module. Then R :=
AnE is semi-regular if and only if either A is a field with E ∼= A, or A is a
coherent domain, E is a divisible (resp., fp-injective) torsion coherent module
which satisfies (DAC), and AnnE(x) is finitely generated for all x ∈ A.
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Proof. Let us first isolate the simple case when A is trivial. Namely, let
A := k be a field and E a non-zero k-vector space. Then, by Example 2.8(1),
dimk E = 1 if and only if knE satisfies (DAC) if and only if knE is semi-
regular. Now, assume that A is a domain which is not a field, and combine
Lemma 2.1, Proposition 2.5, and Lemma 2.9 with Matlis’ result that a ring is
semi-regular if and only if it is coherent and satisfies the double annihilator
condition (on finitely generated ideals) [32, Proposition 4.1].

At this point, recall that a non-zero fractional ideal I of a domain A is
disorial if I = Iv := (I−1)−1. A domain is called divisorial if all its non-zero
(fractional) ideals are divisorial. Divisorial domains have been studied by,
among others, Bass [4] and Matlis [30] for the Noetherian case, Heinzer [23]
for the integrally closed case, Bastida–Gilmer [5] in the transfer to D + M
constructions, and Bazzoni [6] in more general settings. It is worth recalling
that a domain in which all finitely generated ideals are divisorial is not
necessarily divisorial [6, Example 2.11]. Finally, recall that a domain A is
totally divisorial if every overring of A is a divisorial domain; and A is stable
if every non-zero ideal of A is projective over its ring of endomorphisms
[17, 35]. A domain A is totally divisorial if and only if A is a stable divisorial
domain [35, Theorem 3.12].

As an application of Theorem 2.10, the next corollary will provide new
families of examples subject to semi-regularity. If I and J are (fractional)
ideals of a domain A, let

(I : J) = {x ∈ Q(A) | xJ ⊆ I}, (I :A J) = {a ∈ A | aJ ⊆ I}.
Corollary 2.11. Let A be a coherent domain which is not a field and

I a non-zero finitely generated fractional ideal of A. Then:

(1) A n (Q(A)/I) is semi-regular if and only if (I : (I : J)) = J for each
non-zero finitely generated (fractional) ideal J of A.

(2) In particular, An (Q(A)/A) is semi-regular if and only if each non-zero
finitely generated (fractional) ideal of A is divisorial.

Proof. (1) First, notice that Q(A) is a coherent A-module since it
is torsion-free [17, IV-2, Lemma 2.5]. Further, given any exact sequence
0→M ′ →M →M ′′ → 0 of modules over a coherent ring, if any two of M ′,
M , M ′′ are finitely presented, then so is the third [17, IV-2, Exercise 2.5]. It
follows that E := Q(A)/I is coherent, with I regarded as a finitely generated
submodule of Q(A). Moreover, E is clearly a divisible torsion module, and
AnnE(x) = (1/x)I for any non-zero x ∈ A. Therefore, by Theorem 2.10,
A n E is semi-regular if and only if E satisfies (DAC). So, we just need to
prove the following claim.

Claim. Q(A)/I satisfies (DAC) if and only if (I : (I : J)) = J for each
non-zero finitely generated (fractional) ideal J of A.
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Indeed, assume (I : (I : J)) = J for each non-zero finitely generated
(fractional) ideal J of A. Note first that for J := A, we get

A = (I : (I : A)) = (I : I).

Next, let J be a non-zero finitely generated submodule of E; that is,
J is a non-zero finitely generated fractional ideal of A containing I. Then
(I : J) ⊆ (I : I) = A, and hence

AnnA(J) = A ∩ (I : J) = (I :A J) = (I : J).

Moreover, let K be a non-zero finitely generated ideal of A. Then

AnnE(K) = (I : K).

Therefore, since KI ⊆ I, we obtain

AnnA(AnnE(K)) = AnnA
(
(I : K)

)
= (I : (I : K)) = K

and

AnnE(AnnA(J)) = (I : (I :A J)) = (I : (I : J)) = J

proving the “if” assertion.

Conversely, assume that E satisfies (DAC), and let 0 6= a ∈ A be such
that aI ⊆ A. Since Q(A)/aI ∼= Q(A)/I as A-modules and (aI : (aI : J)) =
(I : (I : J)) for each J , we may assume without loss of generality that I is
an (integral) ideal of A. Then (DAC2), applied to J := A, yields

A = AnnE(AnnA(A)) = (I : (I :A A)) = (I : I),

so that A = (I : I). Now, let J be a non-zero finitely generated ideal of A.
Then, via the basic fact I ⊆ (I : J), (DAC1) yields

J = AnnA(AnnE(J)) = AnnA
(
(I : J)

)
= (I :A (I : J)) = (I : (I : J)),

completing the proof of (1).

(2) Straightforward via (1) with I := A and the fact (A : (A : J)) = Jv.

The above proof reveals that An (Q(A)/I) is semi-regular if and only if
Q(A)/I satisfies (DAC). So, let A be a coherent domain which is not a field
and I a non-zero finitely generated fractional ideal of A. By Lemma 2.1,
if Q(A)/I satisfies (DAC), then it is fp-injective. We do not know if the
converse holds in general.

A von Neumann regular ring is a reduced semi-regular ring [32, Propo-
sition 2.7]. Matlis noticed that “(von Neumann) regular rings and quasi-
Frobenius rings are seen to have a common denominator of definition—
they are both extreme examples of semi-regular rings.” Next, we provide
various examples of semi-regular trivial ring extensions which are neither
von Neumann regular (being non-reduced) nor quasi-Frobenius (being non-
Noetherian).
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Example 2.12. Let A be a coherent domain which is not a field and let
R := A n (Q(A)/A). Note that R is not Noetherian since Q(A)/A is not
finitely generated.

(1) Assume A is integrally closed. Then

R is semi-regular ⇔ A is Prüfer.

Indeed, combine Corollary 2.11 with the fact that every invertible ideal
is divisorial and Krull’s result that an integrally closed domain in which
all non-zero finitely generated ideals are divisorial is Prüfer (cf. [23, proof
of Theorem 5.1]). For an example, take A to be any non-trivial Prüfer
domain (e.g., A := Z+X Q[X]).

(2) If A is a divisorial domain, then R is semi-regular by Corollary 2.11. For
an example, take A to be any pseudo-valuation domain issued from a
valuation domain (V,M) with M finitely generated and [V/M : k] = 2.
Then A is a (non-integrally-closed) divisorial domain [5, Theorem 2.1 &
Corollary 4.4], which is coherent ([14, Theorem 3] or [8, Theorem 3]).

(3) Next, we provide a non-integrally-closed non-divisorial domain A in
which every finitely generated ideal is divisorial; and hence R is semi-
regular by Corollary 2.11. Indeed, let D be a non-integrally-closed
pseudo-valuation domain which is divisorial and coherent (e.g., take
D to be the domain A of (2) above) and let K be its quotient field.
By [34, Theorem 2.6], D is not stable and hence not totally divisorial
by [35, Theorem 3.12]. Let V be a valuation domain of the form K+M
and let A := D + M . Then A is a non-integrally-closed non-divisorial
domain [5, Theorem 2.1 & Corollary 4.4] which is coherent ([14, Theo-
rem 3] or [8, Theorem 3]). Moreover, since D is divisorial, every finitely
generated ideal of A is divisorial by [5, Theorems 2.1(k) & 4.3].

Other examples stem from Prüfer domains via Corollary 2.11. For in-
stance, for any Prüfer domain A and non-zero finitely generated (fractional)
ideal I of A, the trivial ring extension A n (Q(A)/I) is semi-regular. In-
deed, let J be a non-zero finitely generated ideal of A. Then the basic facts
(IJ−1)J ⊆ I and J(I : J) ⊆ I yield (I : J) = IJ−1. It follows that
(I : (I : J)) = (I : IJ−1) = I(IJ−1)−1 = Jv = J , as desired.

Observe that for an example of a module E which is not of the form
Q(A)/I, one may appeal to non-standard uniserial modules. From [17, X-3],
a uniserial module over a valuation domain with quotient field Q is standard
if it is isomorphic to J/I for some ideals 0 ⊆ I ⊆ J ⊆ Q. A uniserial
module is non-standard if it is not isomorphic to such a quotient. In this
connection, recall that torsion-free uniserial modules are necessarily standard.
Next, by [17, Example VII-4.1 & Theorem X-4.5 & following comment], let
A be a valuation domain for which there exists a divisible non-standard
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uniserial module E whose non-zero elements have principal annihilators.
Then the trivial ring extension R := A n E is a chained ring that is not a
homomorphic image of a valuation domain [17, Theorem X-6.4]. Moreover,
by [10, Theorem 10],R is semi-regular: Indeed, let 0 6= e be a non-zero torsion
element of E with AnnA(e) = aA for some 0 6= a ∈ A. Since E is divisible,
it is easily seen that AnnR(0, e) = AnnA(e) n E = aA n E = (a, 0)R, as
desired.
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