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Abstract. It is well-known that Toeplitz operators on the Hardy space of
the unit disc are characterized by the equality S∗

1
TS1 = T , where S1 is the

Hardy shift operator. In this paper we give a generalized equality of this type
which characterizes Toeplitz operators with harmonic symbols in a class of
standard weighted Bergman spaces of the unit disc containing the Hardy space
and the unweighted Bergman space. The operators satisfying this equality
are also naturally described using a slightly extended form of the Sz.-Nagy-
Foias functional calculus for contractions. This leads us to consider Toeplitz
operators as integrals of naturally associated positive operator measures in
order to take properties of balayage into account.

0. Introduction

Let n ≥ 1 be an integer. We denote by An(D) the Hilbert space of all analytic
functions f in the unit disc D with finite norm

‖f‖2
An

= lim
r→1

∫

D̄

|f(rz)|2dµn(z).

The measure dµ1 is the normalized Lebesgue arc length measure on the unit circle
T and for n ≥ 2 the measure dµn is the weighted Lebesgue area measure given by

dµn(z) = (n− 1)(1 − |z|2)n−2dA(z), z ∈ D,

where dA(z) = dxdy/π, z = x+iy, is the planar Lebesgue area measure normalized
so that the unit disc D has area 1. The space A1(D) is the standard Hardy space,
the space A2(D) is the unweighted Bergman space and in general the space An(D) is
a so-called standard weighted Bergman space. The norm of An(D) is also naturally
described by

‖f‖2
An

=
∑

k≥0

|ak|
2µn;k,

where µn;k = 1/
(
k+n−1

k

)
for k ≥ 0, using the power series expansion

(0.1) f(z) =
∑

k≥0

akz
k, z ∈ D,

of the function f ∈ An(D) (see [11, Section 1.1]).
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The shift operator Sn on the space An(D) is the operator defined by

(0.2) (Snf)(z) = zf(z) =
∑

k≥1

ak−1z
k, z ∈ D,

for f ∈ An(D) given by (0.1). Recent work has revealed that the so-called dual
shift operator

S′
n = Sn(S

∗
nSn)

−1

plays an important role in the study of shift invariant subspaces of An(D). The
operator S′

n is a weighted shift operator on An(D) which acts as

(0.3) (S′
nf)(z) =

∑

k≥1

µn;k−1

µn;k
ak−1z

k, z ∈ D,

on functions f ∈ An(D) given by (0.1).
In recent work [17] on characteristic operator functions we have used the fact

that the Bergman shift operator Sn satisfies the operator equality

(0.4) (S′
n)

∗S′
n = (S∗

nSn)
−1 =

n−1∑

k=0

(−1)k
(

n

k + 1

)
SknS

∗k
n .

For full details of proof of formula (0.4) we refer to [17, Section 1].
For n = 1 equality (0.4) simply says that the Hardy shift operator S1 is an

isometry meaning that S∗
1S1 = I . We notice that for n = 2 equality (0.4) can be

written as

(0.5) (S′
2)

∗S′
2 + S2S

∗
2 = (S∗

2S2)
−1 + S2S

∗
2 = 2I.

A similar to (0.5) looking operator inequality has appeared in work of Shimorin [18]
on approximation theorems of so-called wandering subspace type and in work of
Hedenmalm, Jakobsson and Shimorin [10] on weighted biharmonic Green functions.
It is known that the shift operator S : f 7→ zf in the class of logarithmically
subharmonic weighted Bergman spaces in the unit disc with weight functions that
are reproducing at the origin satisfies the inequality

‖Sf + g‖2 ≤ 2(‖f‖2 + ‖Sg‖2)

for all functions f and g in the space (see [10, Proposition 6.4]), and that this last
inequality is equivalent to the operator inequality

(S∗S)−1 + SS∗ ≤ 2I

(see [18, Proof of Theorem 3.6]). This last inequality shows a close resemblance to
equality (0.5).

We shall study in this paper bounded linear operators T ∈ L(An(D)) on the
Bergman space An(D) satisfying the operator equality

(0.6) (S′
n)

∗TS′
n =

n−1∑

k=0

(−1)k
(

n

k + 1

)
SknTS

∗k
n in L(An(D)).

We shall show that this equality (0.6) characterizes the Toeplitz operators on An(D)
with bounded harmonic symbols within the class of all bounded linear operators
in L(An(D)) (see Theorem 6.1). By a Toeplitz operator on the Bergman space
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An(D), n ≥ 2, with bounded harmonic symbol h in D we mean the operator Th in
L(An(D)) defined by the formula

(0.7) (Thf)(z) =

∫

D̄

1

(1 − ζ̄z)n
h(ζ)f(ζ)dµn(ζ), z ∈ D,

for functions f ∈ An(D). For n = 1 we can identify a bounded harmonic function
h in D with its boundary value function in L∞(T) by means of the Poisson integral
formula (see [12, Lemma III.1.2]). In this way formula (0.7) gives a standard
formula for a Hardy space Toeplitz operator. We notice that for n = 1 equality
(0.6) reduces to S∗

1TS1 = T and that in this way a well-known characterization of
Toeplitz operators on the Hardy space A1(D) is recovered.

The operators T ∈ L(An(D)) satisfying equality (0.6) turn out to admit also a
simple description using a slightly extended form of the Sz.-Nagy-Foias functional
calculus for contractions on Hilbert space taking into account also powers of the
adjoint of the operator. Let us describe briefly this functional calculus. Let T ∈
L(H) be a contraction on a Hilbert space H meaning that T is an operator on H
of norm less than or equal to 1. We shall use the notation

(0.8) T (k) =

{
T k for k ≥ 0,

T ∗|k| for k < 0,

which is standard in dilation theory. From the existence of a unitary dilation of
T it follows the existence of a positive L(H)-valued operator measure dωT on the
unit circle T such that ∫

T

eikθdωT (eiθ) = T (k), k ∈ Z.

By an approximation argument the operator measure dωT is uniquely determined
by this action justifying the notation dωT (see Section 4).

We shall need an appropriate method of summation and as a matter of conve-
nience we shall use the Cesàro summability method. Let f ∈ L1(T) be an integrable
function on T. The N -th Cesàro mean σNf of f is defined by the formula

(σNf)(eiθ) = (KN ∗ f)(eiθ) =
∑

|k|≤N

(
1 −

|k|

N + 1

)
f̂(k)eikθ, eiθ ∈ T,

where f̂(k) =
∫

T
f(eiθ)e−ikθdθ/2π is the k-th Fourier coefficient of f and

KN (eiθ) =
∑

|k|≤N

(
1 −

|k|

N + 1

)
eikθ, eiθ ∈ T,

is the N -th Fejér kernel. It is well-known from harmonic analysis that such means
have good approximation properties coming from the fact that {KN}N≥1 is a well-
behaved approximate identity (see [12, Section I.2]).

Let us return to a contraction operator T ∈ L(H). It is fairly straightforward to
see that if f ∈ C(T) is a continuous function on T then

(0.9)

∫

T

f(eiθ)dωT (eiθ) = lim
N→∞

∑

|k|≤N

(
1 −

|k|

N + 1

)
f̂(k)T (k) in L(H)

with convergence in the uniform operator topology in L(H) (see Section 4). If the
operator measure dωT is absolutely continuous with respect to Lebesgue measure
on T we can more generally integrate essentially bounded measurable functions f
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on T and for such functions f ∈ L∞(T) the above limit (0.9) holds with convergence
in the strong operator topology in L(H) (see Theorem 4.1). It should be mentioned
here a result of Sz.-Nagy and Foias related to the structure of the minimal uni-
tary dilation which gives that the operator measure dωT is absolutely continuous
with respect to Lebesgue measure on T if T ∈ L(H) is a completely non-unitary
contraction (see [19, Theorem II.6.4]).

Let us return to a bounded linear operator T ∈ L(An(D)) on the Bergman space
An(D). We shall show that such an operator T satisfies equality (0.6) if and only
if it has the form of a functional calculus integral

T =

∫

T

f(eiθ)dωSn
(eiθ) in L(An(D))

of a function f ∈ L∞(T) relative to the Bergman shift operator Sn, and that the
norm equality ‖T‖ = ‖f‖∞ holds (see Theorem 5.1).

We discuss also these operator integrals arising from the shift operator

S : f 7→ zf, f ∈ H,

on a Hilbert space H of analytic functions on the unit disc D such that the operator
S is a contraction on H. For such an operator S the operator measure dωS is always
absolutely continuous with respect to Lebesgue measure on T and we have the norm
equality

‖

∫

T

f(eiθ)dωS(eiθ)‖ = ‖f‖∞, f ∈ L∞(T)

(see Theorem 5.2). We mention that this last norm equality also follows by a result
of Conway and Ptak [9, Theorem 2.2] using that the H∞(D)-functional calculus for
the shift operator S is isometric. We also show that the operator

∫

T

f(eiθ)dωS(eiθ) in L(H)

is compact if and only if f = 0 (see Theorem 5.3). These two results generalize to
the context of Hilbert spaces of analytic functions well-known properties of Toeplitz
operators on the Hardy space of the unit disc.

Above we have described two seemingly different looking characterizations of the
class of operators T ∈ L(An(D)) satisfying equality (0.6), namely, first as Toeplitz
operators Th on An(D) with symbols h that are bounded harmonic functions in D,
and then as functional calculus integrals of functions f ∈ L∞(T) with respect the
shift operator Sn. The correspondence between these two classes of operators is
given by

Th =

∫

T

f(eiθ)dωSn
(eiθ) in L(An(D)),

where h = P [f ] is the Poisson integral of f ∈ L∞(T). We interpret this equality that
some sort of balayage is going on and that Toeplitz operators should be considered
differently as integrals of naturally associated positive operator measures in order
to make this process of balayage more transparent. We discuss some rudiments of
such a theory in Section 7 in this paper.

Let us describe briefly how we analyze the operators satisfying equality (0.6).
The function space An(D) is equipped with a natural group of translations τeiθ

parametrized by elements on the unit circle eiθ ∈ T. It is a general fact that a
bounded linear operator on such a space can be decomposed into homogeneous
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parts with respect to such a group of translations and the operator can then be
reconstructed from its homogeneous parts as a limit in the strong operator topology
using an appropriate method of summation analogous to what is usually done in
harmonic analysis. We discuss this construction in Section 2. By homogeneity type
of arguments an operator satisfying (0.6) can be described as an operator with all
of its homogeneous parts satisfying (0.6), and for an operator of a fixed degree of
homogeneity we can apply shifts or backward shifts in order to reduce to the case of
an operator which is homogeneous of degree 0 which is nothing else but a Fourier
multiplier. Arguing this way we show that an operator T ∈ L(An(D)) satisfies
equality (0.6) if and only if every k-th homogeneous part Tk of T is a constant
multiple of Sn(k) (see Theorem 3.1). We then use this analysis to arrive at the
descriptions indicated above.

Partially driven by classical work of Brown and Halmos [7] on algebraic prop-
erties of Toeplitz operators on the Hardy space much effort has been put into
the study of the corresponding questions for Toeplitz operators on the unweighted
Bergman space A2(D): Axler and Čučković [6] have solved the commutativity prob-
lem of when two Toeplitz operators with harmonic symbols commute. Ahern and
Čučković [2] have solved the product problem of when the product of two Toeplitz
operators with harmonic symbols is again a Toeplitz operator with harmonic sym-
bol; see also Ahern [1]. From this point of view we give in this paper the general-
ization of Theorem 6 of Brown and Halmos [7] to the Bergman spaces An(D).

The authors thank Elizabeth Strouse for useful discussions.

1. Preliminaries

We collect in this section some constructions and formulas involving the shift
operator Sn on An(D) in order to make the presentation in later sections more
efficient. We also sketch some background on positive operator measures.

Shifts and backward shifts on the Bergman space. The adjoint shift operator S∗
n

in L(An(D)) acts as

(1.1) (S∗
nf)(z) =

∑

k≥0

µn;k+1

µn;k
ak+1z

k, z ∈ D,

on functions f ∈ An(D) given by (0.1). Notice that the space

kerS∗
n = An(D) 	 Sn(An(D))

consists of the constant functions in D. The operatorLn = (S∗
nSn)

−1S∗
n in L(An(D))

is the left-inverse of Sn with kernel kerLn = kerS∗
n. The operator Ln acts as

(Lnf)(z) =
f(z)− f(0)

z
=

∑

k≥0

ak+1z
k, z ∈ D,

on functions f ∈ An(D) given by (0.1). In other words, the operator Ln is the
backward shift operator on An(D).

As is apparent from the introduction we shall make use of the dual shift operator

S′
n = Sn(S

∗
nSn)

−1 in L(An(D))

which is a weighted shift operator on An(D) whose action is given by (0.3). Notice
that (S′

n)∗ = (S∗
nSn)−1S∗

n = Ln in L(An(D)) and that the operator

L′
n = ((S′

n)∗S′
n)

−1(S′
n)

∗ = S∗
n in L(An(D))
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is the left-inverse of S′
n with kernel kerL′

n = kerS∗
n consisting of the constant

functions.

Positive operator measures. Let (X,S) be a measure space consisting of a set
X and a σ-algebra S of measurable subsets of X , and let H a Hilbert space. By a
positive L(H)-valued operator measure dµ we mean a finitely additive set function
µ : S → L(H) such that µ(S) is a positive operator in L(H) for every S ∈ S and
the marginal set functions µx,y, x, y ∈ H, defined by

µx,y(S) = 〈µ(S)x, y〉, S ∈ S,

are all complex measures in the usual sense. Notice that this amounts to saying that
dµx,x is a finite positive measure for every x ∈ H. If f is a measurable complex-
valued function such that f is integrable with respect to dµx,y for all x, y ∈ H we
say that f is integrable with respect to dµ and we define the integral

∫
X fdµ as an

operator in L(H) by the requirement that

〈

∫

X

f(s)dµ(s)x, y〉 =

∫

X

f(s)dµx,y(s), x, y ∈ H.

It is straightforward to see that every bounded measurable function f on X is
integrable with respect to dµ and that we have the norm bound

(1.2) ‖

∫

X

f(s)dµ(s)‖ ≤ ‖µ(X)‖‖f‖∞,

where

‖f‖∞ = inf
{
c > 0 : µ({x ∈ X : |f(x)| > c}) = 0 in L(H)

}

is the essential supremum of f (see [15, Section 1]).
A positive operator measure dµ with µ(X) = I such that µ(S) is an orthogonal

projection in L(H) for every S ∈ S is called a spectral measure. We record also that
a measurable function f is integrable with respect to a spectral measure dµ = dE
if and only if it is essentially bounded and that equality always holds in (1.2) in
this case. Positive operator measures dµ such that µ(X) = I are in the literature
sometimes called quasi or semi spectral measures.

2. Decomposition of an operator into homogeneous parts

We shall discuss in this section a decomposition of an operator into homogeneous
parts with respect to translations. This decomposition is of somewhat independent
interest and we discuss it here in some more generality than needed for our appli-
cations.

Let X be a Banach space and denote by L(X ) the space of bounded linear
operators on X . We assume that the circle group T operates on elements in X in
such a way that the map

τ : T 3 eiθ 7→ τeiθ ∈ L(X )

is continuous in the strong operator topology in L(X ), the operator τ1 is the identity
operator I in L(X ) and

τei(θ1+θ2) = τeiθ1 τeiθ2 in L(X ), eiθ1 , eiθ2 ∈ T.
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Notice that this group structure simplifies the continuity requirement of the map τ
to the requirement that

lim
eiθ→1

τeiθx = x in X , x ∈ X ,

with convergence in the norm of X . Notice also that the operator norms ‖τeiθ‖ are
uniformly bounded by the Banach-Steinhaus theorem. Let T ∈ L(X ) and consider
the operators

(2.1) Tkx =
1

2π

∫

T

e−ikθτe−iθTτeiθx dθ, x ∈ X ,

for k ∈ Z. The integral in (2.1) is interpreted as an X -valued integral of a continuous
function. Clearly Tk is an operator in L(X ) and the operator norm of Tk is bounded
by a constant times the norm of T . A change of variables shows that the operator
Tk has the homogeneity property that

τe−iθTkτeiθ = eikθTk in L(X ), eiθ ∈ T.

We call such an operator homogeneous of degree k with respect to translations. It is
straightforward to see that if Tj ∈ L(X ) is homogeneous of degree j and Tk ∈ L(X )
is homogeneous of degree k, then the product TjTk ∈ L(X ) is homogeneous of
degree j + k. We notice also that if X = H is a Hilbert space and T ∈ L(H) is
homogeneous of degree k, then the adjoint operator T ∗ ∈ L(H) is homogeneous of
degree −k.

Let us return to the above general discussion. Keeping in mind that for x ∈ X
the map

T 3 eiθ 7→ τe−iθTτeiθx ∈ X ,

is a continuous X -valued function on T we have by a standard argument that

Tx = lim
N→∞

1

2π

∫

T

KN (eiθ)τe−iθTτeiθx dθ in X , x ∈ X ,

whenever {KN}N≥1 is a suitable approximate identity (see [12, Section I.2]). In
particular, choosing KN as the N -th Fejér kernel we obtain that

Tx = lim
N→∞

∑

|k|≤N

(
1 −

|k|

N + 1

)
Tkx in X , x ∈ X ,

meaning that the operator T can be reconstructed from its homogeneous parts Tk
by means of Cesàro summation in the strong operator topology in L(X ).

We shall apply the above discussion when X is the Bergman space An(D) and
the translations τeiθ are acting as

(τeiθf)(z) = f(e−iθz), z ∈ D,

on functions f ∈ An(D) as is customary in harmonic analysis. Notice that here the
translations τeiθ are unitary operators in L(An(D)) and that this gives that

τ∗eiθ = τe−iθ in L(An(D)), eiθ ∈ T.

It is straightforward to see that an operator T ∈ L(An(D)) is homogeneous of
degree 0 if and only if it acts like a Fourier multiplier in the sense that

(Tf)(z) =
∑

k≥0

tkakz
k, z ∈ D,
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for f ∈ An(D) given by (0.1). Boundedness of the operator T corresponds to the
multiplier sequence {tk}k≥0 being bounded. The Bergman shift operator Sn is
homogeneous of degree 1, and such homogeneity has also the dual shift operator
S′
n. The left-inverses Ln and L′

n are homogeneous of degree −1.
We can think of an operator T in L(An(D)) as given by an infinite matrix

{tjk}j,k≥0 relative to the orthogonal basis {ek}k≥0 of monomials

ek(z) = zk, z ∈ D,

for k ≥ 0. The action of the operator T is then described by

T (ek) =
∑

j≥0

tjkej in An(D), 〈Tek, ej〉An
= tjkµn;j .

In this context the m-th homogeneous part Tm of T corresponds to the matrix
{δm,j−ktjk}j,k≥0 obtained from the matrix {tjk}j,k≥0 by putting all elements out-
side the diagonal m = j − k equal to 0.

3. Powers of shifts and adjoint shifts

Recall the notation (0.8). We shall prove in this section that an operator T ∈
L(An(D)) satisfies equality (0.6) if and only if every k-th homogeneous part Tk of
T is a constant multiple of Sn(k) (see Theorem 3.1). The proof will proceed in
several steps.

We first show that powers of shifts and adjoint shifts satisfy equality (0.6).

Proposition 3.1. The operators Sn(k) in L(An(D)) for k ∈ Z all satisfy equality
(0.6).

Proof. We first show that Skn satisfies (0.6) for k ≥ 0. We have that

(S′
n)

∗SknS
′
n = (S∗

nSn)
−1S∗

nS
k
nSn(S

∗
nSn)

−1 = Skn(S∗
nSn)

−1.

By equality (0.4) we conclude that

(S′
n)

∗SknS
′
n = Skn

( n−1∑

j=0

(−1)j
(

n

j + 1

)
SjnS

∗j
n

)
=

n−1∑

j=0

(−1)j
(

n

k + 1

)
SjnS

k
nS

∗j
n .

This shows that Skn satisfies (0.6).
By a passage to adjoints we see that also the operators S∗k

n for k ≥ 0 satisfy
equality (0.6). This completes the proof of the proposition. �

We next consider a Fourier multiplier in L(An(D)) satisfying equality (0.6).

Lemma 3.1. Let T ∈ L(An(D)) be homogeneous of degree 0, and assume that T
satisfies equality (0.6). Then the operator T is a constant multiple of the identity
operator I.

Proof. As we have pointed out in Section 2 the assumption of homogeneity of degree
0 means that the operator T ∈ L(An(D)) acts as

(Tf)(z) =
∑

j≥0

tjajz
j , z ∈ D,

on functions f ∈ An(D) given by (0.1) for some bounded sequence {tj}j≥0 of
complex numbers.
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Let us prove that tj = t0 for j ≥ 0. The assumption that T satisfies equality
(0.6) means that

(3.1) 〈TS′
nf, S

′
nf〉An

=

n−1∑

k=0

(−1)k
(

n

k + 1

)
〈TS∗k

n f, S∗k
n f〉An

, f ∈ An(D).

Let f ∈ An(D) be a function of the form (0.1). By (0.3) we have that

(3.2) 〈TS′
nf, S

′
nf〉An

=
∑

j≥1

tj
µ2
n;j−1

µn;j
|aj−1|

2 =
∑

j≥0

tj+1

µ2
n;j

µn;j+1
|aj |

2.

By (1.1) we have that

(S∗k
n f)(z) =

∑

j≥0

µn;j+k

µn;j
aj+kz

j , z ∈ D,

for k ≥ 0. Computing scalar products and summing we now have that

n−1∑

k=0

(−1)k
(

n

k + 1

)
〈TS∗k

n f, S∗k
n f〉An

=

n−1∑

k=0

∑

j≥0

(−1)k
(

n

k + 1

)
tj
µ2
n;j+k

µn;j
|aj+k |

2(3.3)

=
∑

j≥0

( min(j,n−1)∑

k=0

(−1)k
(

n

k + 1

)
tj−k
µn;j−k

)
|aj |

2µ2
n;j ,

where the last equality follows by a change of order of summation. Varying the
function f ∈ An(D) of the form (0.1) the above equalities (3.1), (3.2) and (3.3) give
that

(3.4)
tj+1

µn;j+1
=

min(j,n−1)∑

k=0

(−1)k
(

n

k + 1

)
tj−k
µn;j−k

for j ≥ 0. We introduce now the function

f(z) =
∑

j≥0

tj
µn;j

zj , z ∈ D.

Notice that the sum in (3.4) is equal to the j-th coefficient in the power series
expansion of the function

( n−1∑

k=0

(−1)k
(

n

k + 1

)
zk

)
f(z), z ∈ D.

Multiplying (3.4) by zj and summing for j ≥ 0 we have that

f(z) − t0
z

=
( n−1∑

k=0

(−1)k
(

n

k + 1

)
zk

)
f(z) =

1 − (1 − z)n

z
f(z), z ∈ D.

We can now solve this last equation for f(z) to conclude that

f(z) = t0
1

(1 − z)n
= t0

∑

j≥0

1

µn;j
zj , z ∈ D.

This shows that tj = t0 for all j ≥ 0. This completes the proof of the lemma. �

We shall need also the following lemma concerned with operators T ∈ L(An(D))
of positive degree of homogeneity.
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Lemma 3.2. Let T ∈ L(An(D)) be homogeneous of degree m ≥ 0. Then the range
of T is contained in the range of Smn .

Proof. Since the operator T is homogeneous of degree m it must equal its m-th
homogeneous part Tm by considerations from Section 2. Recall also the matrix
representation of the m-th homogeneous part from Section 2 saying that the oper-
ator T = Tm acts as

Tek = tk+m,kek+m, k ≥ 0,

relative to the orthogonal basis of monomials ek(z) = zk. It is easy to see that the
operator Smn has closed range. We conclude that the range of T is contained in the
range of Smn . This completes the proof of the lemma. �

We can now describe a general operator T ∈ L(An(D)) satisfying equality (0.6).

Theorem 3.1. Let T ∈ L(An(D)). Then the operator T satisfies equality (0.6) if
and only if every k-th homogeneous part Tk of T is a constant multiple of Sn(k).

Proof. The if-part is evident by Proposition 3.1 and summability considerations
from Section 2.

Let now T ∈ L(An(D)) be a general operator satisfying (0.6). We first show
that every k-th homogeneous part Tk of T satisfies (0.6). Recall that the operators
Sn and S′

n are both homogeneous of degree 1. Using (0.6) and these homogeneity
properties we compute that

(S′
n)∗τe−iθTτeiθS′

n = τe−iθ (S′
n)∗TS′

nτeiθ = τe−iθ

( n−1∑

k=0

(−1)k
(

n

k + 1

)
SknTS

∗k
n

)
τeiθ

=
n−1∑

k=0

(−1)k
(

n

k + 1

)
Sknτe−iθTτeiθS∗k

n in L(An(D)).

We can now pass to the k-th homogeneous part using (2.1) to conclude that Tk
satisfies (0.6) for every k ∈ Z.

We shall next show that if an operator Tk ∈ L(An(D)) is homogeneous of degree
k ≥ 0 and satisfies (0.6), then Tk is a constant multiple of Skn. Recall that (S′

n)
∗ =

Ln. We first show that LknTk satisfies (0.6). Since Tk satisfies (0.6) we have that

(3.5) (S′
n)

∗LknTkS
′
n = Lkn(S

′
n)∗TkS

′
n = Lkn

( n−1∑

j=0

(−1)j
(

n

j + 1

)
SjnTkS

∗j
n

)
.

By Lemma 3.2 the range of Tk is contained in the range of Skn. This gives that the
operator Tk factorizes as Tk = SknL

k
nTk. By (3.5) we conclude that LknTk satisfies

(0.6). The operator LknTk is also homogeneous of degree 0, and Lemma 3.1 applies
to give that LknTk = cI . We conclude that Tk = SknL

k
nTk = cSkn.

We now finish the proof of the theorem. We know that each homogeneous part
Tk of T satisfies (0.6). By the result of the previous paragraph we have that Tk is a
constant multiple of Skn if k ≥ 0. Assume next that k < 0. Then T ∗

k is homogeneous
of degree |k| and by a passage to adjoints we see that also T ∗

k satisfies (0.6). The
result of the previous paragraph applies to give that T ∗

k is a constant multiple of

S
|k|
n . Taking adjoints again we see that Tk is a constant multiple of S

∗|k|
n = Sn(k).

This completes the proof of the theorem. �
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4. Functional calculus for contractions

In this section we shall discuss an extension of the Sz.-Nagy-Foias functional
calculus for contraction operators on Hilbert space taking into account also powers
of the adjoint of the operator. Let us proceed to describe this functional calculus.

Let T ∈ L(H) be a contraction operator on a Hilbert space H meaning that
‖T‖ ≤ 1. A classical result of Sz.-Nagy concerns the existence of a unitary dilation
of T , that is, a unitary operator U ∈ L(K) on a larger Hilbert space K containing
H as a closed subspace such that

T k = PHU
k|H in L(H)

for k ≥ 0, where PH denotes the orthogonal projection of K onto H (see [19, Chap-
ter I]). A related construction is that of a positive L(H)-valued operator measure
dωT on the unit circle T having Fourier coefficients

ω̂T (k) =

∫

T

e−ikθdωT (eiθ) =

{
T ∗k for k ≥ 0,
T |k| for k < 0.

Notice that dωT is uniquely determined by its Fourier coefficients. This operator
measure dωT can be obtained as the compression to H of the spectral measure for
a unitary dilation U ∈ L(K) of T . Alternatively, the operator measure dωT can be
constructed using operator-valued Poisson integrals (see [15] for a construction in
the context of the n-torus Tn).

As indicated in Section 1 integration with respect to dωT is a continuous linear
map

C(T) 3 f 7→

∫

T

f(eiθ)dωT (eiθ) ∈ L(H)

of C(T) into L(H) of norm equal to 1. Let f ∈ C(T) and consider the Cesàro means
σNf = KN ∗f of f defined as in the introduction. It is well-known that the Cesàro
means σNf converges to f in C(T) (see [12, Section I.2]). Integrating with respect
to dωT we arrive at the limit assertion that

∫

T

f(eiθ)dωT (eiθ) = lim
N→∞

∑

|k|≤N

(
1 −

|k|

N + 1

)
f̂(k)T (k) in L(H)

with convergence in the uniform operator topology in L(H), where f̂(k) denotes
the k-th Fourier coefficient of f .

If the operator measure dωT is absolutely continuous with respect to Lebesgue
measure on T we can more generally integrate functions in L∞(T). We shall next
study the corresponding approximation property of such integrals. Here should be
mentioned a result of Sz.-Nagy and Foias which asserts that the spectral measure of
the minimal unitary dilation of a completely non-unitary contraction is absolutely
continuous with respect to Lebesgue measure on T (see [19, Theorem II.6.4]). This
result gives by a compression argument that the operator measure dωT is absolutely
continuous with respect to Lebesgue measure on T if T ∈ L(H) is a completely non-
unitary contraction.

We shall need the following lemma from integration theory.

Lemma 4.1. Let dµ be a positive L(H)-valued operator measure on a measure
space X such that µ(X) = I, and let f be a measurable function on X which is
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square integrable with respect to dµ. Then

(4.1) ‖

∫

X

f(s)dµ(s)x‖2 ≤

∫

X

|f(s)|2dµx,x(s), x ∈ H.

If dµ = dE is a spectral measure, then equality holds in (4.1).

Sketch of proof. We consider first the case when dµ = dE is a spectral measure.
For f a simple function the assertion of equality in (4.1) can be verified by straight-
forward computation. The case of a general function f ∈ L∞(dE) then follows by
approximation by simple functions.

Let now dµ be a positive operator measure such that µ(X) = I in L(H). By a
result of Neumark [14] the operator measure dµ can be dilated to a spectral measure
dE (see formula (7.1) in Section 7). Using this dilation we can verify inequality
(4.1) for f bounded. The case of a general function f follows by an approximation
argument. �

We can now prove the corresponding approximation property for integrals of
L∞(T)-functions.

Theorem 4.1. Let T ∈ L(H) be a contraction operator such that the operator
measure dωT is absolutely continuous with respect to Lebesgue measure on T, and
let f ∈ L∞(T). Then

∫

T

f(eiθ)dωT (eiθ) = lim
N→∞

∑

|k|≤N

(
1−

|k|

N + 1

)
f̂(k)T (k) in L(H)

with convergence in the strong operator topology in L(H).

Proof. Let KN be the N -th Fejér kernel and denote by σNf = KN ∗ f the N -th
Cesàro mean of f ∈ L∞(T). It is well-known that limN→∞ σNf = f pointwise a.e.
on T and that ‖σNf‖∞ ≤ ‖f‖∞ for all N ≥ 1 (see [12, Section I.3]). Let x ∈ H.
By Lemma 4.1 we have that

‖

∫

T

(
f(eiθ) − (σNf)(eiθ)

)
dωT (eiθ)x‖2 ≤

∫

T

∣∣f(eiθ) − (σNf)(eiθ)
∣∣2d(ωT )x,x(e

iθ).

By dominated convergence the integral on the right-hand side tends to 0 asN → ∞.
We conclude that∫

T

f(eiθ)dωT (eiθ) = lim
N→∞

∫

T

(σNf)(eiθ)dωT (eiθ) in L(H)

with convergence in the strong operator topology in L(H). A computation shows
that ∫

T

(σNf)(eiθ)dωT (eiθ) =
∑

|k|≤N

(
1 −

|k|

N + 1

)
f̂(k)T (k) in L(H).

This completes the proof of the theorem. �

Remark 4.1. We remark that the argument in the proof of Theorem 4.1 gives that

(4.2) lim
k→∞

∫

T

fk(e
iθ)dωT (eiθ) =

∫

T

f0(e
iθ)dωT (eiθ) in L(H)

with convergence in the strong operator topology in L(H) whenever {fk} is a
bounded sequence of functions in L∞(T) such that fk(e

iθ) → f0(e
iθ) for a.e. eiθ ∈ T

or fk → f0 in measure. This can be compared with the limit assertion that (4.2)
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holds in the weak operator topology in L(H) whenever fk → f0 in the weak∗ topol-
ogy of L∞(T) which evident from the assumption that dωT is absolutely continuous
with respect to Lebesgue measure on T. By the weak∗ topology on L∞(T) we mean
the topology on L∞(T) which is induced from L∞(T) being the dual of L1(T).

We mention that the Sz.-Nagy-Foias functional calculus for contractions concerns
the corresponding Abel summability statements for the calculus

u(T ) = lim
r→1

∑

k≥0

akr
kT k in L(H),

where u is a bounded analytic function in D with Taylor coefficients {ak}k≥0

(see [19, Chapter III]). Our functional calculus gives this calculus as a special case
when applied to functions f ∈ L∞(T) with vanishing negative Fourier coefficients.

The arguments in this section follow those of Sz.-Nagy and Foias [19, Sec-
tion III.2] and are repeated here for the matter of convenience.

5. Functional calculus for shift operators

In this section we shall describe the operators T ∈ L(An(D)) satisfying equality
(0.6) using the functional calculus from Section 4 for the Bergman shift operator
Sn on An(D). We also discuss the functional calculus from Section 4 when applied
to the shift operator on a Hilbert space of analytic functions on the unit disc.

We recall that the operator measure dωT from Section 4 is absolutely continuous
with respect to Lebesgue measure on T if T is a completely non-unitary contraction
(see [19, Theorem II.6.4]). For a contraction T ∈ L(H) such that limk→∞ T k = 0
in the strong operator topology in L(H) this assertion of absolute continuity can be
seen more easily since such an operator T can always be modeled as part of a vector-
valued adjoint Hardy shift S∗

1 (see [19, Subsection I.10.1] or [16] for constructions).
See also Proposition 7.2 in Section 7.

Let H be a Hilbert space of analytic functions on the unit disc D. By this
we mean that the elements in H are analytic functions in D and that the point
evaluations at points in D are continuous linear functionals on H. Associated to
such a space H we have a reproducing kernel function KH which is the function
KH : D×D → C uniquely determined by the properties that KH(·, ζ) ∈ H for every
ζ ∈ D and

f(ζ) = 〈f,KH(·, ζ)〉, ζ ∈ D,

for every function f ∈ H. This last property is called the reproducing property of
the kernel function KH (see [5, Section I.2]).

We shall need the following lemma.

Lemma 5.1. Let H be a Hilbert space of analytic functions on D such that the
shift operator S : f 7→ zf acts as a contraction on H. Let {ck}

∞
k=−∞ be a sequence

of complex numbers with lim|k|→∞ |ck|
1/|k| ≤ 1 and assume that the limit

T = lim
N→∞

∑

|k|≤N

(
1 −

|k|

N + 1

)
ckS(k) in L(H)

exists in the weak operator topology in L(H). Then the harmonic function

(5.1) h(z) =

∞∑

k=−∞

ckr
|k|eikθ , z = reiθ ∈ D,
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is bounded in absolute value by ‖T‖.

Proof. The function h is clearly harmonic in D. We have that

〈TKH(·, z),KH(·, z)〉(5.2)

= lim
N→∞

∑

|k|≤N

(
1 −

|k|

N + 1

)
ck〈S(k)KH(·, z),KH(·, z)〉, z ∈ D.

A computation using the reproducing property of the kernel function KH gives that

〈S(k)KH(·, z),KH(·, z)〉 = 〈SkKH(·, z),KH(·, z)〉 = zkKH(z, z), z ∈ D,

for k ≥ 0, and similarly that

〈S(k)KH(·, z),KH(·, z)〉 = z̄|k|KH(z, z), z ∈ D,

for k < 0. We write z = reiθ. By (5.2) we have that

〈TKH(·, z),KH(·, z)〉 = lim
N→∞

∑

|k|≤N

(
1 −

|k|

N + 1

)
ckr

|k|eikθKH(z, z)(5.3)

= h(z)KH(z, z), z = reiθ ∈ D,

since h is harmonic in D. Notice that

|〈TKH(·, z),KH(·, z)〉| ≤ ‖T‖‖KH(·, z)‖2 = ‖T‖KH(z, z), z ∈ D,

by the Cauchy-Schwarz inequality and the reproducing property of the kernel func-
tion KH. By (5.3) we now conclude that |h(z)| ≤ ‖T‖ for all z ∈ D. This completes
the proof of the lemma. �

Remark 5.1. We remark that the assumption lim|k|→∞ |ck|
1/|k| ≤ 1 in Lemma 5.1

is redundant in the sense that it follows from the existence of the limit defining
the operator T ∈ L(H). This follows by Theorem 5.2 below and the uniform
boundedness principle.

We can now describe the operators T ∈ L(An(D)) satisfying equality (0.6) using
the functional calculus from Section 4.

Theorem 5.1. Let T ∈ L(An(D)) be a bounded linear operator. Then the operator
T satisfies equality (0.6) if and only if it has the form of an operator integral

(5.4) T =

∫

T

f(eiθ)dωSn
(eiθ) in L(An(D))

of a function f ∈ L∞(T). Furthermore, we have the norm equality ‖T‖ = ‖f‖∞.

Proof. By Theorem 3.1 and summability considerations from Section 2 we have
that an operator T ∈ L(An(D)) satisfies (0.6) if and only if it has the form of a
limit

(5.5) T = lim
N→∞

∑

|k|≤N

(
1 −

|k|

N + 1

)
ckSn(k) in L(An(D))

with convergence in the strong operator topology in L(An(D)) for some sequence
{ck}

∞
k=−∞ of complex numbers. By Theorem 4.1 we conclude that every operator

T of the form (5.4) satisfies (0.6). Notice also that ‖T‖ ≤ ‖f‖∞ by (1.2) whenever
T has the form (5.4).
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Let now T ∈ L(An(D)) be an operator of the form (5.5) with convergence in
the strong operator topology. Notice that |ck| = ‖ckSn(k)‖ ≤ ‖T‖ by homogeneity
considerations from Section 2. By Lemma 5.1 the harmonic function h given by
(5.1) is such that |h(z)| ≤ ‖T‖ for all z ∈ D. It is well-known that bounded
harmonic functions h in D correspond to functions f in L∞(T) by the Poisson
integral formula (see [12, Lemma III.1.2]). Passing to boundary values we obtain

a function f ∈ L∞(T) with Fourier coefficients f̂(k) = ck for k ∈ Z such that
‖f‖∞ ≤ ‖T‖. By Theorem 4.1 this function f ∈ L∞(T) puts the operator T on the
form (5.4) with ‖T‖ = ‖f‖∞. This completes the proof of the theorem. �

Let us return to a Hilbert space H of analytic functions on the unit disc D

with kernel function KH. It is easy to see that the linear span of the reproducing
elements KH(·, ζ), ζ ∈ D, is dense in H, and that the norm of the function

(5.6) f(z) =

n∑

j=1

cjKH(z, ζj), z ∈ D,

in H, where ζj ∈ D for 1 ≤ j ≤ n, equals

(5.7) ‖f‖2 =

n∑

j,k=1

cj c̄kKH(ζk, ζj)

(see [5, Section I.2]).

Proposition 5.1. Let H be a Hilbert space of analytic functions on D such that
the shift operator S : f 7→ zf acts as a contraction on H. Then limk→∞ S∗k = 0
in the strong operator topology in L(H). In particular, the operator measure dωS
is absolutely continuous with respect to Lebesgue measure on T.

Proof. A computation shows that the adjoint shift operator S∗ acts as

S∗KH(·, ζ) = ζ̄KH(·, ζ), ζ ∈ D,

on reproducing elements. Let f ∈ H be a function of the form (5.6), and notice
that

‖S∗mf‖2 =
n∑

j,k=1

cj ζ̄
m
j c̄kζ

m
k KH(ζk , ζj) → 0 as m→ ∞

by (5.7). Since ‖S∗m‖ ≤ 1 for m ≥ 0, we conclude by an approximation argument
that limm→∞ S∗m = 0 in the strong operator topology in L(H). The absolute
continuity of dωS is now evident by earlier remarks. �

We shall next compute the norm of the operator
∫

T
fdωS .

Theorem 5.2. Let H be a Hilbert space of analytic functions on D such that the
shift operator S : f 7→ zf acts as a contraction on H. Then a measurable function
f on T is integrable with respect to dωS if and only if f ∈ L∞(T). Furthermore,
we have the norm equality

(5.8) ‖

∫

T

f(eiθ)dωS(eiθ)‖ = ‖f‖∞, f ∈ L∞(T).
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Proof. Let f ∈ L∞(T). Recall that by (1.2) we always have that ‖
∫

T
fdωS‖ ≤

‖f‖∞. By Theorem 4.1 we know that
∫

T

f(eiθ)dωS(eiθ) = lim
N→∞

∑

|k|≤N

(
1 −

|k|

N + 1

)
f̂(k)S(k) in L(H)

with convergence in the strong operator topology in L(H), where f̂(k) is the k-th
Fourier coefficient of f ∈ L∞(T). By Lemma 5.1 we conclude that the Poisson
integral h = P [f ] of f is bounded in absolute value by ‖

∫
T fdωT ‖. This proves the

norm equality (5.8). The integrability assertion also follows by equality (5.8). This
completes the proof of the theorem. �

We mention that the norm equality (5.8) in Theorem 5.2 also follows by a result
of Conway and Ptak [9, Theorem 2.2] using that dωS is absolutely continuous with
respect to Lebesgue measure on T and that the H∞(D)-functional calculus for the
shift operator S is isometric.

Proposition 5.2. Let H be a Hilbert space of analytic functions on D such that
the shift operator S : f 7→ zf acts as a contraction on H and let f ∈ L∞(T). Then

〈

∫

T

f(eiθ)dωS(eiθ)KH(·, z),KH(·, z)〉 = P [f ](z)KH(z, z), z ∈ D,

where P [f ] is the Poisson integral of f .

Proof. By Theorem 4.1 we have that
∫

T

f(eiθ)dω(eiθ) = lim
N→∞

∑

|k|≤N

(
1 −

|k|

N + 1

)
f̂(k)S(k) in L(H)

with convergence in the strong operator topology in L(H). A computation similar
to the one in Lemma 5.1 now gives that

〈

∫

T

f(eiθ)dω(eiθ)KH(·, z),KH(·, z)〉

= lim
N→∞

∑

|k|≤N

(
1 −

|k|

N + 1

)
f̂(k)〈S(k)KH(·, z),KH(·, z)〉

= P [f ](z)KH(z, z), z ∈ D.

This completes the proof of the proposition. �

We remark that the above results Theorem 5.2 and Proposition 5.2 give converses
to the summability results for the functional calculus in Section 4: If the limit

(5.9) T = lim
N→∞

∑

|k|≤N

(
1 −

|k|

N + 1

)
ckS(k) in L(H)

exists in the weak operator topology in L(H), then T =
∫

T
fdωS in L(H) for the

function f ∈ L∞(T) with Fourier coefficients f̂(k) = ck for k ∈ Z. Similarly, if the
limit (5.9) exists in the uniform operator topology in L(H), then T =

∫
T
fdωS in

L(H) with f ∈ C(T). We omit the details.
We shall next discuss compactness of an operator of the form

∫
T
fdωS. We shall

need the following off-diagonal estimate for a reproducing kernel function.
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Lemma 5.2. Let H be a Hilbert space of analytic functions on D such that the shift
operator S : f 7→ zf acts as a contraction on H and denote by KH the reproducing
kernel function for H. Then

|KH(z, ζ)|2 ≤
(1 − |z|2)(1 − |ζ|2)

|1 − ζ̄z|2
KH(z, z)KH(ζ, ζ), (z, ζ) ∈ D × D.

Proof. The essential property needed for a function to be the kernel function for a
reproducing kernel Hilbert space is that of positive definiteness (see [5, Section I.2]).
The assumption that the shift operator S is a contraction on H can equivalently
be formulated saying that the function

L(z, ζ) = (1 − ζ̄z)KH(z, ζ), (z, ζ) ∈ D × D,

is positive definite on D×D (see [5, Section I.7]). By the Cauchy-Schwarz inequality
we have that

|L(z, ζ)| ≤ L(z, z)1/2L(ζ, ζ)1/2, (z, ζ) ∈ D × D.

This last inequality gives the conclusion of the lemma. �

We remark that there is a more refined off-diagonal estimate for kernel functions
related to the operator inequality

‖Sf + g‖2 ≤ 2(‖f‖2 + ‖Sg‖2), f, g ∈ H,

for the shift operator S on H (see [18, Proposition 4.5] and [10, Section 6]).

Corollary 5.1. Let H be a Hilbert space of analytic functions on D such that
the shift operator S : f 7→ zf acts as a contraction on H. Then the normalized
reproducing elements

Kζ = KH(·, ζ)/KH(ζ, ζ)1/2, ζ ∈ D, KH(ζ, ζ) 6= 0,

converge weakly to zero in H as |ζ| → 1.

Proof. Notice that 〈Kζ ,KH(·, z)〉 = KH(z, ζ)/KH(ζ, ζ)1/2, and recall the standard
formula

1 −
∣∣∣ z − ζ

1 − ζ̄z

∣∣∣
2

=
(1 − |z|2)(1 − |ζ|2)

|1 − ζ̄z|2
, (z, ζ) ∈ D × D,

which can be proved by straightforward computation. By the estimate in Lemma 5.2
we conclude that 〈Kζ ,KH(·, z)〉 → 0 as |ζ| → 1 for every z ∈ D. Taking linear com-
binations we see that 〈Kζ , f〉 → 0 as |ζ| → 1 for every function f ∈ H of the
form (5.6). Since ‖Kζ‖ = 1 for every ζ ∈ D by construction, the conclusion of the
corollary follows by a standard approximation argument. �

We can now show that the operator
∫

T
fdωS is compact only when f = 0.

Theorem 5.3. Let H be a Hilbert space of analytic functions on D such that the
shift operator S : f 7→ zf acts as a contraction on H, and let f ∈ L∞(T). Then
the operator ∫

T

f(eiθ)dωS(eiθ) in L(H)

is compact if and only if f = 0.
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Proof. It is evident that the zero operator is compact. We turn to the reverse
implication. By Proposition 5.2 we have that

〈

∫

T

f(eiθ)dωS(eiθ)Kz,Kz〉 = P [f ](z), z ∈ D, KH(z, z) 6= 0,

where Kz = KH(·, z)/KH(z, z)1/2 for z ∈ D, KH(z, z) 6= 0, are the normalized
reproducing elements for H and P [f ] is the Poisson integral of f . By Corollary 5.1
we know that Kz → 0 weakly in H as |z| → 1. By compactness of the operator∫

T
fdωS we conclude that lim|z|→1 P [f ](z) = 0. This proves that f = 0. �

6. Toeplitz operators. Harmonic symbols

From the point of view of function theory a Toeplitz operator on the Bergman
space An(D), n ≥ 2, is an integral operator Th acting as

(6.1) (Thf)(z) =

∫

D̄

1

(1 − ζ̄z)n
h(ζ)f(ζ)dµn(ζ), z ∈ D,

on, say, polynomials f ∈ An(D) defined using a function h in L1(D, dµn) so that
the above integral (6.1) makes sense. The function h is called the symbol for the
operator Th, and the function

Kn(z, ζ) =
1

(1 − ζ̄z)n
, (z, ζ) ∈ D × D,

appearing in (6.1) is the reproducing kernel function for the space An(D). For
symbols h that are harmonic in D the properties of boundedness and compactness of
the operator Th defined by (6.1) are easily settled: The operator Th is bounded as an
operator on An(D) if and only if the symbol h is bounded and ‖Th‖ = supz∈D

|h(z)|.
The operator Th is compact in L(An(D)) if and only if h(z) = 0 for all z ∈ D (see [20,
Section 6.1]).

In the case of the Hardy space A1(D) we can identify a bounded harmonic
function h with its boundary value function in L∞(T) (see [12, Lemma III.1.2])
to make (6.1) a standard formula for the action of a Hardy space Toeplitz operator.

The matrix representation of a Toeplitz operator Th relative to the orthogonal
basis of monomials is easily computed.

Lemma 6.1. Let ek(z) = zk for k ≥ 0, and let h be a bounded harmonic function
in D with power series expansion

(6.2) h(z) =
∞∑

k=−∞

ckr
|k|eikθ , z = reiθ ∈ D.

Then

〈Thek, ej〉An
= cj−kµn;j

for j, k ≥ 0. The matrix representation of the Toeplitz operator Th relative to the
orthogonal basis of monomials {ek}k≥0 thus has the form {cj−k}j,k≥0.

Proof. Notice that the operator Th is obtained by a multiplication by h followed
by an orthogonal projection onto An(D). We have that

〈Thek, ej〉An
=

∫

D̄

h(z)zkz̄jdµn(z) = cj−k

∫

D̄

|z|2jdµn(z) = cj−kµn;j

for j, k ≥ 0. This completes the proof of the lemma. �
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We can now characterize Toeplitz operators Th with harmonic symbols h using
equality (0.6).

Theorem 6.1. Let T ∈ L(H) be a bounded linear operator. Then T satisfies
equality (0.6) if and only if T = Th is a Toeplitz operator on An(D) with bounded
harmonic symbol h.

Proof. We first show that the m-th homogeneous part (Th)m of the Toeplitz oper-
ator Th with bounded harmonic symbol h given by (6.2) is equal to cmSn(m) for
m ∈ Z. By Theorem 3.1 this will then show that every such Toeplitz operator Th
satisfies equality (0.6).

Let us proceed to details. We consider first the case m ≥ 0. By Lemma 6.1 and
considerations from Section 2 we have that m-th homogeneous part (Th)m of Th is
given by the matrix {δm,j−kcj−k}j,k≥0 relative to the orthogonal basis {ek}k≥0 of
monomials. This means that the operator (Th)m acts as

(Th)mek = cmem+k = cmS
m
n ek

for k ≥ 0. We conclude that (Th)m = cmS
m
n for m ≥ 0. We consider next the

case m < 0. Notice that (Th)
∗
m is the −m-th homogeneous part of T ∗

h = Th̄. Since

−m > 0, we have by the case already treated that (Th)
∗
m = c̄mS

|m|
n . Taking adjoints

we see that (Th)m = cmS
∗|m|
n for m < 0.

Let now T ∈ L(An(D)) be an operator satisfying (0.6). By Theorem 3.1 the m-th
homogeneous part Tm of T has the form Tm = cmSn(m) for m ∈ Z, where cm is a
complex number. Notice also that |cm| = ‖Tm‖ ≤ ‖T‖ form ∈ Z. By considerations
from Section 2 the operator T can be reconstructed from its homogeneous parts
Tm = cmSn(m) in the sense that the limit

T = lim
N→∞

∑

|m|≤N

(
1 −

|m|

N + 1

)
cmSn(m) in L(An(D))

exists in the strong operator topology in L(An(D)). By Lemma 5.1 the harmonic
function h given by (6.2) is bounded in absolute value by ‖T‖. We can now consider
the Toeplitz operator Th in L(An(D)) with this harmonic function h as symbol. By
the first part of the proof this Toeplitz operator Th has the same m-th homogeneous
part cmSn(m) as the operator T for every m ∈ Z. We conclude that these two
operators must be equal: T = Th. This completes the proof of the theorem. �

7. General Toeplitz operators

As we have indicated in the introduction balayage considerations seem to suggest
that Bergman space Toeplitz operators should be considered as integrals using
naturally associated positive operator measures. We shall indicate in this section
some rudiments of such a theory.

Toeplitz operators arise naturally when the functional calculus for normal op-
erators is compressed down to a subspace of the original space and the operators
obtained in this way have in many cases properties such as boundedness or com-
pactness for more general classes of symbols compared to the original functional
calculus for normal operators. The functional calculus for normal operators is de-
fined by integration with respect to the associated spectral measure and we are led
to consider integrability properties of compressed spectral measures.



20 ISSAM LOUHICHI AND ANDERS OLOFSSON

Let K be a Hilbert space and let dE be an L(K)-valued spectral measure on a
measure space (X,S). Let H be a closed subspace of K and consider the L(H)-
valued set function µ defined by

(7.1) µ(S) = PHE(S)|H, S ∈ S,

where PH is the orthogonal projection of K onto H. It is apparent that dµ is
a positive operator measure such that µ(X) = I . Conversely, if we are given a
positive operator measure dµ on X such that µ(X) = I , then a construction of
Neumark [14] generalizing that of an L2-space produces a larger Hilbert space K
containing H as a closed subspace and an L(K)-valued spectral measure dE such
that (7.1) holds. This result of Neumark [14] is often referred to as the Neumark
dilation theorem.

A special case often encountered in analysis is when dE is the canonical spectral
measure associated to an L2-space. Let dν be a positive (scalar) measure on X ,
and consider the associated L2-space L2(dν). The prototype of a spectral measure
dE is given by

E(S)ϕ = χSϕ, ϕ ∈ L2(dν), S ∈ S,

where χS is the characteristic function for the set S. Let now H be a closed subspace
of L2(dν), and consider the L(H)-valued operator measure dµH = dµ defined by
(7.1). The marginal distributions d(µH)ϕ,ψ of dµH are easily computed as

d(µH)ϕ,ψ = ϕψ̄dν, ϕ, ψ ∈ H.

We record the following proposition.

Proposition 7.1. Let H be a closed subspace of L2(dν), let f be a measurable
function on X and set dλ = |f |dν. Then f is integrable with respect to dµH if and
only if the embedding

(7.2)

∫

X

|ϕ|2dλ ≤ C

∫

X

|ϕ|2dν, ϕ ∈ H,

of H into L2(dλ) is continuous. Furthermore, the following statements hold true:

(1) We have the norm bound ‖
∫
X
fdµH‖ ≤ C with equality if f is non-negative,

where C is the best constant in (7.2).
(2) If the embedding (7.2) is compact, then

∫
X
fdµH is a compact operator in

L(H).
(3) If f is non-negative and

∫
X fdµH is a compact operator in L(H), then the

embedding (7.2) is compact.

Sketch of proof. If f is integrable with respect to dµH, then
∫
X
|ϕ|2dλ <∞ for ev-

ery ϕ ∈ H, showing that (7.2) holds by the Banach-Steinhaus theorem. Conversely,
if (7.2) holds we have by the Cauchy-Schwarz inequality that

∫

X

|f ||ϕ||ψ|dν ≤
( ∫

X

|ϕ|2|f |dν
)1/2( ∫

X

|ψ|2|f |dν
)1/2

≤ C‖ϕ‖‖ψ‖, ϕ, ψ ∈ H,

showing that f is integrable with respect to dµH, and that ‖
∫
X
fdµH‖ ≤ C. We

notice also that this last estimation is the best possible for
∫
X fϕψ̄dµ if f is non-

negative.
We consider next the compactness properties of Tf =

∫
X
fdµH. Denote by R the

embedding (7.2) of H into L2(dλ). Let h = sgn(f), where sgn(z) = z/|z| for z 6= 0
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and sgn(0) = 0, and denote by H the operator on L2(dλ) given by multiplication
by h. Notice that the operator Tf =

∫
X fdµH factorizes as

Tf = R∗HR in L(H).

This last equality shows that Tf is compact if R is compact. Notice that Tf =
R∗R if f is non-negative. If Tf is also compact and ϕj → 0 weakly in H, then
〈Tfϕj , ϕj〉 = ‖Rϕj‖

2 → 0 showing that R is compact. �

The above Proposition 7.1 gives easy criteria for existence as an operator integral,
norm bounds and compactness of a generalized Toeplitz operator Tf defined as an
L(H)-valued operator integral by Tf =

∫
X fdµH. If the space H has bounded point

evaluations

H 3 f 7→ f(x), x ∈ Ω,

on a set Ω standard duality arguments gives the existence of reproducing elements
KH(·, x) ∈ H for x ∈ Ω such that

f(x) = 〈ϕ,KH(·, x)〉, x ∈ Ω,

for ϕ ∈ H. In terms of these reproducing elements the action of the Toeplitz
operator Tf =

∫
X fdµH is given by

(Tfϕ)(x) = 〈Tfϕ,KH(·, x)〉 =

∫

X

KH(·, x)fϕdν, x ∈ Ω,

for ϕ ∈ H.
In complex analysis embeddings of the form (7.2) appear under the name of

Carleson embeddings and in the context of standard weighted Bergman spaces
boundedness and compactness of such embeddings have well-known descriptions
using hyperbolic discs or so-called Carleson squares (see [20, Section 6.2]). In the
context of the Bergman spaces An(D) the natural regularity class for symbols f
of Toeplitz operators Tf on An(D) suggested here is measurable functions f on D

such that |f |dµn is a Bergman space Carleson measure for An(D). We mention that
this regularity class for symbols appears in a recent result of Miao and Zheng [13]
characterizing the compact Toeplitz operators on the unweighted Bergman space
A2(D) in terms of vanishing of the so-called Berezin transform.

A common property possessed by all Bergman shifts is that of being a subnormal
operator. An operator T ∈ L(H) is said to be subnormal if it is part of a normal
operatorN ∈ L(K) (restriction to an invariant subspace); the operatorN ∈ L(K) is
then called a normal extension of T . Associated to a subnormal operator T ∈ L(H)
we have the positive L(H)-valued operator measure dµT = dµ defined by (7.1),
where dE is the spectral measure for a normal extension N ∈ L(K) of T . This
operator measure dµT is uniquely characterized by the property that

(7.3) T ∗jT k =

∫

X

z̄jzkdµT (z) in L(H)

for j, k ≥ 0 (see [8, Section II.1]).
We recall that the balayage of a complex measure dµ on D̄ onto T = ∂D is the

complex measure dµ′ on T defined by
∫

T

ϕ(eiθ)dµ′(eiθ) =

∫

D̄

P [ϕ](z)dµ(z), ϕ ∈ C(T),
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where P [ϕ] is the Poisson integral of ϕ. A straightforward argument using Fubini’s
theorem shows that the balayage of dµ is given by the L1(T)-function

(7.4) P ∗[dµ](eiθ) =

∫

D

P (z, eiθ)dµ(z), eiθ ∈ T,

if the mass of dµ is carried by the open unit disc D.
We make the following observation.

Proposition 7.2. Let T ∈ L(H) be a subnormal contraction and let dµT = dµ be
the associated positive operator measure in D̄ given by (7.1) or (7.3). Then

(7.5)

∫

D̄

u(z)dµT (z) =

∫

T

u(eiθ)dωT (eiθ)

for every function u ∈ C(D̄) which is harmonic in D meaning that dωT is the
balayage of dµT onto T = ∂D. In particular, if the mass of dµT is concentrated
in the open unit disc D, then dωT is absolutely continuous with respect to Lebesgue
measure on T.

Proof. That the operator measures dµT and dωT have the same action on har-
monic polynomials is evident by (7.3) and the description of dωT in Section 4.
Equality (7.5) follows by an approximation argument. By (7.5) the complex mea-
sure d(ωT )x,y is the balayage of d(µT )x,y onto T = ∂D giving the last assertion of
the proposition. �

We mention that for a more general positive operator measure dµ carried by the
open unit disc D the operator integral in (7.4) no longer exists in our sense as an
operator in L(H).

We wish to mention here also that Toeplitz operators defined as integrals of
positive operator measures has been studied by Aleman [3, Section III.4] in the
context of subnormal shift operators in Hilbert spaces of analytic functions; see
also Aleman [4].
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