SYSTEMS OF DIFFERENTIAL EQUATIONS

Systems of first order linear differential equations with constant coefficients were used
in §7.1 to motivate the introduction of eigenvalues and eigenvectors, but now we can
delve a little deeper. For constants a_(ij) , the goal is to solve the following system for
the unknown functions u 1 (t).

!
Uy = Q11U + QroUs + -0+ A1 Uy, uy(0) = ¢,
Uy = a1ty + Aoty + 0+ Ay U, uz(0) = ¢z,
with (7.4.1)
!
rl-!-,n' — Gnl ul _I_ a‘nzu:} + et _I_ a'nn uﬂ? 1!,?,1(0) = C'Jl‘

Since the scalar exponential provides the unique solution to a single differential
equation u'(t) = au(t) with u(0) = ¢ as u(t) = e*’¢, it’s only natural to try to
use the matrix exponential in an analogous way to solve a system of differential
equations. Begin by writing (7.4.1) in matrix form as u’ = Au, u(0) = ¢, where

Uy (t) a1 ais a1n C1

Uz (t) a1  aoo Aoy Co
u= ) , A= ) ) ) ) , and c=

un(t) apn1 Ay e Ay Cp

If A is diagonalizable with o(A) = {X1,A2,..., A}, then (7.3.6) guarantees
e = MG, + MG, + -+ MGy (7.4.2)

The following identities are derived from properties of the G;’s given on p. 517.

o dert/dt =" MG, = (25;1 AZ-GZ-) (Ef;l e}‘ifGi) — AeAt. (7.4.3)

o Aeft =eAA (by a similar argument). (7.4.4)

e—AtoAt _ At —At _ T _ o0

. e (by a similar argument). (7.4.5)

A

Equation (7.4.3) insures that u = e®**c is one solution to u’ = Au, u(0) = c.

To see that u = e®’c is the only solution, suppose v(t) is another solution so

A

that v/ = Av with v(0) = c. Differentiating e~ **v produces



d [e=®v]
At
At t = 0 we have e_“‘”’vhzD — e%v(0) = Ic = ¢, and hence e ?'v = ¢ for
all ¢. Multiply both sides of this equation by e®! and use (7.4.5) to conclude
At Atc is the unique solution to u’ = Au with u(0) = c.

—At_ ¢
Vv

=e — e AAV = 0, so e~ Aty is constant for all ¢.

A

v=ec. Thus u=e
Finally, notice that v; = G;c € N (A — \;I) is an eigenvector associated
with A;, so that the solution to u' = Au, u(0)=c, is

u=-e'tty; +ertv, + .. Mty (7.4.6)

and this solution is completely determined by the eigenpairs (A i, v_1). It turns out that u
also can be expanded in terms of any complete set of independent eigenvectors. Let’s
summarize what’s been said so far.

Differential Equations

If A, , is diagonalizable with o (A) = {\,As,..., Az}, then the
unique solution of v’ = Au, u(0) = ¢, is given by

u=ertc = e Mtv, +eMtv, + - Mty (7.4.7)

in which v; is the eigenvector v; = G;c, where G, is the i'* spectral
projector. (See Exercise 7.4.1 for an alternate eigenexpansion.) Nonho-
mogeneous systems as well as the nondiagonalizable case are treated in

Example 7.9.6 (p. 608).

An Application to Diffusion
Important issues in medicine and biology involve the question of how drugs or chemical
compounds move from one cell to another by means of diffusion through cell walls.
Consider two cells, as depicted in Figure 7.4.1, which are both devoid of a particular
compound. A unit amount of the compound is injected into the first cell at time t = 0, and
as time proceeds the compound diffuses according to the following assumption.



Cell 1 Cell 2

Ficure T.4.1

At each point in time the rate (amount per second) of diffusion from one cell to the other
is proportional to the concentration (amount per unit volume) of the compound in the
cell giving up the compound—say the rate of diffusion from cell 1 to cell 2 is o times
the concentration in cell 1, and the rate of diffusion from cell 2 to cell 1 is B times the
concentration in cell 2. Assume a, 3 > 0.

Problem: Determine the concentration of the compound in each cell at any given time t,
and, in the long run, determine the steady-state concentrations. Solution: If u k =u _k (t)
denotes the concentration of the compound in cell k at time t, then the statements in the
above assumption are translated as follows:

du

d—tl = rate in — rate out = Bu, — an;, where wuy(0) =1,
du; :

i rate in — rate out = au; — Bu,, where wu(0)=0.

In matrix notation this system is u’ = Au, u(0) = ¢, where

e &} [ wm _ (1
A—( o _.i3>? u—(u2>, and C_(U)'

Since A is the matrix of Example 7.3.3 we can use the results from Example
7.3.3 to write the solution as

1 58 3 a —f3 1
AL / / —(a+3)t /
w=re=iigl(a @) (e B)6),

so that

uy (t) =

e—(at8)t .14 s (1) = @ (1_6—(a+,3)t)_

cr—l—.,S—i_a—I—.,S a+ 3



In the long run, the concentrations in each cell stabilize in the sense that

A (&) = e —I— 3 and - Lm ua(t) = o i 3

An innumerable variety of physical situations can be modeled by
u = Anu,

and the form of the solution (7.4.6) makes it clear that the eigenvalues and eigenvectors
of A are intrinsic to the underlying physical phenomenon being investigated. We might
say that the eigenvalues and eigenvectors of A act as its genes and chromosomes because
they are the basic components that either dictate or govern all other characteristics of A
along with the physics of associated phenomena.

For example, consider the long-run behavior of a physical system that can be modeled
by

u’ = Au,

We usually want to know whether the system will eventually blow up or will settle down
to some sort of stable state. Might it neither blow up nor settle down but rather oscillate
indefinitely? These are questions concerning the nature of the limit

lim u(t) = lim eA'c = lim (e}“tGl + MG, + - e}”"tGk) c,

t— o0 t— 00 t— 00
and the answers depend only on the eigenvalues. To see how, recall that for a complex
number A = x + 1y and a real parameter t > 0,

eM = eIVt — ertelvt — oot (cosyt + isinyt). (7.4.8)

The term e'¥* = (cosyt + isinyt) is a point on the unit circle that oscillates as a,
function of ¢, so |e'¥!| = |cosyt + isinyt| =1 and ‘e“‘ — |e"tel!| = || = e”t.
This makes it clear that if Re()\;) < 0 for each i, then, as t — oo, e®! — 0,
and u(t) — 0 for every initial vector ¢. Thus the system eventually settles down
to zero, and we say the system is stable. On the other hand, if Re()\;) > 0 for
some i, then components of u(t) may become unbounded as ¢t — oo, and
we say the system is wnstable. Finally, if Re()\;) < 0 for each 4, then the
components of u(t¢) remain finite for all ¢, but some may oscillate indefinitely,
and this is called a semzstable situation. Below 1s a summary of stability.



Stability

Let u' = Au, u(0) = ¢, where A is diagonalizable with eigenvalues
A
e If Re();) <0 for each i, then lim e** =0, and lim u(t) = 0

t— o0 t— oo
for every initial vector c¢. In this case u’ = Au is said to be a stable

system, and A is called a stable matriz.

e If Re()\;) > 0 for some %, then components of u(¢) can become
unbounded as ¢ — oo, in which case the system u’ = Au as well
as the underlying matrix A are said to be unstable.

e If Re()\;) <0 for each i, then the components of u(¢) remain
finite for all #, but some can oscillate indefinitely. This is called a
semistable situation.

Predator—Prey Application
Consider two species of which one is the predator and the other is the prey, and assume
there are initially 100 in each population. Let u_1(t) and u_2(t) denote the respective
population of the predator and prey species at time t, and suppose their growth rates are
given by
u; = up + ug,

Uy, = —Uy + Us.

Problem: Determine the size of each population at all future times, and decide if (and
when) either population will eventually become extinct.

Solution: Write the system as u' = Au, u(0) =c, where

B 1 1 [ wm _ {100
A_(—l 1), u—(ug)? and C_(IOD)'
The characteristic equation for A is p(A) = A* —2XA+2 = 0, so the eigenvalues
for A are A\; =141 and A, =1 —i. We know from (7.4.7) that
u(t) = e*fvy +eM'v, (where v; = G;c) (7.4.9)
is the solution to u’ = Au, u(0) = c. The spectral theorem on p. 517 implies
A — )\2]: = ()\1 — )\Q)G]_ and I = G] + Gg, S0 (A — A-_‘_JI)C = (.)\1 — )\g)vl and
c = v; + v,, and consequently



(A1 — Az)
With the aid of (7.4.8) we obtain the solution components from (7.4.9) as
uy (t) = 50 (A2eMf + Aje*f) = 1006’ (cost + sin t)

A — )1 -
vlzu:w Az and v, =c—v; =50 M .
M Ao

and
us(t) = 50 (A et + Aje*f) = 1006’ (cost — sint).

The system is unstable because Re (A;) > 0 for each eigenvalue. Indeed, w,(t)
and u,(t) both become unbounded as ¢ — oco. However, a population cannot
become negative—once it’s zero, it’s extinct. Figure 7.4.2 shows that the graph
of uy(t) will cross the horizontal axis before that of wu, ().
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Ficure 7.4.2

Therefore, the prey species will become extinct at the value of ¢ for which
us>(t) = 0—i.e., when

100e'(cost —sint) =0 = cost=sint =— t=

.
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