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Abstract. In 1962 Brown and Halmos gave simple conditions for the product
of two Toeplitz operators on Hardy space to be equal to a Toeplitz operator.

Recently, Ahern and C̆uc̆ković showed that a similar result holds for Toeplitz
operators with bounded harmonic symbols on Bergman space. For general
symbols, the situation is much more complicated. We give necessary and suf-
ficient conditions for the product to be a Toeplitz operator (Theorem 6.1), an
explicit formula for the symbol of the product in certain cases (Theorem 6.4),
and then show that almost anything can happen (Theorem 6.7).
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1. Preliminaries

Let dA denote Lebesgue area measure on the unit disc D, normalized so that the
measure of D equals 1. The Bergman space L2

a is the Hilbert space consisting of
the analytic functions which are contained in L2(D, dA). It is well known that L2

a

is a closed subspace of the Hilbert space L2(D, dA) and that, for each z ∈ D, the
application:

Lz : L2
a −→ C
f 7→ f(z)

is continuous and can be represented as Lz(f) =< f, kz >, where:

kz(w) =
1

(1− wz)2
=

∞∑
j=0

(1 + j)wjzj .
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This means that, if P is the orthogonal projection from L2(D, dA) onto L2
a, then

P can be defined by:

(Pf)(z) =< f, kz >=
∫

D
f(w)kz(w) dA(w)

For u ∈ L∞(D, dA), we define the Toeplitz operator with symbol u, Tu : L2
a −→ L2

a

by the equation:

Tu(f)(z) = P (uf)(z) =
∫

D
u(w)f(w)kz(w)dA(w) (1)

The operators defined in this way are the simplest and most natural Toeplitz
operators (since the product of an L∞ and an L2 fonction is always a well defined
element of L2). But, for reasons which will become evident, we prefer to consider
a more general class of Toeplitz operators.

Let u be any finite complex measure on D. In analogy with equation (1) we
can define an operator Tu on L2

a by:

Tuf(z) =
∫

D
f(w)kz(w) du(w) (2)

If du(z) = F (z)dA(z) for some F ∈ L1(D, dA), then we simply write Tu = TF .
This operator is always defined on the polynomials and the image of any polyno-
mial is always an analytic function on the disc. We are interested in the case where
this densely defined operator is bounded in the L2

a norm. This happens often. For
example, if u has compact support, then Tu is not only bounded, but compact.
Thus, if F ∈ L1(D, dA) and there is an r ∈ (0, 1) such that F is (essentially)
bounded on the annulus {z : r < |z| < 1} then F is equal to the sum of an L1

function with compact support and an L∞ function and so TF is a bounded op-
erator. There is, unfortunately, no characterization of the functions in L1(D, dA)
which correspond to bounded operators. This motivates two of the following defi-
nitions.

Definition 1.1. Let F ∈ L1(D, dA).

(a) We say that F is a T-function if the equation (1), with u = F , defines a
bounded operator on L2

a.

(b) If F is a T-function, we write TF for the continuous extension of the operator
defined by equation (1). We say that TF is a Toeplitz operator if and only if TF is
defined in this way.

(c) If there is an r ∈ (0, 1) such that F is (essentially) bounded on the annulus
{z : r < |z| < 1} then we say that F is “nearly bounded”.

Notice that the T-functions form a proper subset of L1(D, dA) which contains
all bounded and ’nearly bounded’ functions.
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2. History and motivation

The question to be considered in this article is: When is the product of two Toeplitz
operators Tf and Tg equal to a Toeplitz operator Th? The corresponding question
for Toeplitz operators on the Hardy space was elegantly and simply resolved by
Brown and Halmos in 1964. Let Γ be the unit circle in the complex plane and let
H2 be the Hardy space on the unit disc D. As, usual, for f in L∞(Γ) we define
the Toeplitz operator Tf by the equation

Tf (φ) = PH
2
(fφ)

where PH
2

is orthogonal projection from L2(Γ) onto H2. In this case, even a
definition in terms of the reproducing kernel, as in (1), does not give any other
Toeplitz operators. We say that a function in L∞(Γ) is analytic if all of it’s negative
Fourier coefficients are equal to 0. Brown and Halmos show in [7] that, for f and
g any two functions in L∞(Γ). TfTg = Th if and only if either
(a) g is analytic
or
(b) f is analytic. They also show that, in both cases h = fg. The sufficiency of
these conditions is ’obvious’ since:
(1) If g is analytic, then Tg(φ) = gφ.

(2) For any ψ ∈ L∞ , T ∗ψ = Tψ.

In the Bergman space, as usual, things are much more complicated. Condi-
tions (a) and (b) are still sufficient - since (1) and (2) are still true - but they are
no longer necessary. Two papers on the subject have appeared recently ([1], [2]).
In [2] the authors get a Brown-Halmos type result. They show that conditions (a)
and (b) above are both necessary and sufficient under the assumptions that f , g
and h are bounded harmonic functions and that ∆̃h = (1− |z|2)2∆h is bounded.
More generally, in [1], Ahern considers the product TfTg for f and g bounded
harmonic functions on the disc such that f = f1 +f2 and g = g1 +g2 with f1,f2,g1
and g2 are bounded analytic functions. He shows that TfTg is a Toeplitz operator
Tψ if and only if there exist p and q holomorphic polynomials with degree of pq
less than or equal to 3 such that f1 = p ◦ φa and g2 = q ◦ φa where φa is the
automorphism of D defined by

φa(z) =
a− z

1− az
(z ∈ D).

He also shows that, if f1 or g2 is not equal to zero, then ψ 6= fg.

In this article we discuss the question for more general symbols. We find
necessary and sufficient conditions for the product of certain symbols to be a
Toeplitz operator and give a formula for the symbol of the product. Much work
remains to be done, both in resolving the question for operators with completely
arbitrary symbols and in getting a more precise description of a ’T-function’.
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3. The Mellin transform and Mellin convolution

One of our most useful tools in the following calculations will be the Mellin trans-
form (closely related, using the change of variables s = e−u, to the Laplace trans-
form).

The Mellin transform ϕ̂ of a function ϕ is defined by the equation:

ϕ̂(z) =
∫ ∞

0

ϕ(s)sz−1 ds.

We shall apply the Mellin transform to functions in L1([0, 1], rdr) (considered to
be equal to zero on the interval ]1,∞[). It is clear that, for these functions, the
Mellin transform is (well) defined on {z : Rez ≥ 2} and analytic on {z : Rez > 2}.
It is important that a function is determined by the value of a certain number of
its Mellin coefficients. This following lemma is proved in [9].

Lemma 3.1. Let ϕ ∈ L1([0, 1], rdr). If there exist n0, p ∈ N such that:

ϕ̂(n0 + pk) = 0 for all k ∈ N
then ϕ = 0.

When considering the product of two Toeplitz operators we shall often be
confronted with the “Mellin” or “multiplicative” convolution of their symbols. We
denote the Mellin convolution of two functions f and g by f ∗M g and we define it
to be:

(f ∗M g)(r) =
∫ 1

r

f(
r

t
)g(t)

dt

t
·

The multiplication ∗M is related to the normal convolution by the change of vari-
ables discussed above.

It is easy to see that the Mellin transform converts the convolution product
into a pointwise product, i.e that:

̂(f ∗M g)(r) = f̂(r)ĝ(r)

and that, if f and g are in L1([0, 1], rdr) then so is f ∗M g.

4. Products of Toeplitz operators with radial symbols

Let ϕ ∈ L1(D, dA) be a radial function, i.e. suppose that:

ϕ(z) = ϕ(|z|) (z ∈ D).

Then, if ϕ is a T-function, the Toeplitz operator with symbol ϕ acts in a very
simple way. In fact, if we define the function ϕr on [0, 1] by

ϕr(s) = ϕ(s)

then a direct calculation shows that:

< Tϕ(zk), zl >=
{

0 for k 6= l
2ϕ̂r(2k + 2) for k = l

(3)
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so that, if k ∈ N:
Tϕ(zk) = (2k + 2)ϕ̂r(2k + 2)zk. (4)

Thus Tϕ is a diagonal operator on L2
a with coefficient sequence(

(2k + 2)ϕ̂r(2k + 2)
)∞
k=0

.

This makes it relatively simple to work with the product of two operators with
such radial symbols.
Remark:In the following, we shall often identify an integrable radial function ϕ on
the unit disc with the corresponding function ϕr defined on the interval [0, 1] . For
example, if we speak of the multiplicative convolution ∗M of two radial functions
ϕ1 and ϕ2 , we mean the radial function ϕ3 such that ϕ3,r = ϕ1,r∗Mϕ2,r. Similarly,
the Mellin coefficients of an integrable radial function ϕ are defined to be those of
the function ϕr.

Now, we define the “radialization” of a function f ∈ L1(D, dA) by:

rad(f)(z) =
1
2π

∫ 2π

0

f(eitz)dt.

It is clear that a function f is radial if and only if rad(f) = f . This permits us to
prove a very simple but essential proposition.

Proposition 4.1. Let ϕ ∈ L1(D, dA). Then the following assertions are equivalent:
(a) For all k > 0 there exist λk ∈ C such that Tϕ(zk) = λkz

k.
(b) ϕ is a radial function.

Proof: Writing out the integrals and changing the order of integration, we see that,
for each n,m ∈ Z+:

< Trad(ϕ)z
n, zm > =

1
2π

( ∫ 2π

0

ei(m−n)tdt

)
< Tϕz

n, zm >

=
{

< Tϕz
n, zm > for n = m
0 for n 6= m

Thus Trad(ϕ) = Tϕ if and only if (a) is true. And Trad(ϕ) = Tϕ if and only if
rad(ϕ) = ϕ.

Corollary 4.2. Let ϕ1 and ϕ2 be radial T-functions. If Tϕ1Tϕ2 = Tψ then ψ is a
radial T-function.

Proof: Using equation (4) to calculate Tϕ1Tϕ2(z
k) we see that Proposition 4.1

implies that ψ is a radial function. Moreover, Tψ is clearly a bounded operator.

We are now ready to answer the question: when is the product of two Toeplitz
operator with radial symbols equal to a Toeplitz operator? The answer to this
question is a consequence of our main theorem but we state it separately here to
motivate our other calculations.
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Proposition 4.3. Let ϕ1 and ϕ2 be radial T-functions. Then Tϕ1Tϕ2 is equal to the
Toeplitz operator Tψ if and only if ψ is a solution of the equation:

11 ∗M ψ = ϕ1 ∗M ϕ2 (5)

Proof: By direct calculation

Tϕ1Tϕ2(z
k) = Tψ(zk) for k > 0

if and only if
1

2k + 2
ψ̂(2k + 2) = ̂ϕ1 ∗M ϕ2(2k + 2) (6)

But, using Lemma 3.1, equation (5) is equivalent to equation (6) since:

1̂1(2k + 2) = χ̂[0,1](2k + 2) =
1

2k + 2

One can now have fun calculating lots of products of Toeplitz operators. For
example:

T|z|nT|z|m =
{

n
n−mT|z|n −

m
n−mT|z|m n 6= m

T|z|n(1+n log |z|) n = m

5. Products of Toeplitz operators with quasihomogeneous symbols

LetR be the space of square integrable radial functions on D. As before, we identify
these functions with the associated functions on [0, 1] that are square integrable
with respect to rdr measure. By using that trigonometric polynomials are dense
in L2(D, dA) and that, for k1 6= k2, eik1θR is orthogonal to eik2θR we see that:

L2(D, dA) =
⊕
k∈Z

eikθR.

Even though this type of decomposition does not exist for L1(D, dA) (see [12]),
we feel that “STEP1” is to study products of Toeplitz operators with symbols in
subspaces of the form eikθ·radial functions.

Definition 5.1. Let ϕ be a function in L1(D, dA) which is of the form eikθ ·f where
f is a radial function. Then we say that ϕ is a quasihomogeneous function of
quasihomogeneous degree k.

The third author used Definition 5.1 in her analysis of finite rank Hankel
operators on the harmonic Bergman space [13].

Proposition 5.2. Let k1 and k2 be greater than or equal to zero and let ϕ1 and
ϕ2 be quasihomogeneous T-functions in L1(D, dA) of quasihomogeneous degrees k1

and −k2 respectively. If there exists a T-function ψ such that

Tϕ1Tϕ2 = Tψ

then ψ is of quasihomogeneous degree k1 − k2.
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Proof: Let ϕ1, ϕ2 and ψ be as above and let f1 and f2 be radial functions such
that

ϕ1 = eik1θf1 and ϕ2 = e−ik2θf2

As discussed in Section 2, if f is antianalytic or if g is analytic then TfTg = Tfg.
Thus, since Tϕ1Tϕ2 = Tψ, we see that:

Tzk1ϕ1
Tzk2ϕ2

= Trk1f1Trk2f2 = Tzk1zk2ψ

Now, by Corollary 4.2, zk1zk2ψ is a radial function. This shows that ψ is a quasi-
homogeneous function of quasihomogeneous degree k1 − k2.

We note that the Prop 5.2 is, in fact, true for any integers k1 and k2 (see [10]
).

A direct calculation gives the following lemma which we shall use often.

Lemma 5.3. Let k, p ∈ Z+ and let ϕ be an integrable radial function. Then, if eipθϕ
is a T-function we have

Teipθϕ(zk) = 2(k + p+ 1)ϕ̂(2k + p+ 2)zk+p

and

Te−ipθϕ(zk) =
{

0 if 0 6 k 6 p− 1
2(k − p+ 1)ϕ̂(2k − p+ 2)zk−p if k > p.

6. Principal Results

We now apply our methods of calculation to the problem of determining whether
the product of two Toeplitz operators with quasihomogeneous symbols is equal to
a Toeplitz operator.

Theorem 6.1. Let p, s ∈ Z+, p ≥ s and let ϕ1 and ϕ2 be two integrable radial
functions on D such that eipθϕ1 and e−isθϕ2 are T-functions. Then

Teipθϕ1Te−isθϕ2

is equal to a Toeplitz operator if and only if there exists an integrable radial function
ψ such that

(a) ei(p−s)θψ is a T-function;

(b) ψ̂(2k + p− s+ 2) = 0 if 0 ≤ k ≤ s− 1;

(c) ψ is a solution to the equation

11 ∗M rp+sψ = rpϕ1 ∗M rsϕ2.

In this case:
Teipθϕ1Te−isθϕ2 = Tei(p−s)θψ.
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Proof: Using Proposition 5.2 and Lemma 5.3, one sees that, if Teipθϕ1Te−isθϕ2 is
a Toeplitz operator, then this operator is of the form Tei(p−s)θψ, with ei(p−s)θψ a
T-function and:

ψ̂(2k+p−s+2) =
{

0 if 0 ≤ k < s
2(k − s+ 1)ϕ̂1(2k + p− 2s+ 2)ϕ̂2(2k − s+ 2) if k ≥ s.

Thus, (b) is true, and, for k ≥ s:

r̂p+sψ(2(k − s) + 2)
2(k − s) + 2

= r̂pϕ1(2(k − s) + 2)r̂sϕ1(2(k − s) + 2). (7)

Now the same reasoning as in the proof of Proposition 4.3 shows that equation (7)
is equivalent to condition (c).

Conversely if ei(p−s)θψ is a T-function and ψ satisfies (a), (b), and (c) then
Tei(p−s)θψ is a bounded Toeplitz operator taking the same values on the analytic
polynomials as the product Teipθϕ1Te−isθϕ2 . This completes the proof.

Remark 6.2. Notice that the case 0 6 p < s is also covered by the theorem above
since Teipθϕ1Te−isθϕ2 is equal to a Toeplitz operator (with symbol ϕ3) if and only
if its adjoint Teisθϕ2Te−ipθϕ1 is equal to a Toeplitz operator (with symbol ϕ3).

One can also obtain complicated results concerning linear combinations of
quasihomogeneous symbols, none of which seem worth stating explicitly. By ap-
plying the unitary operator

Uw : L2
a → L2

a

f 7−→ Uwf(z) = (f ◦ Φw)(z)Φ
′

w(z)

where Φw(z) = z−w
1−wz is the automorphism of the unit disc sending w to 0; one

obtains a generalization of Theorem 6.1 to several other families of symbols.

Corollary 6.3. Let p > s and let ϕ1, ϕ2 and ψ be as in Theorem 6.1. If

ϕ̃1 = (eipθϕ1) ◦ Φw, ϕ̃2 = (e−isθϕ2) ◦ Φw and ψ̃ = (ei(p−s)θψ) ◦ Φw

then the product of the Toeplitz operators Tϕ̃1Tϕ̃2 is equal to the Toeplitz operator
Tψ̃.

Proof: This is an immediate consequence of Theorem 6.1 and the classic result
(see [5] for example) that, if Tf is a Toeplitz operator then U−1

w TfUw = Tf◦Φw
.

Now, suppose that ϕ1 and ϕ2 are radial functions such that the function
rpϕ1 ∗M rsϕ2 is differentiable on the interval (0,1) (when interpreted as a function
of r). Then the convolution equation in Theorem 6.1 is easy to solve.

Theorem 6.4. Let p, s ∈ Z+, p > s and let ϕ1 and ϕ2 be integrable radial functions
such that the function Λ defined by

Λ(r) = rpϕ1(r) ∗M rsϕ2(r)
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is almost everywhere differentiable on (0,1). Let ψ be the radial function associated
with the function

ψr(t) = −t1−(p+s)Λ
′
(t)

defined on the interval [0, 1). Then the product Teipθϕ1Te−isθϕ2 is equal to the
Toeplitz operator Tei(p−s)θψ if and only if

(i) The function ei(p−s)θψ is a T-function.
(ii) ψ̂(2k + p− s+ 2) = 0 for 0 6 k 6 s− 1.

Proof: ψ is a solution of the equation

11 ∗M rp+sψ = Λ

if and only if ∫ 1

t

rp+s−1ψ(r) dr = Λ(t).

By differentiating both sides, we see that this means that

ψ(t) = −t1−(p+s)Λ
′
(t).

Next, an easy but interesting application of Theorem 6.4.

Corollary 6.5. Let p ≥ s with p, s ∈ Z+, and let l1 and l2 be two real numbers
greater than or equal to -1. Then the product

Teipθ|z|l1Te−isθ|z|l2

is a Toeplitz operator if and only if
(a) l2 − p ≥ −1, l1 − s ≥ −1 and s = 0 or 1;
or
(b) `1 = p = 0 and/or `2 = s = 0.

Proof: First we apply Theorem 6.4 with ϕ1(z) = |z|`1 , and ϕ2(z) = |z|`2 to see that
the product Teipθ|z|l1Te−isθ|z|l2 is a Toeplitz operator if and only if the function

ψ(z) =


l2+s

l2+s−l1−p |z|
l2−p − l1+p

l2+s−l1−p |z|
l1−s if l1 − s 6= l2 − p

|z|l1−s
(
1 + (l1 + p) log |z|

)
if l1 − s = l2 − p.

satisfies the conditions (i) and (ii) of the theorem. Looking at the definition of ψ,
we see that ψ is bounded or nearly bounded if the following condition is satisfied:

(A): (`2 + s 6= 0, `1 + p 6= 0, `2 − p ≥ −1 and `1 − s ≥ −1); or
(`2 + s = 0 and `1 − s ≥ −1); or
(`1 + p = 0 and `2 − p ≥ −1)

while ψ is not even integrable if (A) is false. Thus we get that

(i) ⇐⇒ (A).
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Now, condition (ii) can be discussed only if (A) is true, otherwise the Mellin
coefficients ψ̂(m)(m ≥ 2) are not all defined. But, in this case, a direct calculation
shows that,

(I): If `2 + s 6= 0 and `1 + p 6= 0, then

ψ̂(m) =
m− (s+ p)

(`2 − p+m)(`1 − s+m)
(m ≥ 2).

(II):If `2 + s = 0 and `1 + p 6= 0, then

ψ̂(m) =
`1 + p

(`1 − s+m)(`2 + s− `1 − p)
(m ≥ 2).

(III):If `2 + s 6= 0 and `1 + p = 0, then

ψ̂(m) =
`2 + s

(`2 − p+m)(`2 + s− `1 − p)
(m ≥ 2).

(IV):If `2 + s = 0 = `1 + p = 0 then

ψ̂(m) =
1

m− (p+ s)
(m ≥ 2).

Thus, we see that

ψ̂(m) = 0 if and only if m = p+ s, `2 + s 6= 0 and `1 + p 6= 0 (m ≥ 2)

so that

ψ̂(2k + p− s+ 2) = 0 if and only if k = s− 1, `2 + s 6= 0 and `1 + p 6= 0.

This shows that condition (ii) of Theorem 6.4 is verified if and only if:
“s = 0” (in which case condition (ii) is trivially satisfied)
or
“s = 1 and `2 + s 6= 0 and `1 + p 6= 0” (in which case p − s + 2 = p + s so that
condition (ii) requires only that ψ̂(p+ s) = 0 which is true by (I)).

Thus we see that, if the product is a Toeplitz operator then, either

s = 0 and (A)

or
s = 1, (A), `2 + s 6= 0, and `1 + p 6= 0.

It is easy to see that these conditions imply that either (a) or (b) is true.
As for the sufficiency of conditions (a)and (b), if condition (a) is satisfied,

then the product is a Toeplitz operator by Theorem 6.4 while, if condition (b) is
satisfied then the product is also, clearly, a Toeplitz operator since, in this case,
at least one of the two factors is the identity operator. This completes the proof.

Clearly an equivalent result can be obtained for p < s by considering the
adjoint of the operator and using Remark 6.2.

Corollary 6.5 corresponds to the result of Ahern discussed in Section 2, since,
if s, p ≥ 0, Corollary 6.5 (with p = `1 and s = `2) implies that, for s 6= 0 and
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p 6= 0, TzpTzs is a Toeplitz operator if and only if s = 1 and p = 1, or 2. The
same reasoning can be used to prove Ahern’s theorem whenever f1 and g2 are
polynomials.

We conclude with a theorem which illustrates the difficulty in characterizing
more precisely those pairs of Toeplitz operators whose product is a Toeplitz opera-
tor. First, we prove a simple Lemma concerning Mellin transforms of polynomials.

Lemma 6.6. For any n and t in N there exists a polynomial q 6= 0 such that:

(i)
q(r) = rn + a1r

n+1 + · · ·+ atr
n+t;

and

(ii)
q̂(2k + 2) = 0 for 0 ≤ k ≤ t− 1.

Proof: By writing out the integrals defining the sequence (q̂(2k + 2))t−1
k=0 for the

polynomial of equation (i) we see that the existence of the polynomial q is equiv-
alent to the existence of a nonzero vector v = (a1, a2, · · · at) such that Av = c
where:

A =


1

n+3
1

n+4 . . . 1
n+t+2

1
n+5

1
n+6 . . . 1

n+t+5
...

...
. . .

...
1

n+2t+1
1

n+2t+2 . . . 1
n+3t


and

c = −


1

n+2
1

n+4
...
1

n+2t

 .

Thus, what is required is the invertibility of the matrix A = (ai,j)ti,j=1 with

ai,j =
1

n+ 2i+ j
.

But this matrix is a ’Cauchy matrix’ with determinant:

det(A) =
2

s(s−1)
2 (1!2! . . . (s− 2)!(s− 1)!)2∏

1≤i,j≤s(n+ 2i+ j)
6= 0

(see [11], p. 36) and so the polynomial exists.

Theorem 6.7. Let p and s be any two positive integers. Then:

(a) There exist φ1 and φ2 radial functions such that eipθφ1 and e−isθφ2 are T-
functions and

Teipθφ1Te−isθφ2
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IS a Toeplitz operator.

(b) There exist φ1 and φ2 radial functions such that eipθφ1 and e−isθφ2 are T-
functions and

Teipθφ1Te−isθφ2

is not a Toeplitz operator.

In the proof we shall refer to the ’minimal degree’ of a analytic polynomial
p(r) which is defined (in the obvious way) to be the largest n such that the quotient
p(r)
rn is an analytic polynomial.

Proof: To prove (a) we first assume that p ≥ s and give an example of functions
φ1 and φ2 such that Teipθφ1Te−isθφ2 is a Toeplitz operator. The case s > p then
follows by considering the adjoint operator Teisθφ1

Te−ipθφ2

Let q be the polynomial of Lemma 6.6 with n = p and t = s, let φ1(z) = |z|s,
and let φ2(z) = |z|sq(|z|). Then the function Λ(r) of Theorem 6.4 will be

Λ(r) = rp+s ∗M r2sq(r)

and, since r2sq(r) is a polynomial whose minimal degree is p + 2s, Λ(r) is also a
polynomial of minimal degree p+ s. Thus, Λ is differentiable and the function

ψ(t) = −t1−(p+s)Λ′(t)

is also a polynomial. This means that ei(p−s)θψ(z) is a T-function, and so part (i)
of Theorem 6.4 is true.

As for (ii), we calculate directly the Mellin coefficients in question for ψ. We
have:

ψ̂(2k + p− s+ 2) =
∫ 1

0

−r1−(p+s)Λ′(r)r2k+p−s+1dr

= −
∫ 1

0

Λ′(r)r2k−2s+2dr

= (2k − 2s+ 2)
∫ 1

0

Λ(r)r2k−2s+1dr

using integration by parts and the fact that the function µ(t) = t2k+2−2sΛ(t)
satisfies µ(1) = µ(0) = 0. (This is where we use the assumption that p ≥ s which
assures us that µ is a polynomial of of minimal degree 2k + 2 + p − s > 0.) So,
since

Λ(r) = rp+s ∗M r2sq(r) = r2s(rp−s ∗M q(r))
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we see that:

ψ̂(2k + p− s+ 2) =(2k − 2s+ 2)
∫ 1

0

(tp−s ∗M q)(r)r2k+1dr

=(2k − 2s+ 2) ̂(rp−s ∗M q)(2k + 2)

=(2k − 2s+ 2)r̂p−s(2k + 2)q̂(2k + 2) = 0

for k = 1, 2, ..., s− 1. Thus condition (ii) of Theorem 6.4 is also satisfied, and the
product is, in fact, a Toeplitz operator.This proves (a).

There are of course lots of examples of functions φ1,φ2 such that

Teipθφ1Te−isθφ2

is not a Toeplitz operator. If either p or s is greater than 1, one can take either
`2 = p − 2 or `1 = s − 2 and Corollary 6.5 will show that, if φ1(z) = |z|`1 and
φ2(z) = |z|`2 then the product Teipθφ1Te−isθφ2 is not a Toeplitz operator. The
cases p = s = 1 or p = 1 and s = 0 can be treated in the following way: We take
φ1(z) = 1

|z| and φ2(z) = 1
|z| . Then Theorem 6.4 shows that, if Teipθφ1Te−isθφ2 were

a Toeplitz operator, the symbol of this Toeplitz operator would be ei(p−s)θ 1
|z|2 . But

ei(p−s)θ 1
|z|2 is not a T-function, so the product is not equal to a Toeplitz operator.

Finally, suppose that p = s = 0. This is the most difficult case. The following
construction was proposed by A. Borichev. The idea is that, if h is a radial function
in L1(D, dA) then, for any γ ∈ (0, 1) the function 1∗M h, (considered as a function
on [0, 1] is bounded on [γ, 1] since for any t in [γ, 1] we have:

|(11 ∗M h)(t)| ≤
∫ 1

t

|h(s)|ds
s
≤ 1
γ2
‖h‖L1 . (8)

So, if we find a T-function f such that f ∗M f is not bounded on some interval
[γ, 1] then we will know that f ∗M f = 11 ∗M h has no solution in L1([0, 1], rdr)
which means that TfTf is not a Toeplitz operator.

So, let (tk)∞k=0 be any sequence in [ 12 , 1) such that tk −→ 1. Let (εk)∞k=0 be
the sequence:

εk = min
(
t

1
2
k − tk; (

1
2
)3k(1− t

1
2
k )6

)
.

and let g be the L1([0, 1], rdr) function defined by

g(s) =
∞∑
k=0

ε
−2
3
k χ[tk−εk,tk+εk](s).

Then the mean value theorem gives us a real number t′k ∈ (tk−ε, tk+ε) ⊆ (tk−ε, t
1
2
k )

such that

nĝ(n) = 2n
∞∑
k=0

ε
1
3
k (t′k)

n−1 ≤ 2n
∞∑
k=0

ε
1
3
k (t

1
2
k )n−1.
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Thus
∞∑
n=2

nĝ(n) ≤ 2
∞∑
k=0

(
1
2
)k <∞

and so (nĝ(n))∞n=2 is a bounded sequence. Considering f to be the integrable
radial function on D associated with g,this means that the (diagonal) operator Tf
is bounded so f is a T-function and Tf is a Toeplitz operator. But,

|(f ∗M f)(t2k)| =
∫ 1

t2k

g(s)g(
t2k
s

)
ds

s
≥

∫ tk+εk

tk

g(s)g(
t2k
s

)
ds

s
≥

ε
− 1

3
k

εk + t
(9)

and the last term tends to ∞ as k → ∞. Thus TfTf is not a Toeplitz operator.
This finishes the proof.

A rather different example of a radial T-function f such that TfTf is not
equal to a Toeplitz operator can be found in [4] .
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[5] S. Axler and Z̆. C̆uc̆ković, Commuting Toeplitz operators with harmonic symbols,
Integral Equation Operator Theory 14 (1991), 1-12.
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UFR de Mathématiques Informatiques
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