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0 Introduction

Let R be a commutative ring with identity and let X, X5, ... X, be algebraically
independent indeterminates aver R. 11 is known that if A has finite Krull dimension,
then

r+dim(Rjsdim(R[X . X.. .... X J=r+ir+ 1) dim (RL

These inequalities have been used to characterize dimension sequences (Le., sequences
ol nonnegative integers |a,: k=0] for which there exists a ring 4 such that
m(A[X, ... X, J)=a; for all k=0). Indeed, it has been shown that a sirictly
increasing sequence of positive integers Ja, @ k=0} is a dimension sequence il and
only if ka, ={k+11a,_,+1 for all k= 1. For results of this kind, see Arnold-Gilmer
{[AG1], [AG2])and Parker [P].

Moreover, Krull [K] has shown that if R is any flinite-dimensional Noetherian
ring, then dim (R[X,, ..., X, Ji=r+dim(R) for all r= | (cf also [S1, Theorem 9])
Seidenberg subsequently proved the same equality in case R is any finile-dimension-
al Prifer domain [52, Theorem 4]. To unite and extend such results on Krull
dimension of polynomial rings. Jaffard [J3] (and, previously, in the notes [J1],
[12]) introduced and studied ralwarive dimension:

Definition-Theorem 0.1. Let R be a domain which is not g field, K the guotient
Jield of R, L an algebraic extension field of K. and n a positice integer. Then the
Jollowing conditions are equivalent :

(i) Each (L-) valwation pverring of B has dimension ar most 0 and there exists a
[ L=} valuation overring of R having dimension n;
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iiil Eack |L-) overring af R has dimension ot moxt n and there exists an (L) overring
of B haring dimension n;

(il dimiR[X . .... X J)=1n;
{iv) dmiR[X,. ... X, Jl=r<+n forall rzn=1,

15 the aborve condiviens hold, R s said 10 have caluarive dimension n {in short,
dim, (Rymnl If there exists no positice imteger n satisfving (i)=(ivy, B iv sald 1o
have infinite veduarive dimension (in shoet, dim, (R)= = ), For the sake of complereneas,
cuch field iy ussigned rofiative dimension 0.

Theorem 01 was essentially established by Jaffard [J 3, Chapitre IV], who proved
the vanant of fivi with r>n The above improvement in {iv) is due 1o Arnold
[A. Theorem 6). A comvenient reference for this material is Gilmer [G1, Sec-
non 30]

It s clear that dim (R) <dim, (R} for any domain R. As noted in [G 1, Exercise 17,
page 372], it 15 casy 1o construct a domain R such thar dim, (R)—dim () is any
preassigned nonnegative imeger, Moreover, there exists R such that dim (R) <=
and dim, (R}= x. These examples will be reprised in Examples 3.1,

To honor Jafard, we make the following

Definition 0.2. A domain R is said 10 be a Jaffard domain if dim(R)=dim, (R)< = ;
equivalemily (¢f [Gl. Coroflary 30.12]) §f dim(R}< =< and dim(R[X,, ..., X.])
=r+dim(R) for each r=0.

The above results of Krull and Seidenberg may now be restated as lollows. If
R 15 a finite-dimensional domam which is either Moetherian or 3 Priifer domain,
then R is a Jaffard domain. We next list additional important families of examples
that motivate this anicle’s study of Jaffard domains.

{0.3) Each finite-dimensional universally calenarian domain is a Jaffard domain.

(0.3} follows from the fact that the class of all (not necessarily Moetherian) universal-
Iy catenirian domains is the largest class of calenarian domains which is stable
under factor domains and locaiizations and is such that its members satisly the
altitude formula (cf. Bouvier-Dobbs-Fontana [BDF I, Theorem 5.17 and Kabbaj
[Kal Corollaire LE]). It is noteworthy that if a finite-dimensional domain K is
either Cohen-Macaulay or Priifer or of valuative dimension 1 or of global dimen-
sion 1. then R is universally catcnarian (el [MM], [BF], [BDF 1], [BDF 2]}

(0.4) Esch finite-dimensional stably strong S-domain is a Jaffard domain.

Recall that a stably strong S-domain is a domain R such that R[X,,.... X,]
is a strong S-domain for all nonnegative inlegers = The study of this class of
rings was initinted by Malik-Mot [MM] and recently developed further by Kabbaj
[Kall. [Ka2). Examples of strong S-domains which are not stably strong §-
domains have been given by Brewer-Montgomery-Runter-Heinzer [BMRH],
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Wotice that 10 4) generalizes 10,31 Indeed. if a inite-dimensional domain R is univer-
sallv catenarian for instance. Priffer) or Noetherian, then [BDF I, Theorem 24]
shows that R is a stably strong S-domam. For an example of a Jaffard domain
which is not a stably strong S-domain, sec [MM, Example 3.11],

Remark 0.5 A domain K is said (o satisfy the aliitude inequality formula if
hriPy ik iPVLP AR <hiiP A R)+Ld (5/R)

for each finite-1ype R-algebra 5 containing & and euch PeSpeciS), It is well known
that Noctherian domains satisly the alttede inequality formuls. More generally,
Kabbaj [Ka2 Theorem |.6] recently showed that any stably strong S-domain also
satisfies the aliode inequality formula. In addition, we clmim, generalizing (0.4),
that:

(0.6) Each finite-dimensional dommin K sausfving the altitude inequality formula
is 2 Jalfard domain

To prove (0.6), note under the present hypotheses that kriP[X,, ... X, 1=kt
for each PeSpec(R)and cach family of indeterminates (X, X, ..., X, lef. [Ka2,
Lemme | 4]k Thus (el [G1, Theorem 318 and Corollary 30,197),
dim(R[X,, ..., X Jj=r+dim(R); iz, dim (R)=dim,(R).

The above resulis are summarized in the following diagram of implications concern-
ing fnite-dimensional domains:

Moctherian Priifer domain
] ]
stubly strong S-domain == universally calcranan domain
§ L]
altitude inequality formula == altitude formula
]
Jaffard domain

In Example 3.2, we shall give an example of a Jaffard domain which does not
satisfy the altitude mequality formula.

Section | addresses the possible transfer of the Jaflard property or integral exten-
sions, localizations, monoid domains, and Nagata nngs. Section 2 finds necessary
and suflicien! conditions for certain pullbacks to be Jaffard domains. These are
used 1o develop the examples collected in Section 3. These examples illuminate
the earlier sections’ results, which in some cases are shown 10 be best-possible,

1 Transfer results for Jaffard domains

We begin by recording the fact that iniegral extensions preserve and reflect the
lafTard property.
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Proposition |.1. Let R = 5 be an integral extension of domains. Then 5 is a Jaffard
demate i and ondy i R is a Jafford domain,

Proof, It sufices 1o note, via integrality, that dim(S)=dim(R) and dim, (5)
=dim, (R}l [G 1. {11.8) and Proposition 30.13]). W

We next show that the JalTard property is stable under adjunction of indeterminates.

Proposition 1.2 (al tcl. [G 1. Corollary 30,1210 If R a5 a Jauffurd domain. then

RLX,..... X, is also o Jaffard domain for each positive integer r.

ib) Lot B be @ domain with dim_(R}=n<o. Then R[X,, ..., X.] is a Jaffard domain
Jur ewch posirive fmeger v z=zn—1.

Proof. (a) By a remark of Jaffard [13, Théoréme 2. page 60). dim_(R[X . ... X,])

=r+dim, (R for each positive integer r(even if R is not 2 Jallard domain). Now,
with R Jalfard and n=dim | R)=dim, (R},

rn<dimRLX,. ..., X,J)<dim (R[X,, ..., X J)=r+dim (R)=r+n
so that R[X,, ..., X,] is Jaffard.
ik} Combining the abave-cited remark of Jaffard with Theorem 0.1{iv], we have
dim, [R[X,. oo, X ] =r+n=dim{R[X,, ..., X1}
for all r=n—1. Hence, R[X,,.... X,] is Jaffard. W

Remark 1.3, (2} Using Proposition 1.2{k), one easily produces a Jaffard domain
R and a prime PeSpec(R) such that R/P is not a Jaffard domain. (This gives
a positive answer 1o a question of Jalfard [13, page 68]) Indeed. a suitable R
can be buili from a non-Jaffard domain 4 of finite valuative dimension n as follows,
Let r be the larpest nonnegative integer such that A[X,, ..., X,] is not Jafard.
{Notice r<n—1 by Proposition 1L.2{bj). Then R=A[X, .... X, Jand P=X . R
have the asserted properties. A different construction illustrating the same phenom-
enon will be given in Example 3.7(b).

b} Apropos of Proposition 1.2(b), Example 3.4 will present a non-Jaffard domain
with dim iR)j=n<= and a positive integer r<n—1 such that R{X,. ..., X,] is
a Jaffard domain.

ic) Using Proposition 1.2{a}, it is easy to show that R is a Jaffard domain if and
only if R[X] s & Jaffard domain such that dim (K [X]b= 1+ dim (R}

It will be shown in Example 3.2 that a localization of a Jaffard domain need not
be a Jaffard domain. (This is in contrast with the stability of the classes of Noether-
tan domains, Prifer domains, universally catenarian domains, and stably strong
S-domains under localization.) This motivates the following:

Definition L4, A domain R is said 1o be locally Jaffard if Ry is a Jafford domain
Jor each PeSpec(R),
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For each domain R. dim, (R)=sup (dim, (R,): PeSpeciR). As an casy conse-
quence, we have:

Proposition L5, Let R be o domain with dim, (R) < ».. Then:

() R b docally Jufford if and only if 87" R 5o Jaffard demain for cach muliiphicative
subset § of R,

b} I R is locally Jaffard, then B s o Juffred domiin,

Remark 1.6, One cannot delete the hypothesis that dim, (R1< x in Proposition 1.5,
Indecd, consider Nagaia’s cxample [N page 203] of an infinite-dimensional
Noctherian domain each of whose localizations ai a maximal ideal is finite-dimen-
sional. Being Noetherian (znd henoe locally Anite-dimensionall, this domain is local-
Iy Jallard. However, if is non-Jallard since its (valuative) dimension is infinite

We next stuie a characterization of locally Jaffard domains.

Proposition 1.7. [BDF 1, Proposition 9.3]) Let R be a domain with dim, (R) < o.
Then R 15 locally Jaffard if and onlv f

I (N1l (EINVEIN RN s hoiN A R)
Sor each valuation ocerring (V, Ny aof R.

We next consider some contexts for which the Jaffard property is a local property,
Firsi, recall that & domain R is sad 1o be equicodimensional if all its maximal
ideals have the same height.

Proposition 1.8, Let R be a finite-dimensional equicodimensional catenarian domain.
Then R ii locally Jaffard i and only if R ia Joffard domain

Prool. By Proposition 1.5(b), we need only prove the =il" assertion. Since
dim [ A) = dim, (A} for all domains A, it is enough 1o notice that

dim (R)=dim {R/P}+dim (R P) =dim, (R/P)+ dim, (R P} < dim, (R}

for all PeSpec (R)L The equality follows [rom the equicodimensional and catenarian
conditions. The second inequality was already known 1o JalTard [J 3, Proposition 2,
page 57). (In Corollary 24, we shall give unother proofl of this inequalily, as u
consequence of a peneral result on pullbacks of JafMard domains.) W

Remark 1.9, (a) If onc assumes only that the domain R is finite-dimensional and
equicodimensional, the previous reasoning shows that R is 2 Jalard domain if
=nd only if R, is Jaffard for cach maximal ideal M of R

{b) If the equivalent conditions in Proposition |8 hold, we have. as a by-product
of the above prool. that R/P is Jaffard for each PeSpeciRL Moreover, that method
of prool also establishes thay if R s a Jafard domain and P is a divided prime
of R (in the sense of [D]. namely PRP= P, then both R/P and RP are Jaffard
domains,
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The Jaffard property is also determined locally for low-dimensional domains
Indeed, with R' denoting the integral closure of R, we may rephrase part of [BDF I,
Corollary 6.3] as follows:

Theorem 110 For o one-dimensional domain R, the following conditions are equive-
lent :

iy R s dafard domain:

iy Rislocally Jaffard

{ii) R iswniversaliy cotenarian

iivi R[X) is carengrign:

ivi Risastahly strang S-domain:

ivil R isostrong S-domain:

iviil R isan S-domain:

iviil) R iso Priffer domain,

Proposition 1.1, Ler B be a rwo-dimensional equicodimensional demain, Then R
ts locally Jaffard [ and only i R is a Jaffard domain. Moreover, if these conditions
hold, then R is @ strang S-domain.

Prool. By Proposition 1.5(b). we need only prove the “if” assertion and the "strong
5-"assertion, Now, if R is Jaffard, Theorem 0.1(iv) yields dim (R[X])=23. Under
the given hypotheses, an easy case analysis reveals that R is 2 strong S-domain.
Thus, o F is any nonzero nonmaximal prime of R, RP s = strong S-domain
[MM. Corollary 2.4] and, also being one-dimensional, is therefore Jaflard by Theo-
rl.'m!I&Mnmm.fﬂu:mmdﬂuluf&lhmﬂ.ullmljlﬂuilndﬂ,

d<dim(Ryu[X,. X l=dim(B[X,. X]i=4

whence, by Theorem 0.1(id), dim, (Ry)=2{=dim(R,). Hence, R iz locally
Jaffard. W

Remark 112 (a) Unlike the one-dimensional case, 8 iwo-dimensional Jaffard
domain need not be universally catenarian: consider 8 Noetherian local (hence,
equicodimensional ) two-dimensional domain R which is not universally catenarian.
Magata's example [N 1] of such an R has the property that R[X] is not catenarian.

ib) A two-dimensional equicodimensional domain K is a strong S-domain if and
only il dim(R[X]i=3. However, as Example 38 will show, such 2 domain need
nol be a Jalfard domain.

In the spirit of Theorem 1. lu,w:my state & similar result for higher-dimensional
going-down domains. It may be proved by nnmhmr. [BDF 1, Theorem 6.2] with
[BDF 2, Theorem 1].
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Theorem 113, For a locally finite-dimensional going-down domain R, the following
l'.'l'.'.l'lﬂ‘l‘“ﬂ.l!ﬁ' oare Eq'l.ﬂ-l:ﬂaf!” .’

(i} R islocally Jaffard;

(i) Ry ts e Jaffard domain for each maxinal ideal M of R

(iiiy R isunicersally catenarian;

(ivl R[X] iscaremarian:

(vl R isasrably strong S-damain:

(vil R isasteong S-domain;

(vitp R is universally catenarian;

{viii}) B isa Priifer domain.

The conditions in Theorem 1,13 may be used, in particular, to characterize the
() PV D' (in the sense of [DF 1]) which are {locally) Jaffard domains,

Ome upshot of Example 3.2 will be that the conditions in Theorem 1.13 (under
the given hypotheses, imply but) are not eguivatent 1o B being JaiTard.

We have already seen that the laffard property is stable under adjenction of indeter-
minatcs (Proposition 1.2(a)), We next investigate, more generally, its possible stabili-
ty under passage to monoid domains. A convenient reference for background on
monoid domains i Gilmer [G2].

Let § be a cancellative (additive) abelian 1orsion-free monoid with guotient proup
G={5) (Such an § will be called a “torsionless grading monmd™) Then & 5
a lorsion-free abelian group; and if B s a domain, the semigroup ring 4= R[5]
is also a domain [G 2, Theorem #.17]. We next recall the following result of Arnold-
Gilmer [AG 3] (cf. also [G2, Section 217).

Proposition 1.14, Let R be o domain and let 5 be a torsionless grading monoid with
quovient group G. [ rank (G)=r, rhen,
dim (R[5])= dim (R[G)) =dim (R[X,. ..., X, ]}
l:'='5'T:"-.fR[‘rIl'k"l_l:1 FE xn A:I.r_ I]L
Theorem 1.17 will establish the valuative dimension analogue of Proposition 1.14.
A key lemma towards this goal is:

Lemma 1.15. If" R is a domain. then dim (R[X |, ... X JI=dim (R[X , X', ... X,
X7 for each pasitive integer r,

Prool. We shall prove the case r=1; the general case may ihen be easily completed
by induction on r. Since R[X, X~'] is an overring of R[X]. dim,(R[X,
X "= dim, (R[X ] For the reverse inequality,
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dim, (R[X. X" "Jizsop |dm(S5[X. X~ '])): Sanoverring of R
=sup [dim(S[X]i: §5anovernngol R)
zsup [dim (5)+ 1: §an overring of K|
= sup {dim (5): 5 an overring of R} + |
=dim, (R}+ 1 =dim, (R[X]}
We thus have the desired equality. W
As a direct consequence of Proposition 1,14 and Lemma 1.15, we have:

Corallary 1.16. Ler R be a domain and r a positive integer. Them R[X,, .... X,]
is & Jaffard domain if and only if R[X . X", ..., X,. X, '] i5 o Jaffard domain.

We can now give our main result on monoid domains.

Theorem 1.17. Lét R be a domain and et § be @ iorsionless grading monoid
with guotiemt group G. If rank(G)=r, rim dim, (R[S]=dim, (R[G])
=dim, (R[X}, ... X, Ji=dim (R[X;. X7"s....Xsn X7'1 Moreover, if dim, (R}
and r are ¢ach finive, then this common palue i dim, (R)+r.

Proof. We may assume that r is finite. Let F be o finitely generated (frec abelinn)
subgroup of G wilth rank (Fi=r. Let A= R[S], B=R[G] and C=R[F]. Then
B is integral over C since G/F ¢ a torsion group fef. [G2, Theorem 1240 Next,
write C=R[Y,, 1,7, ..., Y., ¥."1] for some family of indeterminates [ ¥, ..., Y.l
Let DaR[Y,, ..., ¥ By Proposition 1.14, the domains 4, B, C, and D all have
the same Krull dimension. Moreover, dim,, ( B)= dim, | C}=dim, (D}, the first eqoali-
ty following by integrality, the second via Lemma 115,

As for A, note first that dim, (4)z dim, (B) since B & an overring of A To establish
the revense incquality, lct V be a valuation overring of A. Then for each 1 <i<r,
either YeVor ¥, 'e¥ Hence (by replacing ¥, with ™', if necessary), we may
assume that D= V. Thus dim, (4)<dim, (D) by Theorem 0.1 We thus bave
dim, () = dim, (B)=dim, (C)=dim, (D). The final “morcover™ assertion follows
from an earlicr-cited result of Jaffard [J 3, Théoréme 2, page 60]. W

As an immediate consequence of Proposition 1,14 and Theorem 1.17, we have the
following extension of Corallary 1.16:

Corollary L.I& Ler R be a domain and let § be a torsionless grading monoid with
quotient group G swch that rank (G)=r < co. Then the following statements are equiva-
m_.

il R[S5)is o Jafard domain:

(il R[G]is a Jaffard domain :

fiit) R[X,..... X,) isa Jaffard domain;

livi R[X X7, ... X, X "1is a Jaffard domain.

Our next corollary is the monoid domain analogue of Proposition 1.2
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Corollary LI9. Let B be a domain and Jer § be g rorsionless grading monoid with
quertfent growp G

(a2} If Ris a Jaffard domain, then R[8] is o Jafferd domain § and anly i rank (G) < o
ib) &7 dim, (R)=< o, then R[5] is @ Jaffard domain if dim, (R)—1 Srank (G},

Prool. The result 1s clear if rank (G 15 infinme. Hence it suffices 1o combine Corol-
lary 1.1% with Broposition 1.2,

As a special case of Corollary 1.1%{a), we have that for any held K {or, more
generally, any finile-dimensional Noetherian domaink 8 monoid domain K[5] is
a Jaffard domain if and only if rank ({53)< =,

Remark 1.20. (a) By remark 1.3{b).. R[5] may be a Jaffard domain even though

rank (Gl=dim,(Ri—1 and & 15 not @ Jaffard domain. So the converse of Corol-

lary 1.19(b}is False.

(b} Monod domains may be used 1o construct Jafard domains with vanous ring-

theoretic properties. For instance, combining the above remarks with results in

[G2, Chapiers 11 and 117, we sec for any fickd K., that K [©@7] is a one-dimensional,

completely iniegrally closed, nonnoetherian Jaffard domain.

fc) With the assumption that ® and R[S] each have finite valuative dimension,

Proposition 1.2(b} and Proposition 1.14 may be used to give another proof

of Lemmsz 1.15 and Theorem 1.17 as [ollows. Let r=rank (G)<w=. Then

dim, (R[%] [X, ... X Ji=dim iR[S)i+n for cach positive integer nz=1. IT

nzmax jdim, (R[S§])—1. dim, (R}—1}. then

dim, (R [S])+n=dim, (R[S][X . .... X)) =dim(R[SI[ X}, .... X, ]}

=dim(R[X,, ..., XJ[S]=dim(R[X,. .... X,. Vo oo X1
=dim, (Rj+n+r.

Hence, dim, (R[S])=dim, (R)+r.
We next investigate the transfer of the Jaffard property for Magata rings. Let R
be a domain with guotient field K and let {X . ..., X,} be a family of indeterminates,

The Nagara ring {in r variables and with coeflicients in R) is the domain
RiX, ... X)=53""R[X,..... X, ], where 5= | e R[X,. ..., X,): c(f)=R].

First, we shall determine the Krull dimension of a Nagata ring.

Proposition 1.21. [f' R iz a domatin, then dim {RU[’}. ceon X mdim(R[X, ..., X J)=—F
Jjor each positive integer r. In particular, § R is o Jafford. domain, then
dim(R(X,, .... X,)i=dim (R) for each posirire integer r. '

Proof. By [G 1], Proposition 33.17, dim (R(X,, ..., X W=sup tht{M[X,..... X,]%:
M a maximal ideal of R}. The first assention now follows from the fact that

dim (RIX,..... X, Jl=sup {heiM[X . .... X, ]Ji: M a maximal ideal of R} +r [AG],
Corollary 2.107. The second asscriion then follows from Proposition [2(b).

Mext. we shall determine the valuative dimension of 4 Nagata ring.
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Proposition 1.22. If R is o domain, them dim (R{X,...., X i=dim, (R) for each
positive inleger r.

Proof. If dim, { R)= . then dim_{R{X,. ..., X )= also. In peneral,

dim, (R}=dim, {R')=dim_{(R"") <dim,(R{X,, ..., X0
=dim (R[X,. .., X,])=dim, (R}+r

(c. [G 1, Propostion 32.16 and Theorem 33.3]) We may thus assume that both
dim, (R} and dim, (R{X . ..., X, are finite. By Proposition 1.21, for any other
family of  indeterminates ¥ Bl dim(RIX,. . XL, YN
=dim(R[X,.....X.. ¥, .... K —{r+35. Thus, by Theorem Q.lfiv), if r+s
=dim (Rj—1, then dim{R(X,, .. X, Y. Y=(dim (Bi+ir+s)—{r+s)
=dim, (R}

MNext, recall that RiY,. .... VM2, ... Z)=RI(Y,, ... Yo, Zy, oo, Zo) Tor any family
of indeterminates [¥,.. ... Y, Z,, ..., Z,) (cf [N2 6.4 and Exercise 1, pages
18-19] or [An, Lemma]l. Then, reasoning as above, il s=dim, (R(X,.... X))
—1, then dim (RIX,...,X,, Y, ..., Y)=dim(R(X,, ..., X[V, ..., ¥])~s
=dim, R{X,, ..., X)) Thus comparing the above two calculations of
dim (R{X,. ..., X,, Y, ..., Vb we have dim, (R(X,, ..., X )=dim, (k. W

Corollary 1.23. Let R be o domain with dim, (R)< . Then:
(a) If B is a Jaffard domain, then R(X |, ..., X,) iz 0 Jafford domain for each positive

integer r.

(b} For each positive integer r, the following three statements are equivalent -
i) R[X,. .., X,]isa Jaffard domain:

{iiy RX,, ..., X} is a Jaffard domain;

(iii) dim (RIX,, ..., X)=dm(R(X,, .... X,s Xt 1y oona X)) fOF !'iﬂr.‘ﬁ positive integer
n>r.

ie) RiX,, ..., X,)is a Juffard domain for each positive integer r=dim, (R)— 1.
Proof. (a) This follows immediately from Propositions 1.21 and 1.22.

(b) By Propositions 121 and 122, dim(R(X,..... X, )=dim, (R(X . ..., X}
=dim (R}=dim(R[X,, ..., X, Ji=re=dim (R[X, ..., X, ]}=dim(R[X,, ..., X,]L
It follows that {ik and {ii) are equivalent

Moreover. by Proposition .21, {ii)=-(iii]. Conversely, supposc that {iii) holds. In
general, we have as in the prool of Proposition 1.22 that if n=r+dim, (R)—1,
then dim(R(X,.....X,, X,., .., X)=dim, (R(X,...., X)) Hence, by (i),
dim, (R(X,, .... X, =dim{R(X,, ..., X,)). and so (i) holds.

ich This follows by combining Proposition 1.2{b) and the implication (ij==(ii} estab-
lished in (b) above. W
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We define the Ni{egarabdimension sequence of finite-dimensional domain R 10 be
{by: kz0], where by=dim (R} and b, =dim(R(X,,.... X)) for each positive
inteper k. By Proposition 121, (b k=0 5 @ nondecreasing sequence of nonnega-
tive integers bounded above by dim, (R). Moreover, b, =a, — k [or each & =0, where
{a,: k=0] is the dimension sequence of B IT dim, (R)< =, then Coroflary 1.23{c)
and Proposition 122 combine to yield that b =dim, (R} for all k =dim, (&= L.

Corollary 1247 Let R be o domain with dim (R < =,
(1} Let [by: k=0) be the N-dimension sequence of . Then:
(a) byt k=0 is eventually constant i and only i dim, (R)< =

tb) Let r be a positive integer. Then by=h, for all kzr if and anly i R[X . ..., X,]
is a Jaffard domain.

(2) Let {b,: k=0} be o seguence of nonnegative imtegers. Then vhere is o domain
Rowith by 1 k =0} as its N-dimension sequence [ and only i {by 2 K2 0] is nondecreas-
ing and kb, <{k+ 1) by, for cach positive inieger L

Proof. {1} This lollows easily lrom Corolfary 1.23(b}

(2) {by: k=0} is an N-dimension sequence il and only if [a,=h +k: k=0] is
a dimension sequence. However, by [P, Theorem I, (g, : £=0) 15 a dimension
sequence if and only if {a,: k=0 is sirictly increasing and kay =(k+ e +1
for each positive integer k. By elementary alpebra. this is equivalent to [b,: k= 0}
being nondecreasing and kb, <(k+ 1) by _; for each positive integer k. W

2 Pullbacks and Jaffard domains

In this section, we determine necessary and sufficient conditions for certain * pull-
hack-type” constructions to be Jaffard domains. As a special case, we determing
when the D+ M construction yields a Jaffard domain.

First, we consider pullbacks of communative rings
Re— I}
T—k

where Tis a domain, ¢ 15 8 homomorphism [rom T onto a field & with ker{p)= M,
D is a proper subring of k., and R=¢"(D). For the convenience of the reader,
we nexi recall several properties of such Cartesian diagrams.

Lemma L1, (a) M=(R:T)and R/M=D.

(b) Spec(R) is  fhoweomorphic o the  opological  emalgamated  sum
Spec(T)] Jspecus SpectDL
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e) If T ix quasilocal, then M is a divided prime ideal of K, and so each prime
ideal af R is comparable with M. If, in addition, k is the guovient field of D, then
RM == x

[d) If T is quasilocal, then dim (R)=dim (D} + dim (T},

{¢} For euch PeSpeciR) with M < P. there is a wnigue (PeSpec(T) such that
QriR=P, and this ¢ sarigfies To= Re

i I 5 is a fTar R-algehra, then the diagram

F s?,n
t
5@y T— 5@k

induced by applying 5@g® to the given pullback diagram is also a pultback diagram.

{gh If PeSpec(R) and P M, then there is a wnique QeSpec(D) such thar
P=up" Q)L Moreover. the following diagram of canonical homomorphisms

[T

Ty §

is a pullback diagram.
ithy Tis integral over R i and only i D is a field and k is algebraic over D,

Proof. For (a). (b), and (e). apply appropriate parts of [F1, Theorem 1.4]. Direct
calculations easily establish (c), while (d) is a comsequence of [F1, Proposi-
tion L1(5)]. For (f, o [BF, Lemma 2]. (g} follows by direct.caleulation, using
the fact that M Ty, = Rp. Finally, for (h), apply (F 1, Corollary 1.5(5]]. W

We shall begin with the “local case™ Let (T, M, k) denote & quasilocal domain
T with maximal ideal M and residue Deld k= T/M. Furthermore, let ¢: T—k
be the canonical surjection and put R=¢~'(D), where D is a proper subring of
k. We thus have a pullback diagram

R——D

|1

T——w k

For this situation, Theorem 2.6 will present necessary and sufficient conditions
for R be to a Jaffard domain. As a first step in this direction, Proposition 2.3
will handle the case in which [ has quotient field & But first a key step:
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Lemma 2.2 If R is g domain and M o divided prime ideal af B, ther

RU@LX 1o vos X D)= ROy s XM, o X
+h(MX,. ... X.])

Sor each positive integer v and each prime ideal @ of R such that = M,

Proof. rr(@)=hi1Q/ M1+ M) since M is divided. Thus the equality holds when
(@) is infinite. Henee we may assume that all the primes have finite height,
Let dmheiQ[X,, .... X, ]l and choose

B=Q[X,. ... X]=F > .3 R > R=(0)

a (saturated) chain of prime ideals of R[X,..... X.]. By [G 1. Corollary 30,197,
this chain may be chosen 1o be a special chain of primes {in the sense that
(B~ R)[X,.....X,] 15 in the chain for each O<k<d) Il B~ R=M for some
l<k<d, then we have the desired equality. We show next that this is indeed
the case.

If not, then, since A is divided, we have
-IH-:"F‘n—|[x|~ -

E-”/\;M[x......x,]
'\\.

'IFi[_xlu i X]

for some 1=<h=d, where p=FrR Let T=R, and I=AT[X, ... X]
+MT[X, ..., X (=B T[X,, ... X, ]+ M[X,..... X,] since M is divided).

If I#T[X,....,X.], then we may apply the pluing result [BDF2, Lemmal
essentially as in the proof of [BDF2, Theorem 2]. (The lemma applies by
taking X=8pec{RylX 0 X0 Y=S8pecliR/M[ Xy ... X210 L=
Spec (k(MI[X,, ... X ]) x={Rlg. and y=H8. /M[X,, ....X.]) The upshot is
that there is a prime ideal P of R[X, .... X ] such that R P’ R., and P~ R
=M this contradicts the fact that F, and £, are adjacent prime ideals On the
other hand, if | =T[X,, ..., X,]. then

lefnRLX ). ... X J=(ATLX . .. X1 R[X | XN+ MY 0 XL
=R+M[X,, ... X]J=R.:
also a contradiction. Thus B R=M for some |<k<d and we have the desired
equality, W

Proposition 23. Ler (T, M, k) be a quasilocal domain and o: T—k the canonical
surfection, Let R =@~ (D), where D is a proper subring of k with quotient field k.
Then:

(a) dim(R[X,, ... X, JiI=dim{D[X, .... X,])
+dim (T[X . ... X, —dim (k[ X . ..., X.]b for cach positice integer .
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ib) dim,{Rj=dim, (D +dim, (T}
(c) R is a Jaffard domain i and only i D and T are each Jafford domains,

Proal. fa) By Lemma 2.1{d}. dim (R)< oo if and only il both dim (D) and dim (T}
are fimite, Hence dim(R[X, ..., X, Jl<oc il and only if both dim(D[X,, ..., X,])
and dim{T[X,,.... X ]) are finite. We may assume that each domain is finite-
dimensional,

Let @ be @ maximal iwdeaf of R[X,, ..., X,] such that dm{(R[X,..... X, ]i=hQ)
=hrg[X,..... X,J}+r where g=0nR is a maximal ideal of R. (Such a 0 exisis
by [AGI. Corollary 2.9} Note that M =g by Lemma 2.1{c). Thus §=g/M and
J=Q/M[X,,....X] are maximal idcals of P and B[X,..... X,] respectively.
Also, by Lemma 12, helglX;. ... X =htlg[X oo X MIX . . XD
+htIMX,. ..., X,]). Hence
dimiR[X,. ... X, JiI=hrig[X,..... X, JM[X,. ... X.])
+ht MY, .... X, ]I+

Mext, notice that MIX,, ..., X,] has the same height in R[X,, ..., X,] and
T[X,. ...X.] since T=R,, by Lemma 2.1{c). Thus [AG I, Corollary 2.10] yields
that hriM [X,, .., X Ji+r=dim(T[X,, ..., X,]). Finally, by another applica-
tion of [AGI, Corollary 29), heig[Xy oo XIMIX . . X DV r=heilh)
=dim (D[X,, ..., X,]), the last equality following from the choice of 0, We thus
have the desired equality.

() First suppose that dim, (R) < oo, Then dim (D) +dim (T} =dim (R} =< ==, and 5o
both dim {0} and dim (T} are finite. In addition, dim, {T)< o« since T is an overring
of R, Next, we shall observe that dim, (D)< oo, If B is an r-dimensional overring
of D, then A=¢""(B) is an overring of R, and Lemma 2.1{d) yields dim(4)
=n+dim (T). Hence, dim, (D) =dim{4)=< dim,. (R) < ec.

Let r be a positive integer such that r zmax {dim, (R}, dim, (D)), dim_(T)} - 1. Then
by Theorem 0.1{iv),

dim (R[X,, ... X,]i1=dim_ {R)+r,

dim(D[X,, ..., X, ) =dim, (D)})+r,
and

dim(T[X,, ..., X ]i=dim, (T)+r.

Then by {al, dim, (Ri+r=idim, D)+ r}+idim, {T)+r}=r, vielding (b} in case
dim, (E)< .

To complete the proof of (by, we show that dim, (R)<= whenever dim, (D) and
dim, (T) are both finite. Let r-be a positive inteper such that r> max {dim, (D),
dim,(T){=1. Then by (a) and TheoremO.l{ivl, dim {R[X o XD
=dim{DLXY,. ..., X D+dim(TLX,, .. A ) =r=(dim D)+ r)+(dim (T} +rl—r=
(dim, (D}+dim, {T)+r. Hence, dim, (R) < o by another appeal 1o Theorem 0.1 {iv),
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fc) Since dim (Ry=dim (D) +dim{T} and dim (8= dim_ (8} lor any domain 8, (c)
Tollows directly from (b). W

As an application of Proposition 2.3, we obtain o proof of the following result
of Jaffard (cf. [J3. Proposition 2, page 57]) This result was used in the proof of
Proposition .8

Corollary 24. [et R b a domain, Then dim, (R)z dim, (R/P1+dim, (Rg) for cach
prime ideal P ool R,

Proof. Let k be Rp/PR,. the quotient field of B/P, let ¢: R, —k be the canonical
surection, and let T=g¢ '"{R/PL The Proposition 2.3 gives dim, (T)=dim, (Rp)
+dim, (R/P). However, since T is an overring of B, we also have dim, (T) =dim, (R].
which now gives the asserted inequality.

The next step in determining when a pullback R =g "(D). constructed from the
quasiiocal domain (T, M, &) and an arbitrary proper subring D of k, is a Jaffard
domain 15 to determing when the pullback o~ '(F) is a Jalard domain for F a
subficld of &.

Proposition 2.5. Ler (T, M. k) be a guasilocal domain which is net a field and les
@: T=k be the canonical surjection. Let R=gp " (F), where F is a subfield of k.
Then:

fa) dim, (R)=dim, (T)+ td.(&/F).

(b} R is a Jaffard domain if and only i T is a Jafford domain and k is algebraic
over F.

Proof. Since dim, (R} is infinite if either dim, (T) or t.d.(k/F) i infinite, we may
assume that dim, (T} and d=Ld.(k/F) are each finite. We show next that we may
also assume that K s purely transcendental extension of F, Let [¥,, ..., ¥;] be
a transcendence basis for k over F, and put L=F(Y,, ..., ¥;}. Since & is algebraic
over L, Lemma 2.1(h} vields that T is integral over 4=~ '(L}. Thus dim,(4)
=dim,(T). Since td.(L/Fi=td.ik/F) also, we may replace T with 4 and £ with
L; e, we may take & purely transcendental over F.

We shall prove the equality asserted in {a) by induction on d =t.d.{k/F). The induc-
tion basis concerns the case d =0, and this is evident, for then F=k and R=T.

Mext, suppose d=1, Write k=F(Y) and Y=gy for some yeT" M. We claim
that R[y]=o " "(F[Y]. The * = inclesion is clear. For the reverse containment,
consider any xeT with el(x)e F[Y]. There exists 2e R[] with glz)=(x). Then
x—cekerip)=M = R whence xez+Re= R[y], proving the claim, Similarly,
Ry"'}J=@ "{F[¥~']L By Proposition 23{b]. dim AR[]=dim, (F[Y]
+dim, (T)= 1 +dim,.(T| and, similarly, dim, (B[~ "]i=14+dim,{T. Moreover,
dim, (R)=max {dim R[]}, dim, (R[y"'])! since any valuation overring of R is
also a valuation overring of either R[] or B[~ "]. Thus dim, (Ri=dim_(T)+ 1.
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Suppose now that the equality asserted in (a) holds whenever the transcendence
degree is less than J. As above, k=F(Y,, ..., YL Let K=F(Y,, ..., ¥,_,) and
B=¢ '(K By the induction hypothesis, dim, (Ri=dim,(B)+Ld.{K/F)
mdim, (Bj+id—1}). Also, by the case in the preceding paragraph, dim, (B
=dim, (T'}+ 1. Hence. as asserted, dim, (Ri=dim_(T)+d.

{b) By Lemma 2.0 (dL dien ( R) = dim (k) < dim { T)=dim { T Hence (b) follows imme-
diatelv from (a) above. W

By combining Propositions 2.3 and 2.5, we determine when the pullback B =g~ "(D)
is a Jaffard domain.

Theorem 26. Let (T, M. k) be a quasilocal domain which is not a field and
w: T—=& the emonical surjecrion. Let R=g@~ "D}, where D is any subring of k
Ler F be the guotiemt field of D. Then:

ia) dim, (R)=dim, (D) +dim, (T)=+td.(k/FL

(bl R is a Jaflard domain i and only if D and T are eack Jafford domains and
k is algebraic over F,

We next improve the content of Proposition 2.5(a) by bounding the dimension
of polynomial nings over certain pullbacks.

Proposition L7, Let (T, M. k) be a quasilocal domain which is not a field, ¢: T—k
the canonical surjection, F a subfield of k, R =@~ " (F), and d=0d.(k/F). Then:

fa} r+dim(T)4+min {d, r| <dim(R[X,, ..., X, ])=r+dim (T)+d for each positive
nteger r,

(b} If T is a valwation domain, then the lefv equality in (a) holds.
(e} If rzdim, (R)— L, then both equalities in {a) hald.

(d) If either T is a valuation domain or r=dim, (R)—1. then dim (R[X,, ..., X.])
=dim (R)+r+min {d, r}.
Prool. (a) As in the proof of Proposition 2.5, we may assume that k=F(Y,, ..., Y
Mext, apply Amolds formula for the Krull dimension of a polynomial domain
[A, Theorem 5, page 320];

dim(R[X,. ..., X =r+sup [dim (R[x,, .... x,]): %, ..., %,EK)

zr+sup {dim (R[f, ... ) .o t,€ T

where K is the common guotient field of R and T

Let #,=w(t) for 1,e T As in the prool of Proposition 2.5, we have R[1,, ..., 1]
=@ "F[fi ...kl Hence by  Lemma2l{d)  dim(R[1,,....1])
=d:im|!F[i.,..“l_.:|b+d':mlﬂr Thus dim(R[X,,.... X, Jiz=r+sup |dim(T}
+dim(FLiy. ..o, L1 T, oo Tk} =1+ dim (T} 4min {r, d).

For the righi-hand inequality, dim(R[X,.....XJisdim, (R[X,.....X.])
=dim, (R} +r=dim, _[T)+d+r, the lasi equation resulting rom Proposition 2.5,
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(b} Let Tw ¥ be a valuztiion domain. Then it s casily shown that R[x]=V[x]
for cach ek ¥ Hence sup jdim(R[x,, ... x]Ji: IR 1
=gup (dimiR[1,. ...t ] 1. o 8 V) sinee dim (R)=dim {V}=dim (W) lor each
overring W ol ¥ Thus, by Arnold’s formuls, dimiR[X,. .... X, Ji=r+dim (V)
+min |r,d)].

fc) If rzdim (R)=1. then also rzdim (T)=1 by Proposition 25, Hence
r+dim (T)=dim (T[X,. .... X, ]=dim (T[X,, .... X, ]i=dim (T} +r, by Pro-
position 1.2ib. Also, min |d.r] = becuuse Proposition 2.5 gives r2dim, (R)— |
adim, (T)+d=12zd, the [ast step holding smce T is not a ficld Hence the lefi-
and nght-hand terms in (a) are egual, so we have equality.

(d) In either case. dim(Ri=dim(T) by Lemms 1iid. Hence (d) follows from (b
andici. W

As 3 comsequence of Proposition 1.7 and Proposition 2 3(a). we obtain a slight
gencralization of a theorem of Bastida-Gilmer [BG, Theorem 5.4

Corallary 2.8. Let (V. M, k) be a raluation demain which is not a fleld, o: V=L
the canonical surjection, D @ subring of k, R=g¢~'(D), F the guotient fleld of D,
and d = t.4.(k/F). Then

dim (R[X,. ..., X,Ji=dim (V) +dim (D[X,, ..., X,])+ min |d. r]

Jor each positive integer r.

Prool. Consider the quasilocal domain A=g"'(FL Then dim(A[X,, .... X.])
=dim(V)+r+min{dr, by Propositoal3, whie dim(R[X,,....X,])
=dimiD[X,..... X, JH-dim(A[X,. .... X,J}-dm(F[X,....X,]} by Propos-
von 23al The asseried equality follows immediately. B

As an apphcation, we apply some ol our previous results of pseudo-valuation
domains (PVD's). Recall that a domain R is a PVD if cach prime ideal P of R
is strongly prime {ie, xyeP with x and y in the guotient field of R implies that
cither xe P or y&PL. PYD's were introduced by Hedstrom-Houston [HH 1] and
have been studied extensively by several authors. Recall thai a domain R is a
FVD il and only il R is quasilocal with maximal ideal M which is strongly prime
[HH 1, Corallary 1.3 and Theorem 1.4]. Additionally, & quasilocal domain R with
maximal ideal M & a PVD if and only il the conducior (Al: M) is a valuation
domain with maximal ideal M [AD, Proposivon 2.5). Moreover, all PVD's R arise
in the following manner as pullbacks [AD. Proposition 26] If R is a PVD with
maximal ideal M, st F=(M:ML k=V'M, sod F=R/M —k: then R=g"'iFL
where @: V=L is the canonical sunection. Conversely, given a valuation domain
(¥, M. k). F a sublicid of k, and @: V- L the canonical surjection, then R=g " "(F)
wa PVD.

Proposition 2.9. Lt R be @ PVD with residue field F=R /M. Let V(M :M) be
the axociated valvation domain of R, with regidue field L= VM. Put d=1d.(k/F),



182 D.F. Addemon et al

Then:

ia) dimiR[X,..... X Ji=dim(Rj+r+min {d, r].

bl dim, (R)=dimiRi+d

1ch R is a Jaffard dosain if and only i dim (R) < oo and d=0.

id) For each positice integer v, R[X . ..., X,] is o Jaffard domair i and only if
dim (R)=< = ond r=d.

Proof. (a) This is an immediate consequence of Corollury 2.8 since dim (V) = dim (R].
(b follows immedialely from Theorem 2.6(a) since dim,, [ V)= dim (V) =dim (R). Evi-
dently. (c) lollows immedately from (b).

idi Suppose dim|Rj<=. Since (b} gives dim (R[X,, .., X J)=dim, (R)+r
= dim (R)+ r4d. [2) shows that dim(R[X,..... X,]l=dim_(R[X,, ..., X,]) if and
only fd=min |d, rl,ic. fand only il rzd. W

Remark L10. A special case of Proposition 2.9(a) was observed by Hedstrom-Hous-
ton [HH 2 Thearem 1.5], who showed that if a flinite-dimensional PYD, R, is not
a sirong S-domain, then dim{R[X])=dim(R)+ 21 Using this and Lemma 1.1(h],
we recover [HH 2, Remark 2.6]: a finite-dimensional PVD, R, is a strong S-domain
il and only il R'= K

We next proceed to generalize the previous “guasilocal™ theory. Qur first result
ini this direction is the * global ™ analogie of Lemma 2.1(d) and Theorem 2.6.

Theorem 211, Ler T be a domain with maximal ideal M, k=T/M, and @: T=k
the canonical surjection. Ler D be o proper subring of k with quorient field F. Put
R=gp" (D) end d=vd.(k/F). Then:

{a) dim (R)=max |dim | T}, dim (D)}+dim {Ty)).
ib) dim, (R)=max {dim, (T}, dim, (D}+ dim, (T,)+d}.

Prool. dim {R)=max [sup [dim(R,): PeSpeciR), and P# M), sup [dim(R,):
PeSpec(R) and P M} Il P+ M, Lemma Llie) pives K.=T, lor some
QeSpec (T [M] with @nR=P. Il P = M, then dim (R )= dim (Dg}+ dim (Ty,) for
some QeSpec(D) with P=gp ") by Lemma 21(g} and (d}. All the inequalitics
needed to establish (a) now follow easily,

(b} Argue as above, using Theorem 16(a). W

Corollary 2.1 With the same hypothesis as in Theorem 2.11:

la) R is a locally Jaffard domain if and only |f D and T are each locally Jaffard
domains and & is algebraic over F.

b} If T is locally Jaffard domain with dim (T)<e, D is a Jafford domain, and
k is algebraic aver F, then R is a-Jaffard domain.

Proof. (b follows from Theorem 2.11 and Proposition 1.5(bL (a) follows from Theo-
rem L6 vin Lemma 2lieland gl W
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Remark 2.13. Examples 3.6-3.7 will show that R cam be a Jaffard domain when
any onc of the hypotheses in Corollary 2.12(b) fails. However, we note in the context
of Corollary 212 that if R 5 equicodimensional and catcnanan and has finite
valuntive dimension, then R is a Jaffard domain if and only if D s a JafMard
domain, T is a locally Jafard domain, and &k is algebraic over F. For a proof,
note that D= R/M is also equicodimensional and catenarian. Thus, by Proposi-
tiom 1.8, R und £} arc both Jaffard domains if and only if they are both locally
Jufturd, The assertion therefore follows from Corollary 2120, W

We next give some concrete applications of the above “global”™ theory o 0+ M
comsiructions. Here, T is assumed 1o be o domain of the form T=K + M, where
K s a subfield of T and A is & maximal ideal of T If D is a subring of K.
then R = D+ M is a subring of T The classical case arises when T= 1V is a valuation
domain [with maximal ideal ML Since dim, (V) = dim { V), Theorem 26 yiehds:
Proposition L14. Ler ¥V be o nomtrivial ealuation domain of the form F= K+ A,
where K ks o field and M is the maximal ideal of V. Ler R=D+M, where D s
a proper subring af K. Let F be the quotient field of D, and ler d =td (k/F). Then:
(a) dim, (R)=dim, (D}+dim (1} +4.

(b) R iz & Jafford domain if and only (f D is a Jafford domain, Vis finite-dimensional,
and k is algebraic over F,

A =global” type of D+ M construction arises from T=K[XT]. the polynomial
ring over a field K, by considering M =X T and a subring D of K. In this case,
neither T nor R is quasilocal. Theorem 111 yields:

Proposition 215, Let K bhe a field, D o subring of K with quotient field F,
R=D4+ XK[X], ond d=td(k'F}. Then:

{a) dim {R)=dim (D} + L.

ib) dim, (R)=dim, (D}+d+ L

ic) R ts a Jaffard domain if and only i D is a Jaffard domain and k is algebraic
over F.

We remark that Costa-Mot-Zafruflah [CMZ, Corollanes 210 and 4.17] obtained
parts (1) and (b) of Proposition 215 for the special case in which D has quotient
lield K. In [CMZ], they investigate the more peneral construction T ep
+XDg[X] where D is 2 domain and § is a multiplicative subset of D. Rather
than seck an analogee of Proposition 215 for the T construction, we shall consid-
er, more generally, domains of the form A = D+ XR[X), where D = R arc domains
having quotient field K.

Proposition L16. Let D= R be domains with @ common quotient field K and ler
A=D+ XR[X]). Then

fa) dim, (A)=dim, (D)4 1.
) If D s a Jaffard domain, then A is o Jaffard domain
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Proofl. (a) The inclusion of domains D[X]c A = D+ XK[X] yelds dim, (0141
=dim, (D[ X ]z dim, {4)=dim, (D+ XK [Xi=dim_{}+ [, the last step viz Pro-
position 2.15(bL Then (a) 15 immediate.

{b)] First, note that dim (D)+ 1 <dimiA) for any domam D, If in addition, D is
g Jaffard domain, then dim, (D) + 1 =dim (D)} + | <dim [ 4) <dim, (dp=dim, {D)+]
by () above. Hence, A is a Jaffard domain, W

Remark 2.17. In general, the converse of Proposition 2.16(b} 15 not valid. even for
A=T® =D+ XD [X]. To see this. consider a domain D such that D[X] 15 a
Jaffard domain but D is not 2 Jaffard domain, Then, with S= |1}, A= 7%= D[X]
is a Jaffard domain, but D is not a Jaffard domain. The relationship between
T* and D will be studied more deeply in a subsequent article.

We next examine a peneralization of the situation described in Theorem 2.1 in
arder to apply the “global™ theory developed earlier to two important classes
of domains introduced by Gilmer and Nagata. For the rest of Section 2, the reader
15 assumed to be familiar with the pluing-theoretic generalization of Lemma 2.1
to be found in [F1, Theorem 1.4]. Section 3 can be read independently of the
rest of Section 2

Proposition L.18. Ler T he o domain with M, ..., M, pairwise distinct norzera maxi-
mal ideals of T. For each | <i=<r, let ;0 T— T/M,;=k; be the canonical surjection;

D, a subring of k;; R;= ¢ "(D); and d;= td.(k/D;). Let o: T— n k; be the canonical
=l

r
surjection induced by the o' Set R=p~ " [] D) Then:
o

{a) R= ﬁ R.
i=]

(b) dim (R)=max [dim (T); dim (D) +dim (T\,): L sisr}. 5
ic) dim, (R)=max {dim,{T); dim, (D)) +dim, (T, )+d,: 1=i<r].

Proaf. (a) follows easily from the definitions invalved. The prool of (b) follows
directly from the order-theorctic implications of the topological description of
SpeciR) gven by [F1, Theorem 1.4]. The proofl of (c) 15 similar to the proofl of
Theorem 2.11{b}, once the following observations have been made, Let PeSpec(R).
Then either P comtains none of My, ..., M, or P contains exactly one AM,. In
the former case, Rp= T, with QeSpeciT), 0#M,, ..., M,. In the latter case, P
is the image of some (), =Spec(D) Then by applying [F 1, Proposition 1.9] 1o
the pullback definition of R, we have RKp=(D\)y x, Ty,. Using Theorem 2.6(a),
we can now finish the proof as in Theorem 2.11(b). W

We apply Proposition .18 10 a well known class of domains introduced by Gilmer
[G3, Section 3].
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Corollary L19. Let L be a fiedd, K & subficld of L and |V,: 1 <i<r] a finite set
of patrwise incomparable finite-dimensional reluetion domains of L. each witk mavi-
mal ideal M. such thar V=K + M, for coch | Si<r. For each i. et D, be a sbring

of K and dm1diK D) Set JmD4M, JuJ, ond Pe ) V. Lo y:
i =i

P[] K= P/Rad (P be the canomical surjection from the semiguasilocal Prifer
= o
domain P to [] K. Then:

(a) The diagram

J—[] D,

ix a pullback,

(b} J is @ locally Jaffard domain if amd only | D, is @ locally Jafferd domain and
dy=0 for each | <i<r.

ic) If B is a Jaffard domain and d, =0 for euch | <i<r, then J is a Jaffard domain.
Proof, (a) 15 immediate from the definitions. Since P is a Jaflard domain, (b) follows
by applying Theorem 111 to the isomorphisms noled in the prool of Proposi-
tion 218(c). Finally, since P is bocally Jaffard. c) is a direct conseguence of Proposi-
tion Z18{b),ick W

Another imponant class of domains, suggested by [N 2, Exampie 21, page 204],
is analyzed next.

Proposition 220, Ler My, ..., M, be finitely many mavimal ideals of a domain T.
For each i, 1gi<r, let k= T/M, and let @ T=k, be the canonical surjection,
Let @ be the canonical surjection from T 1o TNM,=[] k.. Let D be a domain
whose quotient field k is conrained in Nk, Consider the diagonal embedding A:
k=k=kx . wk the embedding, x: D =k, and the product embedding f: &" -wk,.
Put Ty=g " '(kl, R=o0" (D} ond R,=w," " (D) for oll &. Then:

(a) dim (Ty)=dim (T)

b} dim, { Ty)=max |dim_{T); dim, (Ty )+ ik /L) 1sisr).

ic) dim (R)=max [dim{T). dim{DI+dim (T, ) | Si<r].

id) dim, (R)=max |dim,(T); dim, (D) +dim, ( Ty )4+ td(kA) 1 sisr),
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Prowf, We have the [ollowing pullbacks:

{.5: B R—grl{Dj— D
F i~y M
i " a2
* -
Ty —_— kK T=g k) — k
™ N o -
: i
f
l - 'I -
S=p (B —— ¥ =
™ |
| :
% L,

Using the defininon of f, we see easily that $=T,~...nT,. Moreover, the order-
theoretic implication of [F1, Theorem 1.4] is that dim{Ty=dim (T}=dim(5). In
particular, (a} holds. Similary, by [F1, Theorem 1.4], we have for each i, 1 isr,
that

dim (R} =max {dim (T}, dim (D}+dim Ty )}: and

dim {R}=max {dim (T); dim (D)4 dim (T, ): 1 =i=r].
In particular, (c) holds.

Mext, since A is finite, § is intepral over T (el [F1, Corollary 1.514)]). Hence,
dim, (§)=dim,_{T,. However, Proposition 2.18{c) gives dim, (5)=max {dim,{T},
dim, { Ty )+ L (kyk): 1=i=r} since dim, (k)=0, Thus, {b) follows. Morsover, (d)
follows by combining (b) with Theorem 2.6(a). W
Proposition 2.20 can be used 1o derive the following result about'another important
class of domains. We lzave the proof to the reader.

Corollary 2.21. Ler {V:: L <i<r} be o set of finite-dimensional pairwise incomparahle
valuation domains of a field L. Suppose that each (V,, M) has the form V=K +M,,
where K, is a subfield of V,, Let D be a domain wﬂ:.i: guatient field K mn:r:.rneﬂ‘

in each K,. Set J,=D+M, Jor each l<i=r, J= ﬂ Jiim DN M), and P—r]. K.
Then: i=1 =
lal The following diagram of cananical maps

d——=D

Fl

P——=T] K, isapullback.

i=1
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b J i a0 Jaffurd domuin tresp., locally Jaffard domain) if and only i D s o Jaffard
domain iresp.. locally Jaffard domain) and LK /K)=0 for each 1 <i<r.

3 Examples

This section collects some examples showing that several of the results in the
eirlier sections are besi-possible. We begin with & known example which was
alluded 1o in Section 0. This is included both for the sake of completeness and
to fucilitate the development of some later examples.

Example 11. icf. [G1, Exercise [7(1). page 172]) (a) For each positive inleger n,
there exists a finite-dimensional (non-Jaffard) domain B such thar dim, (R)
=dim {R)=n.

Indecd, consider a set JX,. ... X,.,] of n+] indeterminates over a field & Let
L denote the field k(X ,, .... X1 Also, define the valuation domain

Ve L[X,  Jx,.o=L+M (withM=X,, , V) andthering R=FLk+ M.

As is well known (el [G1, Exercise 12, page 202]), Spec(R)=Spec (V) as sets, and

s dim(R)=dim{¥F}=1. This alse follows from [F1, Propesition 2.1], since
Rak.ﬁ".- L. Applying Proposition 1.5(a) to this pullback description of R, we have
dim, (R)=dim, (F)+td (L&) =dim (V) +n= l +i Thus, dim (R)—dim(R)=n, a5
asserted.

{b) There exists 1 finite-dimensional (non-Jallard) domain R with dim,_ ()= x_

The coastruction of & suitable R is similar 1o that in (aL Now, let [ X, X;....}
be a denumerable set of indeterminates over a lield &, let ¥ be another indeterminale,
and put L=kijX;. X, ...J4% V=L[¥Y)y=L+M (with M=YV], and Re=k
+MizkX,L) Arguing as above, we sec that Spec(R)=Spec(V) and dim(R)
=dim{V]=1; and that dim, (R)=dim,(V}+Ld(L/k}=14 o0 ==, Thus, dim,(R)
= o, pompleting the proof of (h).

(e} One may arrange domains R satislying the assertions in (a) and {b) but having
arbitrary positive Krull dimension m by instead choosing the valuation domain
Ve L+ M 10 be m-dimensional,

The next example is included for several reasons, Its assertion (a) relates to Proposi-
tions 1.5 and 1.6: (b) relates 1o Theorem 1.13; and (d) shows that the converse

of (0.6} is falsc.

Example 1.2 There exists a two-dimensional Jaffard domain B such that all the
following conditions hold:

fal R s not locally Jaffard:

ibi R iz a going-down domain (indeed a GPVYD in the sense of [DF 1]);
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g There exists @ maximal ideal N of the polynomial ring R[X] such that
hilN|=3=dim(R[X]}, although m=N~ R 15 8 maximal ideal of R with ht{m)w= |

(=dim{R});

{d} R does not satisfy the altitude inequality formula. (Hence, R is not stable strong
S-domain. In fact, R is not an S-domain.)

The construction begins with a suitable field K and three indeterminates Z,, Z,,
Zyover K. Put L=KI(Z,, Z,, Z,) Now,

Vi =KIZ, Zo)[Z,] ;2= KIZ,, Zo)4M,

15 a (discrete} rank 1 valeation ring of L, with maximal ideal M, =2, V,. For
suitable K (for instance, K=F(T,, Tz, ...) with T; indeterminates over a feld F),
choose (17 M) to be o rank | valuation overring of KiZ,)[Z,, Z,] of the form
Ve K+ M, with K, = K(£,). With @ denoting the canonical serjection V- K({Z,),
consider the pullback Vi=o "(K[Zi]z0=K[Z:)iza+ M. By the lore of the
D+ M construction, V; 15 a rank 2 valuation ring of L, and V.= K+ M, has maxi-
mal ideal M, =Z, K[Z,],7,+ M and height 1 prime M.

We show next that ¥) and ¥, are incomparable. If not, it would follow [rom
the one-dimensionality of ¥, that V5 = ¥, Then we would have ¥, =(¥,),,, whence
Zy V=M =Mi¥y=Mand | =Z, Z; "e MV= M, a contradiction. Thus, ¥, and
V; are incomparable. Since V) and V, both has quotient field L, we now see from
[MZ, Theorem 1L11] that §=T;~V, is a two-dimensional Prifer domain with
exactly two maximal ideals, say m and m;, denoted so that 5, =V, and §,, =¥,

Next, chooss k 10 be any subfield of K(Z,, Z;} such that td.(K(Z,, Z,lk)=1.
With g: ¥ = KI(Z,, ;) denoting the canonical surjection, consider the pullback
A=y '(k}=k+M, Next, with : §5—5/m, (= V/M,=K(Z,, 2Z,)) denoting the
canonical surjection, consider the pullback R=u ™ '(k). Since ¥, =5%_ . it follows
that R=AnS, whence R=dAr ;. Moreover, by applying [F1, Theorem 1.4] 10
the pullback definition of R, we infer that the canonical map Spec(S)—Spec(R)
i5 & homeomorphism, and hence an order-isomorphism. Thus, dim (B) = dim (5)=2,

Moreover, Theorem 211 gives
dim,, (R} =sup {dim, (8}, dim, (5, )+ dim,_ (&) + v ({5/m, )k)
=sup {dim (5}, dim (¥, )+ 0+ 1d i K(Z,, Z,)k)
=sup {2 140+1}=2
Henee, R is a (two-dimensional) Jaffard domain. We now proceed 1o verify (aj-(d).

{a) Recall that R=A~V,. Since ¥, and ¥, are incomparable, it follows from the
proof of [DF, Example 2.5] that if n, =m, ~ R and n.=m;m R denote the maximal
ideals of R, then R, = A and R, = }. Now,

dim (R, }=dim (k+ M) =dim (k) +dim (V,)=0+1 =,
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but Proposition 2.5(a) gives
dim, (R, )=dim, k+M ) =dim_{V,)+ td(K(Z,, Z)Kk=1+1=2
Hence. R, is not a Jaffard domain, and so R is not locally Jafard

(b) As in [DF, Examples 3.2{a]]. R =4~V is a GPVD. Hence (cf. [DF, pape 156
and Corollary 2.3] and [D. Proposition 2.1]L R is a going-down domain.
{e) Since 8, =T, we have M, ~S=m, and, in particular, m, =M, = A. As R=
A by, it follows that m, =K. Since Spec(§) - SpeciR) is an order-isomorphism,
ayp=ny R is a height 1 maximal ideal of R. In fact, m,=n,, and s0 R, =A.
MNext note, since m; R, =M. that

fidm, [Xh=htimy R, [XT)=ht(M,[X])

We procesd 1o show that each of these heights is 2. Now. since K{Z,, Z,) is
not algebraic over &, A'# V. Thus, applying [HH 2, Remark 2.6 and Theorem 2.5]
1o the pseudo-valuation domain A4, we have dim (A[X])=dim(4)+2=3; hence,
hriM [ X]=2. (el also Remark 2.10) Mareover, since R is Jallard, dim (R[X])
= | +dim(Rl=3. Of course, the height 2 prime m,[X] 15 not @ maximal ideal;
let N be any prime of R[X] properly containing m,[X]. Evidently, kr{N)=3
and N~ R=m,. Thus, ic) has been established, with m=m,.
(d) The altitude inequality formula falls if we consider S=R[X] and P=N (as
in (c}). Indeed,
AN+ L BINVEINARNZ3+0=3
=1+1=hrim)+ 1 =shi(NmR)+LdI{R[XTR).
For the parenthetical conclusion, recall from (¢} that heim,)=1 and fe(m, [XT)
=2-| .

Examples 3.4 and 3.5 will relate to the suificient condition in Proposition 1.2(b).
First, it will be helpful to establish the following result.

Proposition 3.3, Let X, ... X, be finitely many indeterminares over a domain R
which is not @ field. Assume nesdim, (R) < oo, Ther!
fa) If R[X,, .... X.] is a Jaffard domain, then
n=dim (R)
dim (R)
{b) Asswme dim (R)=1. Then R[X |, ..., X] is o Jafferd domain if and only if rzn
—1.
Proof. (a) r4+n=dim_(R[X,..... X Ji=dim{R[X,. ..., X,]] is, by a result recalled
mn Section O, at most ril 4 dim { R} + dim {R). Thus,
r4+n=r+rdim|R)+dim { R},
which immediately yields {a).
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bl The ~if”™ assertion s a special case of Proposition 1.2{b). while the “only ™
asseriion is & special case ofial W

Example 34. For each positive integer r, there exists a finile-dimensional non-
laflard domain R such that rin the least positive integer m for which the polynomial
rng R[X,..... X_] is a Jaffard domain.

For o suituble construction, take R as in Example L1{a), with dim{R)=1 and
dim, (Rjmr+ 1, Asr+121 R is not a Jaffard domain, The final assertion follows
directly from Proposition 33(b), since a=r+ 1. W

Example 1.5, There cuists a non-Jaffard domain T with n=dim_(T)<= and a
positive integer r<m— | such that the polynomial ring T[X,, .... X,] is a Jaffard
domain

To begin the comstruction. take R as in Example 3.1{al with dim(R)= 1 and
dim, {R)=}. Consider r+ | indeterminates ¥, ¥,, ..., ¥, over R, and put T=R[¥).
In the notation of Example 3.1(a), R # V' since L is not alpebraic over L Thus,
by [HH2, Remark 2.6 and Theorem 2.5] or Remark 2.10, dim (T)=dim (R)+ 2= 1.
Mareover, by Arnold’s result {see Theorem 0.1{iv)), r=dim, (R)— | =2 implies tho
dim(R[Y,. ... X])=r+dim, (R)=r+3 Thus, rz! implics dim(T[Y,..... X))
s=dimiR[Y. Y, ..., Xli=slr+ 1+ 3mr 44,

MNexl, we compute a key valuative dimension. Mot that

dim, (T)=dim, (R[Y])=1 +dim, (R}=4 > 3=dim (T).
In particular, T is not a Jaffard domain. 1t will therefore suffice 1o prove that
TLY,] is a Jaffard domain since | <3=dim,(T}—1 Wc have seen that
dim(T[¥,]i=1+4=35, and so we need only prove dim (T[¥,])=>5. This, in tum,
follows, for

dim, (T[Y,])=dim, (R[Y, ¥,])=2+dimy (R)=2+3=5. *W

Examples 3.6-3.7 are designed to show that none of hypotheses in Corollary 2.12(b)
is a necessary condition. Specifically, we consider # maximal ideal M of u domain
T, the residue field E=T/M, the canonical surjection e¢: T— 4k, a subring D of
k. and the pullback R=g " "(D). We shall show that R can be a Jaffard domain
in gach of the following situations :

(3.6): T is a non-Jaffard domain, dim, (T)< o, D is a Jalfard domain. and k is
algebraic over D:
(3.71a): T and D arc cach Jaffard domains and k is not algebraic over D:

i37(bji: T is a Jaffard domain. D is a non-Jaffard domain, dim, (D)< o, and k
is not alpebraic over D.

(37ich: T 15 a Jaffard domain, 0 is a non-Jaffard domain, dim, (D)<, and &
is algebraic over D.
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Examples 3.6. Ler U, ¥ be two indeterminates over & field & Define

Vi=KiUI[V]. Va=K(VHUly,, P=¥Holi
A= K+ UKV UL, and Te= A

As in Example 3.3, [M2, Theorem 11.11] shows that P is a one-dimensional Pri-
fer domain  with two meximal ideals. M, =IKILI[VF],nP and M,
=UK{FI[U]p,nP: and that £, =V, and B, =V, Similarly. [DF. Examples 2.3
and 32(a)] vields that T is onc-dimensional with but two maximal ideals, m,
=M, T and wmy;=M,~T. and that T, =V, and T,,=4. Now, by Proposi-
tion 2 5{a), dim, i T, ) =dim,_(4}=dim, (F)+1d (K(FKI=1+1=2=1
=dim{T,,}. Thus, T is not locally Jaffard, Indeed, Tis not a Jaffard domain since
dim (Ti=1 is less than

dim, (T)=max jdim, (T, ) dim, (T} mmax 1.2} =2,

Now, consider M =m,eSpeciT) and the canonical surjection ¢ from T onto
k=T/M =V VIV )=K(U). Put D= K[U] and R =~ "{D). O course, D is a Jaffard
domain and k is {the quotient field of, and hence) algebraic over D, It remains
only to prove that R is a Jallard domain, For this, note first via Theorem 2.11(a)
that dim(Rj=max {dim({T), dim{Ty,)+dim(D)]=max |1, 141} =2 Next, via
Theorem 2.1 1{b}, we have

dim, (R)= max {dim, (T), dim,{ T+ dim, (D) + t.d.(k/D)}
=max [2.dim, (F)+ 140 =max [22!=2. W

Example 3.7. (a) Let V¥ and W be incomparable valuation rings of a suitable field
K, with n=dim 1{¥}z 3 and dim (W)= 1. Then, by [N2, Theorem 11.11], T=Vr W
is an n-dimensional Prifer domain with but two maximal ideals, say M, and
M. denoted so that Ty =Vand T,=W Let : T—= T/M=k be the canonical
surjection, We further require that & be “suitable™ as follows: k has a subfield
F and a subring [ such that dim (D)= 1=dim, (D). F is the quotient ficld of D,
and Ld.(k/F)=1. Put R=g= (D).

We claim that R is a Jaffard domain. To see this, note via Theorem 2.114a), (b
that dim(Ri=max{nl+1/=r and dim R)=max {dim (TL dim, (T
+dim, (D) +td. (/D)) =max {n, I + 1 + 1} =n.

It remains only to observe that T and D are each Jaffard domains and & &5 not
algebraic over D,

ib) Suppose we aller the construction in (a) by taking n= 4 and dim_ (D)= 2 (keeping
all the other conditions, including dim (D= 1). The only change in the announced
conclusion for (a) is that (the new) D is not a Jaffard domain. In particular, (the
new) R ois a Jaffard domain. Now, conmsider P=M~HReSpeciRL In fact,
F=Ekeripl=Mand R/M = D. Thus, we consider another example of 4 phenomenon
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noted in Remark 1.}z2): 2 factor domain of a Jaffard domain need not be a Jaffard
domain. Such examples should be contrasted with Remark 1.9(b)

ich It sullices 1o alicr the above construction by takimg & zlgebraic over F. We
leave the deiails o the reader. W

Next, we give an example that relates 1o Proposition 1.11 and was promised in
Remark 1.12{bL

Example 38 There cxists a two-dimensional guasilocal (hence, equicodimensional)
strong S-domain R which is not a JalTard domain.

The construction is essentially that of [BMRH, Example 3]. which we assume
that the resder has at hand. However, we modify the construction of ¥* in that
ewample. (This i done in order 10 be sure that V=K+ M, 2 fact used in the

prool that R/P 5 a DVR.} Specifically. consider 1= i T<eK[[T]) Since 5 is

ami

known to be transcendental over K(T) the assignment Yy~ T, Yywes gives o K-
algebra monomaorphism K[V, Y] = K[[T]] This induces an embedding ¢: K (¥,
Yy)= K(IT) of felds. Put F*=p~ Y K[[T]]) sinee K[[T]] is a rank | valuation
domain of HHTH and since @ is an ingection, we see that ¥ is a discrete rank |
valuation overring of K[¥,. Y;]. (To see that ¥* is discrete rank 1, just notice
that its value group, (Ki¥,, ¥3)" [0})/U{V*), embeds in the value proup of K[[T]])
Evidently, ¥; is in the maximal ideal, say ¥, of V*. However, it is casy o scc
from the injectivity of @ that F*=K+ ¥, V'*| in particular, N=Y, V" and V*=K
+ N. Now, we may resume the approach in [BMRH]. Letting /- ¥, —=ki¥ )= K(Y,.
¥;) be the canonical surjection, we comsider the pullback ¥=jf""{¥*L Of course,
{¥, M) is a rank 2 valuation domain of K(Y), ¥;, ¥;). Moreover, since F*=K+ N
is & homomorphic image of ¥, a simple calculation shows that V=K +M,. The
construction of R znd verification of its asseried propertics, jncluding the fact
that dim, (R)=3>2=dim (R}, now continues as in [BMRH, page 4], line 18 - end
of Example 3]. W

Our next example will show that the inequalities in Proposition 2.7(a) can be strict.
Example 3.9. There exist a guasilocal finiie-dimensional domain (T, M, k), with
canonical surjection @: T—k, and a sublicld F of k such that R=¢~"(F) and
d'=td.(k/F)=< oo satisfy

r+dim (T)+min {d r} <dim (R[X . .... X, J)<r+dim [T)+d
for some positive integer r.

For the construction, consider at least five indeterminares ¥, ... ¥, U, K Z, W
over a field F. Define b=F(Y,..... Y4 R kiU, V, Z)[W)w,. S=kiU)[V])y,.
A‘k‘u. FI+ ul" szl+ lﬂ, R,-S‘F“ﬂ'. l"d ﬂ_-|1=l|i+1"'5'+ Wﬂtl-ﬂ-i- “HJI.
Thus, each square in the diagram
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—_—

k
r

-

F'
R.—= 5 p— T

A — % kW
A

..Rl,—-—n-k{L',l".Zb
is a pullback. By applying Lemma 2.14d) and Theorem 26{a), we have the following
conclusions;

dim (R, )=dim, (R,}=1=dim(§)=dim,_[5}:

dim{A)=0+1=1:;

dim, (A)=0+1+1=2;

dim (R )=dim (5}+dim (R,)=2:

dim, (Ry)=14141=3;

dim (Bj=0+1=1;

dim, (B)=0+1+1=2;

dim (Ry}=dim ik} +dim (R;)=2;

dim, (Ry)=0+3+1=4
Let T denote the quasilocal domain Ry, let ¢ T—k be the canonical surjection,
and consider the pullback R=¢~"(F). By Lemma 21id), dim(R}=0+2=2 By
Theorem L6(a),

dim, (R}=dim, (F)+ dim, (T)+ Ld.(k/Fi=0+4+d=4+4d,
In addition, the P*VD theory in [F2, Theorem 2.1] {with e="d"=n+1=2) gives
dim(T[X])=d +ec+1=25 Similarly. dim (R[X]j=3.
MWow, restrict to r=1 (and d = 1). The desired incquality

r+dim (T)+min {d, r} <dim (R[X]} <1+ dim, (T)+d

ASSLTLS .
1+2+minijd, 1}<5<1+4+d,

which is evident, W

Remark 310, (a) We shall say that a domain R is a stably S-domain in case
R[X, ....X.] is an S-domain for each positive integer r. The prool of [Kal,
Lemme 1.4, (ij==(iii}] also shows that il a domain R satisfics the altitude inequality
formula, then R is a stably S-domain. In (b), we shall show that “stably S-domain™
is not implied by, and does not imply, *Jaffard domain™,
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ity By Example 3.2(d). 2 Jaffard domain need not be a stably S-domain. Moreover,
one can show that a stably S-domain need not be a Jaffand domain, To do this,
it is enough o take R 1o be a two-dimensional PVD with dim, (P)= 3. The proof
[ollows easily from the fact [HH 1, Proposition 2.6] that B is a valuation domain
for the unique height | prime ideal P of R.

fc) It is interesting to note the following result. If R is a Jafard domain with
exactly one prime ideal of height 1, then R is a siably S-domain.

For the proof, we must show that if PeSpec{R[X,...., X.]} has height 1, then
F[X...] also has height 1. To do this, let p=PR Since R 15 a Jaffard domain,
there are only 1wo cases: either p=0 or P=p[X,, ..., X.]. In the former case,
the assertion is clear, by viewing matters in K[X,, .... Ao ,]. where K is the
quotient field of R. The latter case follows easily from the observation that
dim(R[X,, .... X, Ji=dim{R)+n+ 1.
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