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Abstract In 1969, Osofsky proved that a chained ring (i.e., local arithmetical ring)
with zero divisors has infinite weak global dimension; that is, the weak global di-
mension of an arithmetical ring is 0, 1, or c. In 2007, Bazzoni and Glaz studied
the homological aspects of Priifer-like rings, with a focus on Gaussian rings. They
proved that Osofsky’s aforementioned result is valid in the context of coherent Gaus-
sian rings (and, more generally, in coherent Priifer rings). They closed their paper
with a conjecture sustaining that “the weak global dimension of a Gaussian ring is 0,
1, or e0.” In 2010, the authors of [3] provided an example of a Gaussian ring which
is neither arithmetical nor coherent and has an infinite weak global dimension. In
2011, the authors of [1] introduced and investigated the new class of fqp-rings which
stands strictly between the two classes of arithmetical rings and Gaussian rings.
Then, they proved the Bazzoni-Glaz conjecture for fqp-rings. This paper surveys a
few recent works in the literature on the weak global dimension of Priifer-like rings
making this topic accessible and appealing to a broad audience. As a prelude to this,
the first section of this paper provides full details for Osofsky’s proof of the exis-
tence of a module with infinite projective dimension on a chained ring. Numerous
examples -arising as trivial ring extensions- are provided to illustrate the concepts
and results involved in this paper.
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1 Introduction

All rings considered in this paper are commutative with identity element and all
modules are unital. Let R be a ring and M an R-module. The weak (or flat) dimen-
sion (resp., projective dimension) of M, denoted w.dimg(M) (resp., p.dimgx(M)),
measures how far M is from being a flat (resp., projective) module. It is defined as
follows: Let n be an integer > 0. We have w.dimg (M) < n (resp., p.dimgz(M) < n)
if there is a flat (resp., projective) resolution

O—E,—E,_1—~..>E —FEy—M—0.

If n is the least such integer, w. dimg (M) = n (resp., p. dimg (M) = n). If no such res-
olution exists, w.dimg (M) = oo (resp., p.dimg(M) = o). The weak global dimen-
sion (resp., global dimension) of R, denoted by w.gl.dim(R) (resp., gl. dim(R)), is
the supremum of w.dimg (M) (resp., p.dimg(M)), where M ranges over all (finitely
generated) R-modules. For more details on all these notions, we refer the reader to
[6, 13, 23].

A ring R is called coherent if every finitely generated ideal of R is finitely pre-
sented; equivalently, if (0 : @) and I NJ are finitely generated for every a € R and
any two finitely generated ideals / and J of R [13]. Examples of coherent rings are
Noetherian rings, Boolean algebras, von Neumann regular rings, and semihereditary
rings.

Gaussian rings belong to the class of Priifer-like rings which has recently re-
ceived much attention from commutative ring theorists. A ring R is called Gaussian
if for every f,g € R[X], one has the content ideal equation ¢(fg) = c¢(f)c(g) where
c(f), the content of f, is the ideal of R generated by the coefficients of f [25]. The
ring R is said to be a chained ring (or valuation ring) if its lattice of ideals is totally
ordered by inclusion; and R is called arithmetical if R, is a chained ring for each
maximal ideal m of R [11, 18]. Also R is called semihereditary if every finitely gen-
erated ideal of R is projective [8]; and R is Priifer if every finitely generated regular
ideal of R is projective [7, 16]. In the domain context, all these notions coincide with
the concept of Priifer domain. Glaz, in [15], constructs examples which show that
all these notions are distinct in the context of arbitrary rings. More examples, in this
regard, are provided via trivial ring extensions [1, 3].

The following diagram of implications puts the notion of Gaussian ring in per-
spective within the family of Priifer-like rings [4, 5, 1]:

Semihereditary ring

¢

Ring with weak global dimension < 1

4

Arithmetical ring

I
fqp-Ring
I
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Gaussian ring

¢

Priifer ring

In 1969, Osofsky proved that a local arithmetical ring (i.e., chained ring) with
zero divisors has infinite weak global dimension [22]. In view of [13, Corollary
4.2.6], this results asserts that the weak global dimension of an arithmetical ring is
0, 1, or os.

In 2007, Bazzoni and Glaz proved that if R is a coherent Priifer ring (and, a
fortiori, a Gaussian ring), then w. gl.dim(R) = 0, 1, or e [5, Proposition 6.1]. And
also they proved that if R is a Gaussian ring admitting a maximal ideal m such that
the nilradical of the localization R,, is a nonzero nilpotent ideal. Then w. gl. dim(R)
=oo [5, Theorem 6.4]. At the end of the paper, they conjectured that “the weak global
dimension of a Gaussian ring is 0, 1, or o” [5]. In two preprints [9, 10], Donadze
and Thomas claim to prove this conjecture (see the end of Section 3).

In 2010, the authors of [3] proved that if (A,m) is a local ring, E is a nonzero
-vector space, and R := A x E is the trivial extension of A by E, then:

R is a total ring of quotients and hence a Priifer ring.

R is Gaussian if and only if A is Gaussian.

R is arithmetical if and only if A := K is a field and dimg E = 1.

w.gl.dim(R) 2 1. If, in addition, m admits a minimal generating set, then
w. gl.dim(R) = eo.

e o 0 0o -

As an application, they provided an example of a Gaussian ring which is neither
arithmetical nor coherent and has an infinite weak global dimension [3, Example
2.7]; which widened the scope of validity of the above conjecture beyond the class
of coherent Gaussian rings.

In 2011, the authors of [1] investigated the correlation of fqp-rings with well-
known Priifer conditions; namely, they proved that the class of fqp-rings stands
between the two classes of arithmetical rings and Gaussian rings [1, Theorem 3.1].
They also examined the transfer of the fqp-property to trivial ring extensions in
order to build original examples of fqp-rings. Also they generalized Osofsky’s result
(mentioned above) and extended Bazzoni-Glaz’s result on coherent Gaussian rings
by proving that the weak global dimension of an fqp-ring is equal to 0, 1, or o [1,
Theorem 3.11]; and then they provided an example of an fqp-ring that is neither
arithmetical nor coherent [1, Example 3.9].

Recently, several papers have appeared in the literature investigating the weak
global dimension of various settings subject to Priifer conditions. This survey paper
plans to track and study these works dealing with this topic from the very origin;
that is, 1969 Osofsky’s proof of the existence of a module with infinite projective
dimension on a local arithmetical ring. Precisely, we will examine all main results
published in [1, 3, 5, 14, 22].

Our goal is to make this topic accessible and appealing to a broad audience; in-
cluding graduate students. For this purpose, we present complete proofs of all main
results via ample details and simplified arguments along with exact references. Fur-
ther, numerous examples -arising as trivial ring extensions- are provided to illustrate
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the concepts and results involved in this paper. We assume familiarity with the basic
tools used in the homological aspects of commutative ring theory, and any unrefer-
enced material is standard as in [2, 6, 8, 13, 17, 19, 23, 27].

2 Weak global dimension of arithmetical rings

In this section, we provide a detailed proof for Osofsky’s Theorem that the weak
global dimension of an arithmetical ring with zero divisors is infinite. In fact, this
result enables one to state that the weak global dimension of an arithmetical ring is
0, 1, or co. We start by recalling some basic definitions.

Definition 2.1. Let R be a ring and M an R-module. Then:

(1) The weak dimension of M, denoted by w.dim(M), measures how far M is
from being flat. It is defined as follows: Let n be a positive integer. We have
w.dim(M) < n if there is a flat resolution

O—E,—E,1—..—E —Ey—M—0.

If no such resolution exists, w.dim(M) = oo; and if n is the least such integer,
w.dim(M) = n.

(2) The weak global dimension of R, denoted by w. gl.dim(R), is the supremum of
w.dim(M), where M ranges over all (finitely generated) R-modules.

Definition 2.2. Let R be a ring. Then:

(1) R is said to be a chained ring (or valuation ring) if its lattice of ideals is totally
ordered by inclusion.

(2) R is called an arithmetical ring if if Ry, is a chained ring for each maximal ideal
m of R.

Fields and Z,), where Z is the ring of integers and p is a prime number, are
examples of chained rings. Also, Z/n?Z is an arithmetical ring for any positive
integer n. For more examples, see [3]. For a ring R, let Z(R) denote the set of all
zero divisors of R.

Next we give the main theorem of this section.

Theorem 2.3. Let R be an arithmetical ring. Then w.gl.dim(R) = 0, 1, or .

To prove this theorem we make the following reductions:
(1) We may assume that R is a chained ring since w. gl.dim(R) is the supremum of
w. gl.dim(Ry,) for all maximal ideal m of R [13, Theorem 1.3.14 (1)].
(2) We may assume that R is a chained ring with zero divisors. Then we prove that
w. gl.dim(R) = o since, if R is a valuation domain, then w.gl.dim(R) < 1 by [13,
Corollary 4.2.6].
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(3) Finally, we may assume that (R, m) is a chained ring with zero divisors such that
Z(R) = m, since Z(R) is a prime ideal, Z(Rzr)) = Z(R)Rzr), and
w. gl.dim(Rzg)) < w. gl.dim(R).

So our task is reduced to prove the following theorem.

Theorem 2.4 ([22, Theorem]). Let (R, m) be a chained ring with zero divisors such
that Z(R) = m. Then w.gl.dim(R) = oo.

To prove this theorem we first prove the following lemmas. Throughout, let
(R, m) be a chained ring with Z(R) = m, M an R-module, I = {x € R | x* = 0},
and for x € M, (0: x) = {y € R | yx = 0}. One can easily check that / is a nonzero
ideal since R is a chained ring with zero divisors.

Lemma 2.5 ([22, Lemma 1]). I = 0, and forallx ¢ R, x¢ I = (0:x) C L.

Proof. To prove that I> = 0, it suffices to prove that ab = 0 for all a,b € I. So let
a,b € I. Then either a € bR or b € aR, so that ab € a*R=0orab e b’R=0.

Now letx € R\I and y € (0: x). Then either x € yR or y € xR. But x € yR implies
that x> € xyR = 0, absurd. Therefore y € xR, so that y*> € xyR = 0. Hence y € I.

Lemma 2.6 ([22, Lemma 2]). Ler 0 # x € Z(R) such that (0 : x) = yR. Then
w.gl.dim(R) = oo,

Proof. We first prove that (0 : y) = xR. The inclusion (0 : y)2 xR is trivial since
xy = 0. Now to prove the other inclusion let z € (0 : y). Then either z = xr for some
r € R and in this case we are done, or x = zj for some j € R. We may assume j € m.
Otherwise, j is a unit and then we return to the first case. Since x # 0, j ¢ (0: 2),
s0 jR € (0: z) which implies (0 : z) C jR, and hence y = jk for some k € m. But
then 0 = zy = zjk = xk, so k € (0 : x) = yR, and hence k = yr for some r € R. Hence
y=kj=yrj,and as j € m we have the equality y = y(1 —rj)(1 —rj)~! =0, which
contradicts the fact that x is a zero divisor. Hence z € xR, and therefore (0 : y) = xR.

Now let m, (resp., my) denote the multiplication by x (resp., y). Since (0: x) =yR
and (0 : y) = xR we have the following infinite flat resolution of xR with syzygies
xR and yR:

my my

My y my
..—R—R—7R—...—R—xR—0

We claim that xR and yR are not flat. Indeed, recall that a projective module over
a local ring is free [23]. So no projective module is annihilated by x or y. Since xR
is annihilated by y and yR is annihilated by x, both xR and yR are not projective.
Further, xR and yR are finitely presented in view of the exact sequence 0 — yR —
R — xR — 0. It follows that xR and yR are not flat (since a finitely presented flat
module is projective [23, Theorem 3.61]).

Corollary 2.7 ([22, Corollary]). If I = m, then I is cyclic and R has infinite weak
global dimension.
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Proof. Assume that / = m. Then m? = 0. Now let 0 # a € m. We claim that m = aR.
Indeed, let b € m. Since R is a chained ring, either b = ra for some r € R and in this
case we are done, or a = rb for some r € R. In the later case, either r is a unit
and then b = r~'a € aR, or r € m which implies a = rb = 0, which contradicts
the assumption a # 0. Thus m = aR, as claimed. Moreover, we have (0 : a) = aR.
Indeed, (0: a) 2 aR since a € I; if x € (0 : a), then x € Z(R) = m = aR. Hence
(0:a) = aR. Tt follows that R satisfies the conditions of Lemma 2.6 and hence the
weak global dimension of R is oo.

Throughout, an element x of an R- module M is said to be regular if (0:x) = 0.

Lemma 2.8 ([22, Lemma 3]). Let F be a free module and x € F. Then x is contained
in ZR for some regular element z of F.

n
Proof. Let {yq} be a basis for F and let x := Zy,-ri € F, where r; € R. Since R
i=1

n
is a chained ring, there is j € {1,2,...,n} such that Zr,-R C rjR. So that for each
i—1

=
n

i € {1,2,...,n}, ri = rjs; for some s; € R with s; = 1. Hence x = r;(}_ (visi)). We
=1

n n
claim that z := Zyis,- is regular. Suppose not and let ¢ € R such that I(Zyis,-) =0.
i=1 i=1
Then ts; = 0 for all i € {1,2,...,n}. In particular r = ts; = 0, absurd. Therefore z is
regular and x = r;z, as desired.

Note, for convenience, that in the proof of Theorem 2.4 (below) we will prove
the existence of a module M satisfying the conditions (1) and (2) of the next lemma;
which will allow us to construct -via iteration- an infinite flat resolution of M.

Lemma 2.9 ([22, Lemma 4]). Assume that (0 : r) is infinitely generated for all 0 #
r € m. Let M be an R-submodule of a free module N such that:

(1) M = My UM UM3, where My = U xR, My = UyuiR, with y regular in

xeM i=0
x regular

N, u;R g ui1 R, and yu; is not in My, and M3 = Zij.

(2) yupRN xR is infinitely generated for some regular x € M.

Let F be a free R-module with basis {y | x regular € M} U{z; | i € o} U{w;},
and let v: F — N be the map defined by: v(yx) = x, v(z;) = yu;, and v(w;) = v;.
Then K = Ker(v) has properties (1),(2), and M is not flat.

Proof. First the map v exists by [19, Theorem 4.1]. (1) By (2), there exist r,s € R

such that yugr = xs # 0. Here r € m; otherwise, yuy = xsr— ! € My, contradiction.

Since Z(R) = m, the expression for any regular element in terms of a basis for N has

one coefficient a unit. Indeed, let (nq)qeca be a basis for N and z a regular element
i=k

in N with z = Z c¢;in; where ¢; € R. As R is a chained ring, there exists j € {0,...,k}
i=0
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such that for all i € {0, ...,k}, there exists d; € R with ¢; = ¢;d; and d; = 1. We claim

that ¢; is a unit. Suppose not. Then c; € Z(R). So there is a nonzero d € R with
i=k
dcj =0, and hence dz = dc; Z din; = 0. This is absurd since z is regular.

Now, let x = Z a;n; andy— Z b;in;. Then bjugr =a;s forallie . Letig €1

icl icl
I finite 1 finite

such that a;, is a unit. So s = ugrt, where t = bloal € R. Note that b;; # 0 since
xs # 0. Clearly, zo — yxuot is regular in F' (since zg, y, are part of the basis of F), is
not in K (otherwise, v(zo — yyuot) = 0 yields yuo = xuot, which contradicts (1)), and
(zo — yxutot)r € K. We claim that (zo — yxuot)r is not in K := U x'R. Suppose
X ek
X' regular
not and assume that r(zO —uptyy) = r’x’ with ¥ € R and x’ regular in K. Then ¥ # 0
since r 75 0 and as X' € K C F, there are a,b,a; € R such that ¥’ = azg — by, +x”,
where x” Z a;ifi. Thus r = a, rupt = r'b, and 'x” = 0. Since x’ is regular in

W#fi
0#f;

F and ¥x” =0, a or b is unit. We claim that a is always a unit. Indeed, if b is
a unit, then r(1 —ab~'ugt) = 0, so if a € m, then (1 —ab~! uot) is a unit which
implies r = 0, absurd. Soa™'x’ = z0 —a " 'by, +a'x", ¥ =a'r, and rupt = ra"'b
which implies zg — ugty, + (upt —a='b)y, +a'x" = a~'x' € K. By Lemma 2.8
(uot —a'b)y, +a~'x" = pq, fore some g regular in F and p € R. But clearly since
r="ra, rupt = r'b, and ¥'x"" = 0, then rpg = 0. Hence rp = 0. It follows that (79 —
yxtiot +qp) € K, where g is regular in F and p € (0 : r). Thus by applying v we obtain
yuo — xupt + pv(q) = 0. But R is a chained ring, so p and upt are comparable and
since ugtr # 0, p = ugth for some h € R. Hence yup = (x — hv(q))uot, we show that
(x—hv(gq)) is regular in M which contradicts property (1). First clearly (x—hv(q)) €
M since x,v(q) € M. Now suppose that a(x — hv(q)) = 0 for some a € m. Either
upt = d'a for some d’ € R, this yields yuy = (x — hv(g))aa’ = 0 also impossible, or
a = uptm for some m € R, and this yields mugy = (x — hv(g))a = 0, so mug = 0 as
y is regular, and hence a = mugt = 0. We conclude that (x — iv(q)) is regular in M
and hence yup € M, the desired contradiction.
Last, let yupR N xR = {x,X1,-.-, Xy, ...), where

(X0, X150, Xi) G (X0, X1, 000y Xiy X 1)

For any integer i > 0, let x; = yugr; for some r; € R. It is clear that ryR g rR ;

~ SR G iR G ... Now, let y := zo — yuot, u; := r; for each i € N. Then

K = KUK, K3, where K| := U X'R, Ky := | y'u'R with y' regular in F and
i=0

X ek
X' regular

WR G ul, R, and K3 := K\ (K{ | JK). Thus K satisfy Property (1).

(2) Since upR G u R, uo = uym’ for some m’ € m. Hence x’ := zo — zym’ is regu-
lar in K since v(x') = v(zo — z1m') = yup — yuym’ = 0 and z0,z; are basis elements.
We claim that (zo — z1m' )R N (20 — yxtot)roR = zo(0 : m'). Indeed, since zo,z1,yx
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are basis elements, then (79 — z1m' )R N (zo — yxttot)ro C zoR. Also (zo — zym')RN
2R = z0(0 : m'). For, let [ € (zo — zim’')R N zoR. Then [ = (z0 — zim’)a = zod’
for some a,a’ € R. Hence a = d’ and am’ = 0, whence [ = azy with am’ = 0. So
1 € 70(0 : m'). The reverse inclusion is straightforward. Consequently, (zo —z17')R
N (z0 — yxtot)roR C z0(0 : m'). To prove the reverse inclusion, let k € (0 : m’). Then
either k = rok’ or ry = kk’, for some kK’ € R. The second case is impossible since
roug # 0. Hence zok = (zo — yxuot ) rok” € (zo — yxuot ) roR. Further, zok € (zo —z1m')R.
Therefore our claim is true. But zq is regular, so zo(0 : m’) =2 (0 : m’) which is in-
finitely generated by hypothesis. Therefore y'ugR N x'R is infinitely generated, as
desired.

Finally, M is not flat. Suppose not, then by [23, Theorem 3.57], there is an R-
map 6 : F — K such that 6 ((zo — yxuot)ro) = (20 — yxUot ) ro. Assume that 0(zg) =
azo + byx +Z; for some a,b € R and 0(y,) = d'zo + b'y, + Z, for some a’,b' € R.
Then roa — rouota’ = ro, rob — rougth’ = —rougt, and roZ, — rougtZo = 0. Hence
ro(1 —a+upta’) = 0 and since ry # 0, @ or @’ is a unit. Suppose that a is a unit
and without loss of generality we can assume that a = 1. Thus we have the equation
20 — uptyy — ugta'zo + (uot — ugth’' + b)yx+Z1 —uotZy = 0(z0) — upt0(Z,) € K. By
Lemma 2.8, —ugta'zo + (uot — uoth’ +b)yx +Z) —uotZy = pq, where q is regular in
F and, clearly, rop = 0 since rougta’ = 0. Thus zo — uptyx + pg € K, which is absurd
(as seen before in the second paragraph of the proof of Lemma 2.9).

Now we are able to prove Theorem 2.4.

Proof of Theorem 2.4. If (0 : r) is cyclic for some r € m, then R has infinite
weak global dimension by Lemma 2.6. Next suppose that (0 : r) is not cyclic, for all
0 # r € m. Which is equivalent to assume that (0 : r) is infinitely generated for all
0 # r € m, since R is a chained ring.

Let0+#a €1and b € m\I. Note that b exists since I # m by the proof of Corollary
2.7. Let N be a free R-module on two generators y,y" and let M := (y—y'b)R+y(0:
a). Then:

(AM;:= | J xR={(yt—y'b)r|l =1 € (0:a),r €R). To show this equality,

xeM
x regular

let ¢ be a regular element in M. Then ¢ = (ry +r2)y — r1by’ for some r| € R,r; €
(0:a). We claim that r| is a unit. Suppose not. So either r; € (r2) hence ac =0, or
ry = nry for some n € R and since r; € m = Z(R), there is r} # 0 such that r; =0,
SO r’lc = 0. In both cases there is a contradiction with the fact that c is regular. Thus,
r1 is aunit. It follows that ¢ = (147" r2)yr —by'r; € {(yt —y'b)r|l —t € (0:a),r €
R}.Now let ¢ = yt —y'b, where (1 —1) € (0: a). Then c is regular. Indeed, if rc =0
for some r € R, then rt = 0. Moreover, either r = na for some n € R, and in this
case (1 —1) =na(l —1) =0, so r = rt =0 as desired, or a = nr for some n € R, so
a = at = nrt = 0, absurd.

(B) There exists a countable chain of ideals ugR ;Cé u1R g ... where u; € (0:
a)\(0:D).Since0#aclandbem\l, (a) C (b). Thus (0:b) C (0: a). Moreover
(0:5) S (0: a); otherwise, a € (0:a) = (0: b), and hence ab = 0. Hence b € (0 :
a) = (0:b) CIbyLemma 2.5, absurd. Now let ug € (0:a)\ (0: b). Since (0: a) is
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infinitely generated, there are uy,us, ... such that (ug) G (uo,u1) & ... € (0: a). So
uoR & u1R & ... and necessarily u; ¢ (0: b) for all i > 1 since ug ¢ (0: b).

Note that yu; € M(since u; € (0: a)). Also yu; ¢ M; otherwise, if yu; = ytr —y'br
with 1 —7 € (0:a) and r € R, then u; = tr and br = 0. Hence bu; = btr =0 and
thus u; € (0 : b), contradiction. Also note that y is regular in N (part of the basis)
and y ¢ M; if y= (y—y'b)ri + ry with r; € R and r, € (0: a), then rib =0 and
ri+r =1.Sor €m,ar; =a, and hence a = 0, absurd.

(A) and (B) imply that (1) of Lemma 2.9 holds.

Let us show that yupRN (y —y'b)R = y(0 : b). Indeed, if ¢ = yupr = (y — y'b)r’
where r, ' € R, then ugr = ' and b = 0. Hence ¢ € y(0: b). If c = ry where rb =0,
then r = ugt for some t € R as up € (0:a)\ (0:b). Thus ¢ = r(y — y'b). Now
y(0:b)=(0:b) is infinitely generated. Therefore (2) of Lemma 2.9 holds.

Since K satisfies the properties of M we can consider it as a new module M,
and then there is a free module F; and a map vy : F; — F such that K; = Ker(v)
satisfies the same conditions of K and K; is not flat. We can repeat this iteration
above to get the infinite flat resolution of M:

.o FE—>F 1 —.oF—>F—>M-—0.

with none of the syzygies K, K|, K>, ... is flat. Therefore R has an infinite weak global
dimension. [J

3 Weak global dimension of Gaussian rings

In 2005, Glaz proved that if R is a Gaussian coherent ring, then w. gl.dim(R) =0, 1,
or oo [14]. In this section, we will see that the same conclusion holds for the larger
class of Priifer coherent rings and fore some contexts of Gaussian rings. We start by
recalling the definitions of Gaussian, Priifer, and coherent rings.

Definition 3.1. Let R be a ring. Then:

(1) Ris called a Gaussian ring if for every f,g € R[X], one has the content ideal equa-
tion c(fg) = ¢(f)c(g), where c(f), the content of f, is the ideal of R generated
by the coefficients of f.

(2) Ris called a Priifer ring if every nonzero finitely generated regular ideal is invert-
ible (or, equivalently, projective)

(3) R is called a coherent ring if every finitely generated ideal of R is finitely pre-
sented; equivalently, if (0 : @) and I NJ are finitely generated for every a € R and
any two finitely generated ideals / and J of R.

Recall that Arithmetical ring = Gaussian ring = Priifer ring. To see the proofs
of the above implications and that they cannot be reversed, in general, we refer the
reader to [5, 14, 15] and Section 5 of this paper.

Noetherian rings, valuation domains, and K[xj,x2,...] where K is a field are ex-
amples of coherent rings. For more examples, see [13].
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Let Q(R) denote the total ring of fractions of R and Nil(R) its nilradical. The
following proposition is the first main result of this section.

Proposition 3.2 ([5, proposition 6.1]). Let R be a coherent Priifer ring. Then the
weak global dimension of R is equal to 0, 1, or oo.

The proof of this proposition relies on the following lemmas. Recall that a ring R
is called regular if every finitely generated ideal of R has a finite projective dimen-
sion; and von Neumann regular if every R-module is flat.

Lemma 3.3 ([13, Corollary 6.2.4]). Let R be a coherent regular ring. Then Q(R) is
a von Neumann regular ring. [J

Lemma 3.4 ([14, Lemma 2.1]). Let R be a local Gaussian ring and I = (ay, ...,a,)
be a finitely generated ideal of R. Then I* = (a?), for some i € {1,2,...,n}.

Proof. We first assume that I = (a,b). Let f(x) := ax+ b, g(x) := ax— b, and
h(x) := bx + a. Since R is Gaussian, ¢(fg) = c(f)c(g), so that (a,b)* = (a*,b?),
also c¢(fh) = c(f)c(h) which implies that (a,b)> = (ab,a* + b*). Hence (a*,b*) =
(ab,a* 4 b?), whence a* = rab + s(a® + b*), for some r and s in R. That is,
(1 —s)a® + rab + sb* = 0. Since R is a local ring, either s or 1 — s is a unit in R.
If s is a unit in R, then b +rs~'ab+ (s~! — 1)a®> = 0. Next we show that ab € (a?).
Let k(x) := (b + aa)x — a, where a := rs~'. Then c(hk) = c(h)c(k) implies that
(b(b+ aa), aa®, —a*) = (a,b)((b+ aa),a). But clearly (b(b+ aa), aa®, —a*) =
((s7' = 1a?,aa?, —a*) = (a®). Thus (a*) = (a,b)((b+ @a),a). In particular, ab €
(a®) and so does b%. If 1 — s is unit, similar arguments imply that ab, and hence
a* € (b*). Thus for any two elements a and b, ab € (b*) or (a?). It follows that

I’ =(aj,...,ay)* = (a3,...,a2). An induction on n leads to the conclusion.

Recall that a ring R is called reduced if it has no non-zero nilpotent elements.

Lemma 3.5 ([14, Theorem 2.2]). Let R be a ring. Then w.gl.dim(R) < 1 if and
only if R is a Gaussian reduced ring.

Proof. Assume that w.gl.dim(R) < 1. By [13, Corollary 4.2.6], R, is a valuation
domain for every prime ideal p of R. As valuation domains are Gaussian, R is locally
Gaussian, and therefore Gaussian. Further, R is reduced. For, let x € R such that x
is nilpotent. We claim that x = 0. Suppose not and let n > 2 be an integer such that
x" = 0. Then there exists a prime ideal ¢ in R such that x # 0 in R, [2, Proposition
3.8]. It follows that x" = 0 in R, a contradiction since R, is a domain.

Conversely, since R is Gaussian reduced, R, is a local, reduced, Gaussian ring
for any prime ideal p of R. We claim that R, is a domain. Indeed, let a and b in
R, such that ab = 0. By Lemma 3.4, (a,b)*=(b)? or (a*). Say (a,b)? = (b*). Then
a® = tb* for some t € R,. Thus a® = tb(ab) = 0. Since R, is reduced, a = 0, and
R, is a domain. Therefore R), is a valuation domain for all prime ideals p of R. So
w.gl.dim(R) < 1 by [13, Corollary 4.2.6].

Lemma 3.6 ([S, Theorem 3.3]). Let R be a Priifer ring. Then R is Gaussian if and
only if Q(R) is Gaussian. O
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Lemma 3.7 ([5, Theorem 3.12(ii)]). Let R be a ring. Then w.gl.dim(R) < 1 if and
only if R is a Priifer ring and w. gl.dim(Q(R)) < 1.

Proof. If w.gl.dim(R) < 1, R is Priifer and, by localization, w.gl.dim(Q(R)) <
1. Conversely, assume that R is a Priifer ring such that w.gl.dim(Q(R)) < 1. By
Lemma 3.5, Q(R) is a Gaussian reduced ring. So R is reduced and, by Lemma 3.6,
R is Gaussian. By Lemma 3.5, w. gl.dim(R) < 1.

Proof of Proposition 3.2. Assume that w.gl.dim(R) = n < e and let I be any
finitely generated ideal of R. Then 7 has a finite weak dimension. Since R is a coher-
ent ring, / is finitely presented. Hence the weak dimension of I equals its projective
dimension by [13, Corollary 2.5.5]. Whence, as I is an arbitrary finitely generated
ideal of R, R is a regular ring. So, by [13, Corollary 6.2.4], Q(R) is von Neumann
regular. By Lemma 3.7, w. gl.dim(R) < 1. O

The following is an example of a coherent Priifer ring with infinite weak global
dimension.

Example 3.8. Let R = R x C. Then R is coherent by [20, Theorem 2.6], Priifer by
Theorem 4.2, and w. gl.dim(R) = c by Lemma 4.1.

In order to study the weak global dimension of an arbitrary Gaussian ring, we
make the following reductions:

(1) We may assume that R is a local Gaussian ring since w.gl.dim(R) is the
supremum of w. gl.dim(R,,) for all maximal ideal m of R [13, Theorem 1.3.14 (1)].

(2) We may assume that R is a non-reduced local Gaussian ring since every re-
duced Gaussian ring has weak global dimension at most 1 by Lemma 3.5.

(3) Finally, we may assume that (R, m) is a local Gaussian ring with the maximal
ideal m such that m = Nil(R). For, the prime ideals of a local Gaussian ring R are lin-
early ordered, so that Nil(R) is a prime ideal, and w. gl. dim(R) > w. gl. dim(Ryj(x) )-

Next we announce the second main result of this section.

Theorem 3.9 ([5, Theorem 6.4]). Let R be a Gaussian ring with a maximal ideal m
such that Nil(Ry,) is a nonzero nilpotent ideal. Then w. gl.dim(R) = co.

The proof of this theorem involves the following results:
Lemma 3.10. Consider the following exact sequence of R-modules
0—M-—M-—M'—0

where M is flat. Then either the three modules are flat or w.dim(M") = w.dim(M")
+ 1.

Proof. This is a classic result. We offer here a proof for the sake of completeness.
Suppose that M" is flat. Then by the long exact sequence theorem [23, Theorem 8.3]
we get the exact sequence

0= Tor,(M",N) — Tor;(M',N) — Tor;(M,N) =0
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for any R-module N. Hence Tor;(M’,N) = 0 which implies that M’ is flat.
Next, assume that M” is not flat. In this case, we claim that

w.dim(M") = w.dim(M') + 1.
Indeed, let w.dim(M’) = n. Then we have the exact sequence
0=Tory2(M,N) — Tory2(M" ,N) — Tor,.1(M',N) =0
for any R-module N. Hence Tor,+2(M"”,N) = 0 for any R-module N which implies
w.dim(M") <n+1=w.dim(M’) +1
Now let w.dim(M") = m. Then we have the exact sequence
0=Tory1(M",N) — Tory(M',N) — Tor,(M,N) =0

for any R-module N. Hence Tor,,(M',N) = 0 for any R-module N which implies
that
w.dim(M") =m > w.dim(M’) + 1
Consequently, w.dim(M") = w.dim(M’) + 1.
Recall that an exact sequence of R-modules

0—M —sM-—M'—0

is pure if it remains exact when tensoring it with any R-module. In this case, we say
that M’ is a pure submodule of M [23].

Lemma 3.11 ([5, Lemma 6.2]). Let (R, m) be a local ring which is not a field. Then
w.dim(R/m) = w.dim(m) + 1.

Proof. Consider the short exact sequence
0—>m—R—R/m—0.

Assume that R/ m is flat. By [13, Theorem 1.2.15 (1,2,3)], m is pure and (aR) m =
aRNm = aR for all a € m. Hence am = aR, for all a € m, and so by Nakayama’s
Lemma, a = 0, absurd. By Lemma 3.10, w.dim(R/m) = w.dimg(m) + 1.

Proposition 3.12 ([5, Proposition 6.3]). Let (R,m) be a local ring with nonzero
nilpotent maximal ideal. Then w.dim(m) = co,

Proof. Let n be the minimum integer such that m"” = 0. We claim that for all 1 <k <
n, w.dim(m" %) = w.dim(m) + 1. Indeed, let k = 1. Then m"~'m = 0, so m" ! is
an (R/m)-vector space, hence 0 # m"~! = @R/ m, implies that w.dimg(m"~!) =
w.dim(R/m) = w.dim(m) + 1 by Lemma 3.11 . Now let / be the maximum integer
in {1,...,n — 1} such that w.dim(m"*) = w.dim(m) + 1 for all k < h. Assume by
way of contradiction that 2 < n— 1. Then we have the exact sequence:
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0— mnfh - mnf(h+1) N mnf(h+1) /mnfh 50 (*)

where m"~("+1) /m"~" is a nonzero (R/m)-vector space. So by Lemma 3.11, we
have w.dim(m"~ () /m"~") = w.dim(m) + 1. By hypothesis, w.dim(m" ") =
w.dim(m) + 1. Let us show that w.dim(m"~("*1)) = w.dim(m) + 1. Indeed, if
[ := w.dim(m) + 1, then by applying the long exact sequence theorem to (x), we
get

0= Tor; (""" NY — Tor; (w1 N) — Tor[H(%,N) =0

for any R-module N. Hence Tor;,(m"~"*1) N) =0 for any R-module N which
implies

w.dim(m"~#*+1)) <[ = w.dim(m) + 1

Further, if w. dim(m"~(*+1)) < [, then we have

—(h+1
0:T0r[+1(w

mn—h

,N) — Tor;(m* " N) — Tor/(m"~ ") N) =0

for any R-module N. Hence Tor;(m"~" N) = 0 for any R-module N which implies
that w.dim(m” ") <7 — 1, absurd. Hence w.dim(m"~"+1)) = w.dim(m) + 1, the
desired contradiction. Therefore the claim is true and, in particular, for k =n — 1,
we have w.dim(m) = w.dim(m) + 1, which yields w.dim(m) = eo.

Proof of Theorem 3.9. Suppose that R is Gaussian and m is a maximal ideal
in R such that Nil(Ry,) is a nonzero nilpotent ideal. Then Ry, is also Gaussian and
Nil(Ry,) is a prime ideal in R. Moreover Nil(Ry,) = pRy, # 0 for some prime ideal
p in R. Now, the maximal ideal pR, of R, is nonzero since 0 # pRw C pR,. Also
by assumption, there is a positive integer n such that (pRy)" = 0, whence p" =
0. So (pR,)" = 0 and hence pR), is nilpotent. Therefore R, is a local ring with
nonzero nilpotent maximal ideal. By Proposition 3.12, w.gl.dim(R),) = eo. Since
w.gl.dim(R) > w. gl.dim(Rys) for any localization Rs of R, we get w.gl.dim(R) =
o, [

In the previous section, we saw that the weak global dimension of an arithmetical
ring is 0, 1, or oo. In this section, we saw that the same result holds if R is Priifer
coherent or R is a Gaussian ring with a maximal ideal m such that Nil(Ry,) is a
nonzero nilpotent ideal.

The question of whether this result is true for an arbitrary Gaussian ring was the
object of Bazzoni-Glaz conjecture which sustained that the weak global dimension
of a Gaussian ring is 0, 1, or 0. In a first preprint [9], Donadze and Thomas claim
to prove this conjecture in all cases except when the ring R is a non-reduced local
Gaussian ring with nilradical N satisfying N2> = 0. Then in a second preprint [10],
they claim to prove the conjecture for all cases.
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4 Gaussian rings via trivial ring extensions

In this section, we will use trivial ring extensions to construct new examples of non-
arithmetical Gaussian rings , non-Gaussian Priifer rings, and illustrative examples
for Theorem 2.4 and Theorem 3.9. Let A be a ring and M an R-module. The trivial
ring extension of A by M (also called the idealization of M over A) is the ring R :=
A x M whose underlying group is A X M with multiplication given by

(a,x)(d',x') = (ad',ax' +d'x).

Recall that if  is an ideal of A and M’ is a submodule of M such that IM C M’,
then J := I x M’ is an ideal of R; ideals of R need not be of this form [20, Example
2.5]. However, the form of the prime (resp., maximal) ideals of R is p x M, where p
is a prime (resp., maximal) ideal of A [17, Theorem 25.1(3)]. Suitable background
on trivial extensions is [13, 17, 20].

The following lemma is useful for the construction of rings with infinite weak
global dimension.

Lemma 4.1 ([3, Lemma 2.3]). Let K be a field, E a nonzero K-vector space, and
R:=K X E. Then w.gl.dim(R) = oo

Proof. First note that RY) = A x EW)_ So let us identify RY) with A x E(!) as

R-modules. Now let {f;}ic; be a basis of E and J := 0 x E. Consider the R-map

u: RO — J defined by u((ai,ei)icr) = (O,Zaifi). Then we have the following
icl

short exact sequence of R-modules

0 — Ker(u) — RO 57 —0

But Ker(u) = 0 x EU). Indeed, clearly 0 x E() C Ker(u). Now suppose u((a;, ;) =
(0,0). Then Z aif; = 0, hence a; = 0 for each i as {f;}ics is a basis for £ and we

have the equahty Therefore the above exact sequence becomes
0—0xED —RD 2750 (%)

We claim that J is not flat. Suppose not. Then 0 x E)NJRY) = (0 x ED)J by
[23, Theorem 3. 55] But (0 x EU ))J O We use the above identification to obtain
0=0x EDNJRD = (/) NJD =0x ED, absurd (since E # 0).

Now, by Lemma 3.10, W.dlm(]) = w.dun(.l( )41 =w.dim(J) + 1. It follows
that w. gl. dim(R) = w.dim(J) = .

Next, we announce the main result of this section.

Theorem 4.2 ([3, Theorem 3.1]). Let (A,m) be a local ring, E a nonzero %-vector

space, and R := A X E the trivial ring extension of A by E. Then:

(1) R is a total ring of quotients and hence a Priifer ring.
(2) R is Gaussian if and only if A is Gaussian.
(3) R is arithmetical if and only if A :== K is a field and dimg (E) = 1.
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(4) w.gl.dim(R) = 1. If m admits a minimal generating set, then w.gl.dim(R) is
infinite.

Proof. (1) Let (a,e) € R. Then either a € m in which case we get (a,e)(0,e) =
(0,ae) = (0,0); or a ¢ m which implies a is a unit and hence (a,e)(a™!,—a2e) =
(1,0), the unity of R. Therefore R is a total ring of quotients and hence a Priifer ring.

(2) Suppose that R is Gaussian. Then, since A =2 OMLE and the Gaussian property
is stable under factor rings, A is Gaussian.

Conversely, assume that A is Gaussian and let F := Y(a;,e;)X’ be a poly-
nomial in R[X]. If a; ¢ m for some i, then (a;,e;) is invertible since we have
(ai,ei)(a; ', —a"%e;) = (1,0). We claim that F is Gaussian. Indeed, for any G €
R[X], we have ¢(F)c(G) = Re(G) = ¢(G) C ¢(FG). The reverse inclusion always
holds. If a; € m for each i, let G := Y.(d, e;.)Xj € R[X]. We may assume, without loss
of generality, that a;- € m for each j (otherwise, we return to the first case) and let
fi=YaX and g:= Za;-Xj in A[X]. Then ¢(FG) = c¢(fg) x c(fg)E. But since E is
an %-Vector space, mE = 0 yields ¢(FG) = ¢(fg) x 0 =c(f)c(g) X 0= c(F)c(G),
since A is Gaussian. Therefore R is Gaussian, as desired.

(3) Suppose that R is arithmetical. First we claim that A is a field. On the contrary,
assume that A is not a field. Then m # 0, so there isa #0 € m. Let e #0 € E.
Since R is a local arithmetical ring (i.e., chained ring), either (a,0) = (d’,€')(0,¢e) =
(0,d’e) for some (d',€’) € R which contradicts a # 0; or (0,¢e) = (a”,€¢")(a,0) =
(d'a,0) for some (a”,e”) € R which contradicts e # 0. Hence A is a field. Next, we
show that dimg (E) = 1. Let e,¢’ be two nonzero vectors in E. We claim that they
are linearly dependent. Indeed, since R is a local arithmetical ring, either (0,¢) =
(a,e")(0,€") = (0,ae’) for some (a,e”) € R, hence e = ae’; or similarly if (0,¢') €
(0,e)R. Consequently, dimg (E) = 1.

Conversely, let J be a nonzero ideal in K x K and let (a,b) be a nonzero element
of J. So (0,a~")(a,b) = (0,1) € J. Hence 0 x K C J. But 0 x K is maximal since 0
is the maximal ideal in K. So the ideals of K x K are (0,0)K x K, 0 x K = R(0, 1),
and K x K. Therefore K x K is a principal ring and hence arithmetical.

(4) First w. gl.dim(R) Z 1. Let J := 0 x E and {f;}c/ be a basis of the 4 -vector

space E. Consider the map u : RY) — J defined by u((a;,e;)ic;) = (0, ¥, a;f;). Here
iel

we are using the same identification that has been used in Lemma 4.1. Then clearly
Ker(u) = (m x E))). Hence we have the short exact sequence of R-modules

0— (mxE)) — RO 257 0 1)

We claim that J is not flat. Otherwise, by [23, Theorem3.55], we have
JD = (mxE)DNJRY = J(mxED) = 0.

Hence, by [23, Theorem 2.44], w.gl.dim(R) = 1.

Next, assume that m admits a minimal generating set. Then m xXE admits a
minimal generating set (since E is a vector space). Now let (b;,g;);c;, be a min-
imal generating set of m xE. Consider the R-map v : RY) —s m xE defined by
v((ai,ei)ier) = ¥ (ai,ei)(bi,gi). Then we have the exact sequence

L

e
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0 — Ker(v) — RY) s mxE — 0 )

We claim that Ker(v) C (mxE)(). On the contrary, suppose that there is x =
((aj,ei)ic) € Ker(v) and x ¢ (mxE)L). Then ¥ (a;,e;)(bi,gi) =0 and as x ¢
i€L

(mxE)"), there is (aj,e;) with a; ¢ m. So that (a;,e;) is a unit, which contradicts
the minimality of (b;,g;)ier. It follows that

Ker(v) =V x EH = (v x 0) P (0 x EF)) = (v x 0) PP

where V := {(a;)ier € m | Zaibi = 0}. Indeed, if x € Ker(v), then x = (a;,b;)jcr
iel
where a; € m, b; € E, with Z a;b; =0, hence Ker(v) C V x E(1), The other inclusion
ieL
is trivial. Now, by Lemma 3.10 applied to (1), we get

w.dim(J) = w.dim((m xE)") + 1 = w.dim(m xE) + 1.
On the other hand, from (2) we obtain
w.dim(J) < w.dim(V x 0@ J*) = w.dim(Ker(v)) < w.dim(m xE).

It follows that
w.dim(J) < w.dim(J) — 1.

Consequently, w. gl. dim(R) = w.dim(J) = eo.
Next, we give examples of non-arithmetical Gaussian rings.

Example 4.3.(1) Let p be a prime number. Then (Z,), pZ,)) is a non-trivial valu-
ation domain. Hence Z,) x p% is a non-arithmetical Gaussian total ring of quo-
tients by Theorem 4.2.

(2) Since dimg (C) =2 = 1, R x C is a non arithmetical Gaussian total ring of quo-
tient. In general, if K is a field and E is a K-vector space with dimg(E) = 1, then

R := K x E is a non-arithmetical Gaussian total ring of quotients by Theorem
4.2.

Next, we provide examples of non-Gaussian total rings of quotients and hence
non-Gaussian Priifer rings.

Example 4.4. Let (A,m) be a non-valuation local domain. By Theorem 4.2, R :=
A X % is a non-Gaussian total ring of quotients, hence a non-Gaussian Priifer ring.
The following is an illustrative example for Theorem 2.4.

Example 4.5. Let R := R x R. Then R is a local ring with maximal ideal 0 x R and
Z(R) = 0 x R. Further, R is arithmetical by Theorem 4.2. By Osofsky’s Theorem
(Theorem 2.4) or by Lemma 4.1, w. gl. dim(R) = eo.
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Now we give an example of a non-coherent local Gaussian ring with nilpotent
maximal ideal and infinite weak global dimension (i.e., an illustrative example for
Theorem 3.9).

Example 4.6. Let K be a field and X an indeterminate over K and let R := K x K[X].
Then:

(1) R is a non-arithmetical Gaussian ring since K is Gaussian and dimg (K[X]) = oo
by Theorem 4.2.

(2) R is not a coherent ring since dimg (K[X]) = oo by [20, Theorem 2.6].

(3) R is local with maximal ideal m = 0 x K[X] by [17, Theorem 25.1(3)]. Also m is
nilpotent since m? = 0. Therefore, by Theorem 3.9, w. gl.dim(R) = oo.

5 Weak global dimension of fqp-rings

Recently, Abuhlail, Jarrar, and Kabbaj studied commutative rings in which every
finitely generated ideal is quasi-projective (fqp-rings). They investigated the corre-
lation of fqp-rings with well-known Priifer conditions; namely, they proved that fqp-
rings stand strictly between the two classes of arithmetical rings and Gaussian rings
[1, Theorem 3.2]. Also they generalized Osofsky’s Theorem on the weak global
dimension of arithmetical rings (and partially resolved Bazzoni-Glaz’s related con-
jecture on Gaussian rings) by proving that the weak global dimension of an fqp-ring
is 0, 1, or o [1, Theorem 3.11]. In this section, we will give the proofs of the above
mentioned results. Here too, the needed examples in this section will be constructed
by using trivial ring extensions. We start by recalling some definitions.

Definition 5.1.(1) Let M be an R-module. An R-module M’ is M-projective if the
map y : Homg(M', M) — Homg(M', %) is surjective for every submodule N of
M.

(2) M’ is quasi-projective if it is M’-projective.

Definition 5.2. A commutative ring R is said to be an fqp-ring if every finitely gen-
erated ideal of R is quasi-projective.

The following theorem establishes the relation between the class of fqp-rings and
the two classes of arithmetical and Gaussian rings.

Theorem 5.3 ([1, Theorem 3.2]). For a ring R, we have
R arithmetical = R fqp —ring = R Gaussian

where the implications are irreversible in general.
The proof of this theorem needs the following results.

Lemma 5.4 ([1, Lemma 2.2]). Let R be a ring and let M be a finitely generated

R-module. Then M is quasi-projective if and only if M is projective over ﬁw). ([
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Lemma 5.5 ([12, Corollary 1.2]). Let M;, <<, be a family of R-modules. Then:
@' M; is quasi-projective if and only if M; is Mj-projective Vi, j € {1, 2, ..., }. [

Lemma 5.6 ([1, Lemma 3.6]). Let R be an fqp-ring. Then S™'R is an fgp-ring, for
any multiplicative closed subsets of R.

Proof. Let J be a finitely generated ideal of S™'R. Then J = S~!I for some finitely
generated ideal I of R. Since R is an fqp-ring, I is quasi-projective and hence, by
R

Lemma 5.4, I is projective over Ann(l) " By [23, Theorem 3.76], J := S~'I is pro-

. But S~! Ann(I) = Ann(S~'I) = Ann(J) by [2, Proposition
SIR
Ann(S—17)

quasi-projective. It follows that S™!'R is an fqp-ring.

. . Ss—1R
jective over 7S’1Ann(1)

3.14]. Therefore J := S~'I is projective over . Again by Lemma 5.4, J is

Lemma 5.7 ([1, Lemma 3.8]). Let R be a local ring and a, b two nonzero elements
of R such that (a) and (b) are incomparable. If (a, b) is quasi-projective, then
(a)N(b) =0, a®> = b> = ab = 0, and Ann(a) = Ann(b).

Proof. Let I := (a, b) be quasi-projective. Then by [26, Lemma 2], there exist
f1, f» € Endg(I) such that fi(I) C (a), /2(I) C (b), and fi + f» = 1;. Now let
x € (@) N (b). Then x = rja = ryb for some r|, r» € R. But x = fi(x) + fo(x) =
fi(ria) + fo(rab) = ri fi(a) + rafo(b) = rida+rb'b = a'x+b'x where a’, b’ € R.
We claim that @’ is a unit. Suppose not. Since R is local, 1 —d’ is a unit. But
a= fi(a)+ f2(a) =da+ f>(a). Hence (1 —d')a = f>(a) C (b) which implies that
a € (b). This is absurd since (a) and (b) are incomparable. Similarly, &’ is a unit. It
follows that (' — (1 —4')) is a unit. But x = @’x+ b'x yields (¢’ — (1 —2'))x = 0.
Therefore x = 0 and (a) N (b) =0.

Next, we prove that a®> = b> = ab = 0. Obviously, (a) N (b) = 0 implies that
ab = 0. So it remains to prove that a*> = b* = 0. Since (a) N (b) =0, I = (a) ®

(b). By Lemma 5.5, (b) is (a)-projective. Let ¢ : (a) — ﬁn(b) be the canonical
map and g : (b) — @ __ be defined by g(rb) = ra. If rib = ryb, then (r; —

aAnn(b

r2)b = 0. Hence rj —r; € <A)nn(b) which implies that (r; —rp)a = 0. So g(r1b) =
g(r2b). Consequently, g is well defined. Clearly g is an R-map. Now, since (b) is
(a)-projective, there exists an R-map f : (b) — (a) with @ o f = g. For b, we have
f(b) € (a), hence f(b) = ra for some r € R. Also (@ o f)(b) = g(b). Hence f(b) —
a € aAnn(b). Whence ra—a = at for some r € Ann(b) which implies that (1 +1)a =
ra. By multiplying the last equality by a we obtain, (t + 1)a’> = ra®. But ab = 0
implies 0 = f(ab) = af(b) = ra®. Hence (¢ + 1)a* = 0. Since ¢ € Ann(b) and R is
local, (¢4 1) is a unit. It follows that a*> = 0. Likewise b> = 0.

Last, let x € Ann(b). Then f(xb) = xra = 0. The above equality (t + 1)a = ra
implies (t+1—r)a=0.Butz+ 1 is a unit and R is local. So that r is a unit (b # 0).
Hence xa = 0. Whence x € Ann(a) and Ann(b) C Ann(a). Similarly we can show
that Ann(a) C Ann(b). Therefore Ann(a) = Ann(b).

Proof of Theorem 5.3. R arithmetical = R fqp-ring.
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Let R be an arithmetical ring, / a nonzero finitely generated ideal of R, and p a
prime ideal of R. Then I, := IR, is finitely generated. But R is arithmetical, hence
R, is a chained ring and /, is a principal ideal of R,,. By [21], I, is quasi-projective.
By [28, 19.2] and [29], it suffices to prove that (Homg(/, 1)), = Homg,, (1, I,). But
Homg, (I, I,) = Homg(I, I,) by the adjoint isomorphisms theorem [23, Theorem
2.11] (since Homg_1,(S™'N,S~'M) = Hom(N,S~'M) where S™!N = N®zS~'R
and S7'M = H0m5_|R(S_1R,S_1M)). So let us prove that

(Homg(I, I)), = Homg(I, I,).

Let
¢ : (Homg(1, I)), — Homg(I, I,,)

be the function defined by { € (Homg(1, I)),, ¢(§) :1 — I, with q)({)(x) =
for each x € I. Clearly ¢ is a well-defined R-map. Now suppose that ¢(]§) =0.1lis
finitely generated, so let I = (x;, x2,..., X,), where n is an integer. Then for every
ie{l, 2, .. n} d)(%)(xi) = L0 — 0, whence there exists ; € R\ p such that

N
tif(x;) = 0. Let t := t1p...t,. Clearly, r € R\ p and ¢t f(x) = 0, for all x € I. Hence
f = 0. Consequently, ¢ is injective. Next, let g € Homg(/, 1,). Since I, is principal
in Ry, I, = aR), for some a € I. But g(a) € I,. Hence g(a) = ' for some ¢ € R and
s €R\p.Letx €. Then { €, =aR,. Hence { = ** for some r € Rand u € R\ p.
So there exists € R\ p such that tux = tra. Now, let f : I — I be the multiplication

by c. (i.e., for x € I, f(x) = cx). Then f € Homg(/, I) and we have

X cx c¢x cra r 1 1
oD = I XX Ty L tura) = L) = ().
Therefore ¢ is surjective and hence an isomorphism, as desired.

R fqp-ring = R Gaussian

Recall that, if (R,m) is a local ring with maximal ideal m, then R is a Gaussian
ring if and only if for any two elements a, b in R, (a,b)?> = (a*) or (b*) and if
(a,b)> = (a®) and ab = 0, then b*> = 0 [5, Theorem 2.2 (d)].

Let R be an fgp-ring and let P be any prime ideal of R. Then by Lemma 5.6 R, is a
local fqp-ring. Let a, b € Rp. We investigate two cases. The first case is (a, b) = (a)
or (b), say (b). So (a, b)*> = (b*). Now assume that ab = 0. Since a € (b), a = cb
for some ¢ € R. Therefore a> = cab = 0. The second case is I := (a, b) with I # (a)
and I # (b). Necessarily, a # 0 and b # 0. By Lemma 5.7, a®> = b*> = ab = 0. Both
cases satisfy the conditions that were mentioned at the beginning of this proof (The
conditions of [5, Theorem 2.2 (d)]). Hence R,, is Gaussian. But p being an arbitrary
prime ideal of R and the Gaussian notion being a local property, then R is Gaussian.

To prove that the implications are irreversible in general, we will use the follow-
ing theorem to build examples for this purpose.

Theorem 5.8 ([1, Theorem 4.4]). Let (A, m) be a local ring and E a nonzer %-
vector space. Let R := A X E be the trivial ring extension of A by E. Then R is an
fap-ring if and only if m* = 0.
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The proof of this theorem depends on the following lemmas.

Lemma 5.9 ([24, Theorem 2]). Let R be a local fqp-ring which is not a chained
ring. Then (Nil(R))? = 0.

Lemma 5.10 ([1, Lemma 4.5]). Let R be a local fgp-ring which is not a chained
ring. Then Z(R) = Nil(R).

Proof. We always have Nil(R) C Z(R). Now, let s € Z(R). Then there exists t # 0 €
R such that st = 0. Since R is not chained, there exist nonzero elements x, y € R
such that (x) and (y) are incomparable. By Lemma 5.7, x> = xy = y> = 0. Either (x)
and (s) are incomparable and hence, by Lemma 5.7, s> = 0. Whence s € Nil(R). Or
(x) and (s) are comparable. In this case, either s = rx for some r € R which implies
that s> = r2x*> = 0 and hence s € Nil(R). Or x = sx’ for some x’ € R. Same arguments
applied to (s) and (y) yield either s € Nil(R) or y = sy’ for some y’ € R. Since (x)
and (y) are incomparable, (x') and (y') are incomparable. Hence, by Lemma 5.7,
(x)YN (') = 0. If (') and () are incomparable, then by Lemma 5.7, Ann(x’) =
Ann(r). So that s € Ann(x’) which implies that x = sx’ = 0, absurd. If (r) C (¥'),
then (1) N(y') C ()N (') =0. So () and (y’) are incomparable, whence similar
arguments as above yield y = 0, absurd. Last, if (x') C (¢), then x’ = /'t for some
¥ € R. Hence x = sx’ = st = 0, absurd. Therefore all the possible cases lead to
s € Nil(R). Consequently, Z(R) = Nil(R).

Lemma 5.11 ([1, Lemma 4.6]). Let (R, m) be a local ring such that m*> = 0. Then
R is an fgp-ring.

Proof. Let I be a nonzero proper finitely generated ideal of R. Then / C m and
m/ =0. Hence m C Ann(/), whence m = Ann(!) (I # 0). So that ﬁ(l) >~ A which
implies that [ is a free ﬁ(’) ﬁ(’)'

1 is quasi-projective. Consequently, R is an fqp-ring.

-module, hence projective over By Lemma 5.4,

Proof of Theorem 5.8. Assume that R is an fqp-ring. We may suppose that A is
not a field. Then R is not a chained ring since ((a, 0) and ((0, ¢)) are incomparable
wherea 20 eémande= (1, 0, 0, ...) € E. Also R is local with maximal m xE.
By Lemma 5.10, Z(R) = Nil(R). But m x E = Z(R). For, let (a,e) € mxE. Since
E is an %-vector space, (a,e)(0,e) = (0,ae) = (0,0). Hence m xE C Z(R). The
other inclusion holds since Z(R) is an ideal. Hence m x E = Nil(R). By Lemma 5.9,
(Nil(R))? = 0 = (m xE)?. Consequently, m?> = 0.

Conversely, m?> = 0 implies (mxE)? = 0 and hence by Lemma 5.11, R is an
fqp-ring. [J

Now we can use Theorem 5.8 to construct examples which prove that the impli-
cations in Theorem 5.3 cannot be reversed in general. The following is an example
of an fqp-ring which is not an arithmetical ring

Example 5.12. R := % x R is an fqp-ring by Theorem 5.8, since R is local with a
nilpotent maximal ideal % x R. Also, since ](RXPZ(; is not a field, R is not arithmetical

by Theorem 4.2.
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The following is an example of a Gaussian ring which is not an fqp-ring.

Example 5.13. R := R[X]x) x R is Gaussian by Theorem 4.2. Also, by Theorem
5.8, R is not an fqp-ring.

Now the natural question is what are the values of the weak global dimension of
an arbitrary fqp-ring? The answer is given by the following theorem.

Theorem 5.14 ([1, Theorem 3.11]). Let R be an fgp-ring. Then w.gl.dim(R) = 0,
1, or oo,

Proof. Since w.gl.dim(R) = sup{w. gl.dim(R,) | p prime ideal of R}, one can as-
sume that R is a local fqp-ring. If R is reduced, then w.gl.dim(R) < 1 by Lemma
3.5. If R is not reduced, then Nil(R) # 0. By Lemma 5.9, either (Nil(R))? = 0, in
this case, w.gl.dim(R) = o by Theorem 3.9 (since an fqp-ring is Gaussian); or R
is a chained ring with zero divisors (Nil(R) # 0), in this case w. gl.dim(R) = e by
Theorem 2.3. Consequently, w. gl.dim(R) = 0, 1, or es.

It is clear that Theorem 5.14 generalizes Osofsky’s Theorem on the weak global
dimension of arithmetical rings (Theorem 2.3) and partially resolves Bazzoni-Glaz
Conjecture on Gaussian rings.
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