King Fahd University of Petroleum and Minerals Prep-Year Math Program

Prep-Year Math I FIRST EXAM

Semester I, Term 061
Saturday, October 7, 2006
Net Time Allowed: 75 minutes

MASTER VERSION

4
 Sources

1. Write without absolute values and simplify

$$
|-3 x|+\sqrt{(x-3)^{2}}+2|x+1|, \quad-3<x<-2
$$

(a) $1-6 x$
(b) $4 x+1$
(c) 1
(d) $2 x-5$
(e) $5-2 x$
2. If $A=\{x \mid x \leq-3\} \cup\{x \mid x>1\}$ and $B=\{x \mid-6 \leq x<8\}$, then $A \cap B=$
(2) $\{x \mid-6 \leq x \leq-3\} \cup\{x \mid 1<x<8\}$
(b) $\{x \mid-6 \leq x<1\}$
(c) $\{x \mid-3 \leq x<1\} \cup\{x \mid 1<x<8\}$
(d) $\{x \mid-6 \leq x \leq-3\}$
(e) $\{x \mid-3 \leq x<8\}$

See Example 3 p. 6
See Probems \# 3 t 18 p. 15
3. If $x>0$, then the expression $\left[\frac{\left(3 x^{2}\right)^{-1}\left(3 x^{5}\right)^{-2}}{\left(3^{-1} x^{-2}\right)^{2}}\right]^{-1}$ is equal to
(2) $3 x^{8}$
(b) $9 x^{6}$
(c) $3 x^{4}$
(d) $9 x^{3}$
(e) $27 x^{4}$

See Example 21.22
see Problems \# 13 ts 32 and 49 F 70 P. 32
5. One of the factors of $8 x^{6}-15 x^{3}-2$ is
(a) $4 x^{2}-2 x+1$
(b) $2 x^{2}-4 x-1$
(c) $4 x^{2}-2 x-2$
(d) $4 x^{3}-2 x+2$
(e) $2 x^{2}-4 x+2$
6. One of the factors of $4 x^{2}+4 x+1-y^{2}$ is
(d) $2 x-y+1$
(b) $2 x+y-1$
(c) $2 x-y$
(d) $2 x+y$
(e) $4 x-y-1$

See Example 10 10:52
See problems \# 69 F 88 P.54
7. $\frac{y^{2}+7 y+12}{y^{3}-3 y^{2}+9 y} \div \frac{y^{2}+6 y+9}{y^{3}+27}=$
(a) $\frac{y+4}{y}$
(b) $\frac{y+3}{y-3}$
(c) $\frac{y+4}{y+3}$
(d) $\frac{y+3}{y+4}$
(e) $\frac{y+3}{y}$
8. $\frac{\frac{3 y}{y-5}-\frac{2}{y-5}}{2(y-2)^{-1}+y^{-1}}=$
(a) $\frac{y(y-2)}{y-5}$
(b) $\frac{y(y+5)}{y-2}$
(c) $\frac{(y-2)(y-5)}{y}$
(d) $y(y-2)(y-5)$
(e) $\frac{y}{(y-2)(y-5)}$

See Example 2 P. 58
see problems \# 19G 22 P. 63
9. $\frac{3 x-4}{4 x-1}-\frac{3 x+6}{(1-4 x)(x+2)}=$

See Example $3 \$.59$
(a) $\frac{3 x-1}{4 x-1}$

See Problems \# 23 to 32 p. 63
(b) $\frac{3 x-5}{(4 x-1)(x+2)}$
(c) $\frac{3 x-2}{(4 x-1)^{2}(x+2)}$
(d) $\frac{3 x-1}{x+2}$
(e) $\frac{3 x-1}{(4 x-1)^{2}(x+2)}$
10. The conjugate of the complex number $\frac{8+i^{7}}{2+3 i^{13}}$ in standard form is
(a) $1+2 i$
(b) $\frac{3}{13}-\frac{5}{13} i$
(c) $2-i$
(d) $\frac{3}{13}+\frac{5}{13} i$
(e) $3-2 i$

See Examples 4 and 5 p. $70-71$ $\left.\begin{array}{r}\text { See problems \# 41t } 50 \\ \text { and \# 55t 62 }\end{array}\right\}$ p.72
11. If $i=\sqrt{-1}$ and $z=1+i \sqrt{3}$, then the expression $\frac{1}{i}\left(z^{2}-2 z\right)$ is equal to

See \# 75 and 76 P. 72
(a) $4 i$
(b) $-2+3 i$
(c) $-3 i$
(d) $1-3 i$
(e) $6 i$
12. If P and Q are any two different polynomials each of degree $n>1$, then which one of the following statements is ALWAYS TRUE?
(a) $P-Q$ is a polynomial of degree $\leq n$
(b) $P+Q$ is a polynomial of degree n
(c) $P-Q$ is a polynomial of degree $<n$
(d) $P Q$ is a polynomial of degree n^{2}
(e) $P+P$ is a polynomial of degree $2 n$

See Topics For Discnssin (\#2) p. 40
13. If $2^{x-1}=y$, then $2^{3 x-2}=$
(2) $2 y^{3}$

See Connecting Concepts \#126 p.34
(b) $\frac{y^{3}}{8}$
(c) $4 y^{3}$
(d) $\frac{y^{3}}{4}$
(e) $\frac{y^{3}}{2}$
14. $\frac{-2}{1+2 \sqrt{12}-3 \sqrt{3}}=$
(a) $1-\sqrt{3}$

See problems \# 81 to $84 \quad 1.32$ and \# 107 G 112 P. 33
(b) $2+\sqrt{3}$
(c) $1-2 \sqrt{3}$
(d) $5-\sqrt{3}$
(e) $-2-\frac{5}{9} \sqrt{3}$

15. Which one of the following statements is ALWAYS TRUE?

(a) the product of two prime numbers is a composite number
(b) every rational number has a multiplicative inverse
(c) the sum of two prime numbers is a prime number
(d) the sum of two irrational numbers is an irrational number

See Example 1 . 4
and Properties
of Real Numbers
P. 12 .
(e) the product of two irrational numbers is an irrational number

