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a b s t r a c t

This paper studies the multiplicative ideal structure of commutative rings in which every
finitely generated ideal is quasi-projective. We provide some preliminaries on quasi-
projective modules over commutative rings. Then we investigate the correlation with the
well-known Prüfer conditions; that is, we prove that this class of rings stands strictly
between the two classes of arithmetical rings and Gaussian rings. Thereby, we generalize
Osofsky’s theorem on theweak global dimension of arithmetical rings and partially resolve
Bazzoni–Glaz’s related conjecture on Gaussian rings. We also establish an analogue of
Bazzoni–Glaz results on the transfer of Prüfer conditions between a ring and its total ring
of quotients. We then examine various contexts of trivial ring extensions in order to build
new and original examples of rings where all finitely generated ideals are subject to quasi-
projectivity, marking their distinction from related classes of Prüfer rings.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

All rings considered in this paper, unless otherwise specified, are commutative with identity element and all modules
are unital. There are five well-known extensions of the notion of Prüfer domain [25,30] to arbitrary rings (i.e., with zero
divisors). Namely, for a ring R, (1) R is semihereditary, i.e., every finitely generated ideal of R is projective [5]; (2) R has weak
global dimension ≤ 1 [15,16]; (3) R is arithmetical, i.e., every finitely generated ideal of R is locally principal [12,22]; (4) R
is Gaussian, i.e., c(fg) = c(f )c(g) for any polynomials f , g with coefficients in R, where c(f ) denotes the content of f [33];
(5) R is Prüfer, i.e., every finitely generated regular ideal of R is projective [4,19].

In the domain context, all these forms coincide with the original definition of a Prüfer domain [17], that is, every nonzero
finitely generated ideal is invertible [30]. Prüfer domains occur naturally in several areas of commutative algebra, including
valuation theory, star and semistar operations, dimension theory, representations of overrings, trace properties, in addition
to several homological extensions.

In 1970 Koehler [24] studied associative rings for which every cyclic module is quasi-projective. She noticed that any
commutative ring satisfies this property. Later, rings in which every left ideal is quasi-projective were studied by Jain
and others [21,18] and called left qp-rings. Several characterizations of (semi-)perfect qp-rings were obtained. Moreover,
Mohammad [28] and Singh–Mohammad [31] studied local or semi-perfect rings in which every finitely generated ideal is
quasi-projective. A ring is said to be an fqp-ring if every finitely generated ideal is quasi-projective.

This paper studies the multiplicative ideal structure of fqp-rings. Section 2 provides details on finitely generated quasi-
projective modules over commutative rings (and demonstrates that these coincide with the so-called ⋆-modules). Section 3
investigates the correlation between the fqp-property and well-known Prüfer conditions. In this vein, the first main
result (Theorem 3.2) asserts that the class of fqp-rings stands strictly between the two classes of arithmetical rings and
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Gaussian rings; that is, ‘‘arithmetical ring ⇒ fqp-ring ⇒ Gaussian ring ’’. Further, the second main result (Theorem 3.11)
extends Osofsky’s theorem on the weak global dimension of arithmetical rings and partially resolves Bazzoni–Glaz’s related
conjecture on Gaussian rings; we prove that ‘‘the weak global dimension of an fqp-ring is equal to 0, 1, or ∞’’. The third main
result (Theorem 3.14) establishes the transfer of the concept of fqp-ring between a local ring and its total ring of quotients;
namely, ‘‘a local ring R is an fqp-ring if and only if R is Prüfer and Q (R) is an fqp-ring ’’. Section 4 studies the possible transfer
of the fqp-property to various contexts of trivial ring extensions. The main result of this section (Theorem 4.4) states that
‘‘if (A, m) is a local ring, E a nonzero A

m
-vector space, and R := A n E the trivial ring extension of A by E, then R is an fqp-ring

if and only if m2
= 0’’. This result generates new and original examples of fqp-rings, marking the distinction between the

fqp-property and related Prüfer conditions.
The following diagram of implications puts the notion of fqp-ring in perspective within the family of Prüfer-like rings

[2,3], where the third and fourth implications are established by Theorem 3.2:

Semihereditary ring
⇓

Ring with weak global dimension ≤ 1
⇓

Arithmetical ring
⇓

fqp-Ring
⇓

Gaussian ring

⇓

Prüfer ring

2. Preliminaries

This section recalls some preliminaries on the concept of quasi-projective module, including the fact that it coincides
with Menini and Orsatti’s ⋆-module notion [27] for finitely generated modules over commutative rings. We give a complete
description of quasi-projective modules over arbitrary commutative rings, generalizing Zanardo’s description of ⋆-modules
over valuation rings [38].

Definition 2.1. (1) Let M be an R-module. An R-module V is M-projective if the map HomR(V ,M) → HomR(V ,M/N) is
surjective for every submodule N ofM .
(2) V is quasi-projective if V is V -projective.

Let R be a (not necessarily commutative) ring, MR the category of right R-modules, MS the category of right S-modules,
and fix an injective cogenerator QR in MR. Let V ∈ MR, Ann(V ) the annihilator of V in R, and V ∗

:= HomR(V ,Q ) considered
as a right module over S := End(V ). Let Gen(V ) ⊆ MR denote the full subcategory of V -generated right R-modules and
Cogen(V ∗

S ) ⊆ MS the full subcategory of V ∗-cogenerated right S-modules. The module V is called a quasi-progenerator if V
is quasi-projective and V generates each of its submodules.

The fact that HomR(V , MR) ⊆ Cogen(V ∗

S ) and MS ⊗S V ⊆ Gen(VR) led Menini and Orsatti in 1989 to introduce and study
modules VR for which the two categories Gen(VR) and Cogen(V ∗

S ) are equivalent [27]. Several homological characterizations
for such modules were given by Colpi [7,8] who termed them ⋆-modules. Also it is worthwhile recalling that a ⋆-
module is necessarily finitely generated [32]. Moreover, in the commutative setting, by combining [6, Theorem 2.4.5] and
[9, Theorem 2.4] with [35, 18.3 & 18.5] we have:

Lemma 2.2. Let R be a commutative ring and V a finitely generated R-module. Then the following assertions are equivalent:
(1) V is a quasi-progenerator;
(2) V is a ⋆-module;
(3) V is quasi-projective;
(4) V is projective over R

Ann(V )
. �

Next we provide a complete description of quasi-projective modules over arbitrary commutative rings. For the special
case of local rings, it recovers the description of ⋆-modules over valuation rings (i.e., chained rings) obtained by Zanardo in
[38].

Theorem 2.3. Let R be a commutative ring. A finitely generated R-module V is quasi-projective if and only if V is a direct summand
of (R/I)n for some ideal I of R and integer n ≥ 0. If, moreover, R is local, then V is quasi-projective if and only if V ∼= (R/I)n for
some ideal I of R and integer n ≥ 0.
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Proof. Let VR be a finitely generated R-module, J := AnnR(V ), and R := R/J. Assume that VR is quasi-projective. So, VR
is finitely generated, and projective by Lemma 2.2. It follows that VR, whence VR, is a direct summand of (R/J)n for some
n ≥ 0. Conversely, let V be a direct summand of (R/I)n for some ideal I of R and integer n ≥ 0. Then VR/I , whence VR is
finitely generated and projective (notice that I ⊆ J). Consequently, VR is a quasi-projective module by Lemma 2.2.

Now assume that R is local. If VR is quasi-projective, then VR is finitely generated and projective as shown above, whence
free since R is local. It follows that VR ∼= (R/J)n for some n ≥ 0. The conversewas shown to be true for arbitrary commutative
rings. �

As a consequence of Theorem 2.3, we generalize Fuller’s well-known result on ring extensions [13, Theorem 2.2] in the
commutative context.

Corollary 2.4. Let ξ : A → R be a morphism of commutative rings. If UA is finitely generated and quasi-projective, then
VR := R ⊗A U is finitely generated and quasi-projective.

Proof. LetUA be a finitely generated quasi-projective A-module. ThenU⊕X = (A/I)n for some ideal I of A, an integer n ≥ 0,
and an A-module X . It follows that (R⊗A U)⊕ (R⊗A X) ∼= R⊗A (A/I)n ∼= (R/RI)n, whence VR := R⊗A U is finitely generated
and quasi-projective by Theorem 2.3. �

Notice that ifUA is a ⋆-module, thenUA is a quasi-progenerator and so the faithfulmoduleUA is projectivewithGen(UA) =

MA, where A := A/AnnA(U). In particular, UA generates VA, hence UA generates VA (note that AnnA(U) ⊆ AnnA(V )). This
shows that the assumption ‘‘UA generates VA’’ in Fuller’s result [13, Theorem 2.2] is automatically satisfied for ⋆-modules
over commutative rings.

3. Commutative fqp-rings

Definition 3.1. A commutative ring R is said to be an fqp-ring if every finitely generated ideal of R is quasi-projective.

This section investigates the correlation between (commutative) fqp-rings and the Prüfer-like rings mentioned in the
introduction. The first result of this section (Theorem 3.2) states that the class of fqp-rings contains strictly the class of
arithmetical rings and is contained strictly in the class of Gaussian rings. Its proof provides then specific examples proving
that the respective containments are strict. Consequently, fqp-rings stand as a new class of Prüfer-like rings (to the effect
that, in the domain context, the fqp-notion coincides with the definition of a Prüfer domain).

In 1969, Osofsky proved that a chained ring (i.e., a local arithmetical ring) with zero divisors has infinite weak global
dimension [29]; that is, the weak global dimension of an arithmetical ring is 0, 1, or ∞ by [15, Corollary 4.2.6]. Recently,
Bazzoni andGlaz studied the homological aspects of Gaussian rings and proved, among others, that Osofsky’s result is valid in
the context of coherent Gaussian rings (resp., coherent Prüfer rings) [16, Theorem 3.3] (resp., [3, Theorem 6.1]). They closed
with a conjecture sustaining that ‘‘the weak global dimension of a Gaussian ring is 0, 1, or ∞’’ [3]. In this vein, Theorem 3.11
generalizes Osofsky’s theorem as well as validates Bazzoni–Glaz conjecture in the class of fqp-rings.

We close this section with a satisfactory analogue (for fqp-rings) to Bazzoni–Glaz results on the transfer of Prüfer
conditions between a ring and its total ring of quotients [3, Theorems 3.3 & 3.6 & 3.7 & 3.12].

Next we announce the first result of this section.

Theorem 3.2. For a ring R, we have

R arithmetical ⇒ R fqp-ring ⇒ R Gaussian

where the implications are irreversible in general.

The proof of this theorem involves the following lemmas which are of independent interest.

Lemma 3.3 ([34, Lemma 2]). Let R be a ring and M a quasi-projective R-module. Assume M = M1 + · · · + Mn, where Mi is a
submodule of M for i = 1, . . . , n. Then there are endomorphisms fi of M such that f1 + · · · + fn = 1M and fi(M) ⊆ Mi for
i = 1, . . . , n. �

The following result follows directly from Lemma 2.2.

Lemma 3.4 ([24]). Every cyclic module over a commutative ring is quasi-projective.

Lemma 3.5 ([14, Corollary 1.2]). Let {Mi}1≤i≤n be a finite family of R-modules. Then
n

i=1 Mi is quasi-projective if and only if Mi
is Mj-projective for all i, j ∈ {1, . . . , n}. �

Lemma 3.6. If R is an fqp-ring, then S−1R is an fqp-ring, for any multiplicatively closed subset S of R.

Proof. Let J be a finitely generated ideal of S−1R and let I be a finitely generated ideal of R such that J := S−1I . Then I is
quasi-projective that is faithful over R

Ann(I) . By Lemma 2.2, I is projective over R
Ann(I) . So that J := S−1I is projective over

S−1R
S−1 Ann(I)

=
S−1R

Ann(S−1I)
. By Lemma 2.2, J is quasi-projective, as desired. �
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Lemma 3.7 ([36, 19.2] and [37]). Let R be a (commutative) ring andM a finitely generated R-module. ThenM is quasi-projective
if and only if Mm is quasi-projective over Rm and (End(M))m

∼= EndRm(Mm), for every maximal ideal m of R. �

Lemma 3.8. Let R be a local ring and a, b two nonzero elements of R such that (a) and (b) are incomparable. If (a, b) is quasi-
projective (in particular, if R is an fqp-ring), then:
(1) (a) ∩ (b) = 0,
(2) a2 = b2 = ab = 0,
(3) Ann(a) = Ann(b).

Proof. (1) I := (a, b) is quasi-projective, so by Lemma 3.3, there exist f1, f2 in EndR(I) with f1(I) ⊆ (a), f2(I) ⊆ (b), and
f1 + f2 = 1I . So

a = f1(a) + f2(a); b = f1(b) + f2(b).

Let f1(a) = x1a, f2(a) = y1b, f1(b) = x2a, and f2(b) = y2b. We obtain

a = x1a + y1b; b = x2a + y2b.

This forces x1 to be a unit and 1 − y2 to not be a unit. Let z ∈ (a) ∩ (b); say, z = c1a = c2b for some c1, c2 ∈ R. We get

z = f1(c1a) + f2(c2b) = x1z + y2z.

Therefore (x1 − (1 − y2))z = 0, hence z = 0 (since x1 − (1 − y2) is necessarily a unit), as desired.
(2) We have I = (a) ⊕ (b). So (a) is (b)-projective by Lemma 3.5. Consider the following diagram of R-maps

(a)

g

��

f

ww
(b)

ϕ
// (b)
bAnn(a)

// 0

where ϕ denotes the canonical map and g is (well) defined by g(ra) = rb. Since (a) is (b)-projective, then there exists an
R-map f : (a) → (b) with ϕ ◦ f = g . In particular, f (a) = b (mod (b)

bAnn(a) ). Therefore f (a) = cb for some c ∈ R and hence
cb−b = bd for some d ∈ Ann(a). Further, since ab = 0 (recall (a)∩(b) = 0), we have 0 = f (ab) = bf (a) = cb2. Multiplying
the above equality by b, we get (d+1)b2 = 0. It follows that b2 = 0 as d+1 is a unit (since d is a zero-divisor and R is local).
Likewise, a2 = 0. Thus I2 = 0, as claimed.
(3) The above equality cb − b = bd yields (d + 1 − c)b = 0. Hence the fact that d + 1 is a unit forces c to be a unit too
(since b ≠ 0). Now, let x ∈ Ann(a). Then 0 = f (xa) = xf (a) = cxb, whence x ∈ Ann(b). So Ann(a) ⊆ Ann(b). Likewise,
Ann(b) ⊆ Ann(a), completing the proof of the lemma. �

It is worthwhile noting that Lemma 3.8 sharpens and recovers [28, Lemma 3] and [31, Lemma 3] where the authors
require the hypothesis that ‘‘every finitely generated ideal is quasi-projective’’ (i.e., R is an fqp-ring).

Proof of Theorem 3.2. Assume R to be an arithmetical ring. Let I be a nonzero finitely generated ideal of R and J a subideal
of I (possibly equal to 0). Let P be any prime ideal of R. Then IP := IRP is a principal ideal of RP (possibly equal to RP ) and
hence quasi-projective by Lemma 3.4. Moreover, we claim that

(HomR(I, I))P ∼= HomRP (IP , IP).

We only need to prove

(HomR(I, I))P ∼= HomR(I, IP).

Consider the function
φ : (HomR(I, I))P −→ HomR(I, IP)

f
s −→ φ(

f
s ) : I → IP ; x →

f (x)
s

Obviously,φ is awell-definedR-map.Moreover, one can easily check thatφ is injective since I is finitely generated. It remains
to prove the surjection. Let g ∈ HomR(I, IP). Clearly, the RP -module IP is cyclic and so IP = aRP for some a ∈ I . Therefore
there exists λ ∈ R and s ∈ R \ P such that g(a) =

λa
s . Let f : I → I defined by f (x) = λx. Then f ∈ HomR(I, I). Let x ∈ I .

Further x
1 =

ra
u for some r ∈ R and u ∈ R \ P , whence tux = tra for some t ∈ R \ P . We have

φ


f
s


(x) =

f (x)
s

=
λ

s
x
1

=
λ

s
ra
u

=
r
u
g(a) =

1
tu

g(tra) =
1
tu

g(tux) = g(x).

This proves the claim. By Lemma 3.7, I is quasi-projective and hence R is an fqp-ring, proving the first implication. Next
assume R to be an fqp-ring. The Gaussian notion is a local property, that is, R is Gaussian if and only if RP is Gaussian for
every P ∈ Spec(R) [3]. This fact combined with Lemma 3.6 reduces the proof to the local case. Now, R is a local fqp-ring. Let
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a, b be any two elements of R. We envisage two cases. Case 1: Suppose (a, b) = (a) or (b), say, (a). Then (a, b)2 = (a2) and
if in addition ab = 0, then b ∈ (a) implies that b2 = 0. Case 2: Suppose I := (a, b) with I ≠ (a) and I ≠ (b). Obviously,
a ≠ 0 and b ≠ 0. By Lemma 3.8, I2 = 0. Consequently, both cases satisfy the conditions of [3, Theorem 2.2(d)] and thus R is
a Gaussian ring, proving the second implication.

It remains to show that both implications are, in general, irreversible. This is handled by the next two examples. �

Example 3.9. There is an example of an fqp-ring that is not arithmetical.

Proof. From [17], consider the local ring R :=
F2[x,y]
(x,y)2

∼= F2[x, y] with maximal ideal m := (x, y). The proper ideals of R are
exactly (0), (x), (y), (x+y), andm. By Lemma 3.4, (x), (y), and (x+y) are quasi-projective. Furtherm := (x)⊕(y) implies that
m is quasi-projective by Lemma 3.5. Hence R is an fqp-ring. Clearly, R is not an arithmetical ring since m is not principal. �

Example 3.10. There is an example of a Gaussian ring that is not an fqp-ring.

Proof. Let K be a field and consider the local Noetherian ring R :=
K[x,y]

(x2,xy,y3)
∼= K[x, y] with maximal ideal m := (x, y). One

can easily verify that Ann(m) = (x, y2) and then R
Ann(m)

∼=
K[y]
(y2)

. Therefore R
Ann(m)

is a principal and hence an arithmetical
ring. It follows that R is a Gaussian ring (see first paragraph right after Theorem 2.2 in [3]). Finally, we claim that m is not
quasi-projective. Deny. Since m = (x, y) with m ≠ (x) and m ≠ (y), then Lemma 3.8 yields m2

= 0, absurd. Thus R is a not
an fqp-ring, as desired. �

Next, in viewof Theorem3.2 and Example 3.9,we extendOsofsky’s theoremon theweak global dimension of arithmetical
rings to the class of fqp-rings.

Theorem 3.11. The weak global dimension of an fqp-ring is equal to 0, 1, or ∞.

The proof uses the following result.

Lemma 3.12 ([31, Theorem 2]). Let R be a local fqp-ring. Then eitherNil(R)2 = 0 or R is a chained ring (i.e., its ideals are linearly
ordered with respect to inclusion). �

Proof of Theorem 3.11. Since w. gl. dim(R) = sup{w. gl. dim(Rm) | m ∈ Max(R)}, we only need to prove the theorem for
the local case. Let R be a local fqp-ring. We envisage two cases. Case 1: Suppose R is reduced. Then Theorem 3.2 combined
with [16, Theorem 2.2] forces the weak global dimension of R to be less than or equal to one, as desired. Case 2: Suppose R
is not reduced. By Lemma 3.12, (Nil(R))2 = 0 or R is a chained ring. By Theorem 3.2, R is Gaussian, so that the statement
‘‘(Nil(R))2 = 0’’ yieldsw. gl. dim(R) = ∞ by [3, Theorem 6.4]. On the other hand, the statement ‘‘R is a chained ring’’ implies
that R is a local arithmetical ring with zero divisors (since Nil(R) ≠ 0), hence R has an infinite weak global dimension [29],
completing the proof of the theorem. �

In 2005, Glaz proved that Osofsky’s result is valid in the class of coherent Gaussian rings [16, Theorem 3.3]. In 2007,
Bazzoni and Glaz conjectured that the same must hold in the whole class of Gaussian rings [3]. Theorem 3.11 widens the
scope of validity of this conjecture beyond the class of coherent Gaussian rings, as shown by next example:

Example 3.13. There is an example of an fqp-ring that is neither arithmetical nor coherent.

Proof. Let K be field and {x1, x2, . . .} an infinite set of indeterminates over K. Let R :=
K[x1,x2,...]

m2 = K[x1, x2, . . .], where
m := (x1, x2, . . .). One can easily check that R has the following features:

(1) R = K +
m

m2 is local with maximal ideal m

m2 .
(2) ∀ f ∈

m

m2 , Ann(f ) =
m

m2 .
(3) ∀ i ≠ j, (xi) ∩ (xj) = 0.
(4) ∀ f ∈

m

m2 and ∀ i ≥ 1, (f ) ∼= (xi).
(5) For every finitely generated ideal I of R, we have I ∼=

n
k=1(xik) for some indeterminates xi1 , . . . , xin in {x1, x2, . . .}.

Let I be a finitely generated ideal of R. By (4), (xi) is (xj)-projective for all i, j ≥ 1. So (5) forces I to be quasi-projective by
Lemma 3.5. Therefore R is an fqp-ring. Moreover, by (2), the following sequence of natural homomorphisms

0 →
m

m2
→ R → Rx1 → 0

is exact. So Rx1 is not finitely presented and hence R is not coherent. Finally, observe that Rx1 and Rx2 are incomparable so
that R is not a chained ring and, hence, not an arithmetical ring (recall R is local). �

In [3], Bazzoni and Glaz proved that a Prüfer ring R satisfies any of the other four Prüfer conditions (mentioned in the
introduction) if and only if its total ring of quotients Q (R) satisfies that same condition. This fact narrows the scope of study
of the Prüfer conditions to the class of total rings of quotients; specifically, ‘‘a Prüfer ring is Gaussian (resp., is arithmetical,
has w. gl. dim(R) ≤ 1, is semihereditary) if and only if so is Q (R)’’ [3, Theorems 3.3 & 3.6 & 3.7 & 3.12]. Next, we establish
an analogue for the fqp-property in the local case.
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Theorem 3.14. Let R be a local ring. Then R is Prüfer and Q (R) is an fqp-ring if and only if R is an fqp-ring.

Proof. A Gaussian ring is Prüfer [17, Theorem 3.4.1] and [26, Theorem 6]. So in view of Theorem 3.2 and Lemma 3.6 only
the necessity has to be proved. Assume R is Prüfer and Q (R) is an fqp-ring. Notice first that R is a (local) Gaussian ring by
[3, Theorem 3.3] and hence the lattice of its prime ideals is linearly ordered [33]. Therefore the set of zero divisors Z(R) of R
is a prime ideal and hence Q (R) = RZ(R) is local. Next, let S denote the set of all regular elements of R and let I be a finitely
generated ideal of Rwith a minimal generating set {x1, . . . , xn}. If I is regular, then I is projective (since R is Prüfer). Suppose
I is not regular, that is, I ∩ S = ∅. We wish to show that I is quasi-projective. We first claim thatxi

1


Q (R) ∩

xj
1


Q (R) = 0, ∀ i ≠ j ∈ {1, . . . , n}.

Indeed, for any i ≠ j, the ideals (
xi
1 ) and (

xj
1 ) are incomparable in Q (R): Otherwise if, say, xi

1 ∈ (
xj
1 ), then sxi = axj for

some a ∈ R and s ∈ S. Since s is regular, the ideal (a, s) is projective in R (which is Prüfer). Moreover, by Lemma 3.8, we
obtain (a, s) = (s) or (a, s) = (a) and, in this case, necessarily a ∈ S. It follows that xi and xj are linearly dependent which
contradict minimality. Therefore, by Lemma 3.8 applied to the ideal ( xi

1 ,
xj
1 ) in the local fqp-ring Q (R), we get ( xi

1 )∩ (
xj
1 ) = 0,

proving the claim. Since S consists of regular elements, then xiR ∩ xjR = 0, for each i ≠ j, whence I =
n

i=1 xiR. Further, by
Lemma 3.8, we have

AnnQ (R)

xi
1


= AnnQ (R)

xj
1


, ∀ i ≠ j ∈ {1, . . . , n}.

Therefore, we obtain

Ann(xi) = Ann(xj), ∀ i ≠ j ∈ {1, . . . , n}.

Consequently, xiR ∼= xjR and hence xiR is xjR-projective for all i, j. Once again, we appeal to Lemma 3.5 to conclude that I is
quasi-projective, as desired. �

The global case holds for coherent rings as shown next.

Corollary 3.15. Let R be a coherent ring. Then R is Prüfer and Q (R) is an fqp-ring if and only if R is an fqp-ring.

Proof. Here too only necessity has to be proved. Assume R is Prüfer and Q (R) is an fqp-ring and let I be a finitely generated
ideal of R. By [3, Theorem 3.3], R is Gaussian. Let P be a prime ideal of R. Then RP is a local Prüfer ring (since Gaussian).
Moreover, by [3, Theorem3.4], the total ring of quotients of RP is a localization of Q(R) (with respect to amultiplicative subset
of R) and hence an fqp-ring by Lemma 3.6. By Theorem 3.14, RP is an fqp-ring. Consequently, I is locally quasi-projective.
Since I is finitely presented, then I is quasi-projective [11, Theorem 2], as desired. �

We close this section with a discussion of the global case. Recall first that the Gaussian and arithmetical properties are
local, i.e., R is Gaussian (resp., arithmetical) if and only if Rm is Gaussian (resp., arithmetical) for every maximal ideal m of
R. The same holds for rings with weak global dimension ≤ 1. We were not able to prove or disprove this fact for fqp-rings.
Moreover, the transfer result [3, Theorem 3.12(i)] for the semihereditary notion (which is not a local property) was made
possible by Endo’s result that ‘‘a total ring of quotients is semihereditary if and only if it is von Neumann regular’’ [10].
No similar phenomenon occurs for the fqp-property; namely, a total ring of quotients that is an fqp-ring is not necessarily
arithmetical (see Example 3.9). Based on the above discussion, one wonders if Theorem 3.14 is true for all rings. We have
not succeeded to prove this fact.

4. Examples via trivial ring extensions

This section studies the fqp-property in various trivial ring extensions. Our objective is to generate new and original
examples to enrich the current literature with new families of fqp-rings. It is worthwhile noticing that trivial extensions
have been thoroughly investigated in [1] for the other five Prüfer conditions (mentioned in the introduction).

Let A be a ring and E an A-module. The trivial (ring) extension of A by E (also called the idealization of E over A) is the
ring R := An E whose underlying group is A× E with multiplication given by (a1, e1)(a2, e2) = (a1a2, a1e2 + a2e1). For the
reader’s convenience, recall that if I is an ideal of A and E ′ is a submodule of E such that IE ⊆ E ′, then J := I n E ′ is an ideal
of R; ideals of R need not be of this form [23, Example 2.5]. However, prime (resp., maximal) ideals of R have the form p n E,
where p is a prime (resp., maximal) ideal of A [20, Theorem 25.1(3)]. Also an ideal of R of the form I n IE, where I is an ideal
of A, is finitely generated if and only if I is finitely generated [15, p. 141]. A suitable background on commutative trivial ring
extensions is [15,20].

We first state a necessary condition for the inheritance of the fqp-property in a general context of trivial extensions.

Proposition 4.1. Let A be a ring, E an A-module, and R := A n E the trivial ring extension of A by E. If R is an fqp-ring, then so
is A.
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Proof. Assume that R is an fqp-ring. Let I be a finitely generated ideal of A, J a subideal of I , and f ∈ HomA(I, I/J). We wish
to prove the existence of h ∈ HomA(I, I) such that f (x) = h(x) (mod J), for every x ∈ I . Clearly, I n IE is a finitely generated
ideal of R and J n IE a subideal of I n IE. Let F : I n IE −→

InIE
JnIE defined by F(x, e) = (a, 0) (mod J n IE) where a ∈ I with

f (x) = a (mod J). It is easily seen that F is a well-defined R-map. By assumption, I n IE is quasi-projective. So there exists
H ∈ HomR(I n IE, I n IE) such that F(x, e) = H(x, e) (mod J n IE), for every (x, e) ∈ I n IE. Now, for each x ∈ I , let h(x)
denote the first coordinate of H(x, 0); that is, H(x, 0) = (h(x), ex) for some ex ∈ IE. One can easily check that h : I −→ I
is an A-map. Moreover, let x ∈ I and a ∈ I with f (x) = a. We have (a, 0) = F(x, 0) = H(x, 0) = (h(x), ex) (mod J n IE). It
follows that f (x) = a = h(x) (mod J), as desired. �

Remark 4.2. One can also prove Proposition 4.1 via Corollary 2.4. Indeed, assume R := A n E is an fqp-ring and let I be a
finitely generated ideal of A. Then UR := I n IE is a finitely generated ideal of R and hence quasi-projective. Now consider
the ring homomorphism ϕ : R −→ A defined by ϕ(a, e) = a. Clearly, the fact A ∼=

R
0nE leads to the conclusion (to the effect

that A ⊗R U ∼=
R

0nE ⊗R I n IE ∼=
InIE
0nIE

∼= I).

Example 4.7 below provides a counter-example for the converse of Proposition 4.1. The next two results establish
necessary and sufficient conditions for the transfer of the fqp-property in special contexts of trivial extensions. We first
examine the case of trivial extensions of integral domains.

Theorem 4.3. Let A ⊆ B be an extension of domains and K := qf(A). Let R := A n B be the trivial ring extension of A by B. Then
the following statements are equivalent:
(1) A is a Prüfer domain with K ⊆ B;
(2) R is a Prüfer ring;
(3) R is a Gaussian ring;
(4) R is an fqp-ring.

Proof. The implications (1)⇐⇒ (2)⇐⇒ (3) and (4)=⇒ (3) are handled by [1, Theorem 2.1] and Theorem 3.2, respectively.
It remains to prove (3) =⇒ (4). Notice first that (a, b) ∈ R is regular if and only if a ≠ 0. Assume that R is Gaussian and let
I be a (nonzero) finitely generated ideal of R. If I contains a regular element, then I is projective (since R is a Prüfer ring). If
I ⊆ 0nB, then I is a torsion freeA-module and hence projective (sinceA is a Prüfer domain). ButA ∼=

R
0nB with Ann(I) = 0nB,

hence I is quasi-projective by Lemma 2.2. Therefore R is an fqp-ring. �

Next we examine the case of trivial extensions of local rings by vector spaces over the residue fields.

Theorem 4.4. Let (A, m) be a local ring and E a nonzero A
m
-vector space. Let R := A n E be the trivial ring extension of A by E.

Then R is an fqp-ring if and only if m2
= 0.

The proof lies on the next preliminary results.

Lemma 4.5. Let R be a local fqp-ring which is not a chained ring. Then Z(R) = Nil(R).

Proof. Let s ∈ Z(R). Assume by way of contradiction that s /∈ Nil(R). Let x, y be two nonzero elements of R such that
(x) and (y) are incomparable (since R is not a chained ring). Lemma 3.8 forces (x) and (s) to be comparable and a fortiori
x ∈ (s). Likewise y ∈ (s); say, x = sx′ and y = sy′ for some x′, y′

∈ R. Necessarily, (x′) and (y′) are incomparable and
hence (x′) ∩ (y′) = 0 (by the same lemma). Now let 0 ≠ t ∈ R such that st = 0. Next let us consider three cases. If (x′)
and (t) are incomparable, then Ann(x′) = Ann(t) by Lemma 3.8(3). It follows that x = sx′

= 0, absurd. If (t) ⊆ (x′), then
(t) ∩ (y′) ⊆ (x′) ∩ (y′) = 0. So (y′) and (t) are incomparable, whence similar arguments yield y = sy′

= 0, absurd. If
(x′) ⊆ (t); say, x′

= rt for some r ∈ R, then x = sx′
= str = 0, absurd. All possible cases end up with an absurdity, the

desired contradiction. Therefore s ∈ Nil(R) and thus Z(R) = Nil(R). �

Lemma 4.6. Let (R, m) be a local ring. If m2
= 0, then R is an fqp-ring.

Proof. Let I be a nonzero proper finitely generated ideal of R. ThenAnn(I) = m. So R
Ann(I) =

R
m
. Hence I is a free R

Ann(I) -module,
whence I is quasi-projective by Lemma 2.2. Consequently, R is an fqp-ring. �

Proof of Theorem 4.4. Recall first that R is local withmaximal idealmn E aswell as a total ring of quotients (i.e.,Q (R) = R).
Now suppose that R is an fqp-ring.Without loss of generality, wemay assume A not to be a field. Notice that R is not a chained
ring since, for e := (1, 0, 0, . . .) ∈ E and 0 ≠ a ∈ m,


(a, 0)


and


(0, e)


are incomparable. Therefore Lemma 4.5 yields

m n E = Z(R) = Nil(R). By Lemma 3.12, (m n E)2 = 0, hence m2
= 0, as desired.

Conversely, suppose m2
= 0. Then (m n E)2 = 0 which leads to the conclusion via Lemma 4.6, completing the proof of

the theorem. �

[1, Theorem 3.1] states that ‘‘R := A n E is Gaussian if and only if so is A’’ and ‘‘R is arithmetical if and only if A := K
is a field and dimK E = 1’’. Theorem 4.4 generates new and original examples of rings with zero divisors subject to Prüfer
conditions as shown below.

Example 4.7. R :=
Z
8Z n Z

2Z is a Gaussian total ring of quotients which is not an fqp-ring.

Example 4.8. R :=
Z
4Z n Z

2Z is an fqp total ring of quotients which is not arithmetical.
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