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On Toeplitz operators with quasihomogeneous symbols

By

ISSAM LOUHICHI and LOVA ZAKARIASY

Abstract. In this paper, we give some basic results concerning Toeplitz operators whose symbol
is of the form e’P9¢, where ¢ is a radial function, then use these results to characterize all Toeplitz
operators which commute with them.

1. Introduction. Let D denote the open unit disc in the complex plane and let dA(z) =
%rdrd@ be normalized Lebesgue area measure on D. The Bergman space Lﬁ is the subset
of L?(ID, dA), consisting of analytic functions on ID. Let P be the operator of orthogonal
projection from L?(D, dA) onto Lg. For a function ¢ € L*°(ID, dA), we define the Toeplitz
operator Ty, : Lﬁ — LZ with symbol ¢ by

Ty(f) = P(of).

It is well known that, if K, (w) = (1 — Zw) 2 is the Bergman reproducing kernel, then

Ty(N)(2) = /(P(w)f(w)Kz(w)dA(w), zeD.
D

In 1964, Brown and Halmos [3] showed that on the Hardy space, two bounded Toeplitz
operators T, and Ty, commute if and only if: (i) both ¢ and v are analytic, or (ii) both ¢
and v are analytic, or (iii) one is a linear function of the other. In [1] Axler and Cukovié
proved that if the two symbols are bounded harmonic functions, then the same result is also
true for Toeplitz operators on the Bergman space. Recently, with Rao [2], they proved that
if ¢ is a bounded analytic function and if there exists a bounded function v such that T,
and Ty commute on Lz, then ¥ must be analytic too. In [8] and [9] Vasilevski gave the
description of many (geometrically defined) classes of commuting Toeplitz operators.

The situation with a general symbol is rather more complicated. Let ¢, v € L' (DD, dA)
be radial functions, i.e. ¢(z) = ¢(|z]), z € D. It is well known and easy to see that two
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Toeplitz operators with radial symbols commute. We show here that if p and s are integers
such that ps < 0, then the Toeplitz operators with symbols e”? ¢ and ¢/*? 1 commute only
in certain trivial cases. The case ps = 0 is treated for ¢ = r™ in [4]. We note that the part
(b) of Theorem 3 in [4] is not correct as stated.

2. Some basic results about quasihomogeneous symbols. An operator that will arise
in our study of Toeplitz operators is the Mellin transform, defined for any function ¢ €
L'([0, 11; rdr), by the formula

1

9(z) = /go(r)rz_ldr,

0
which is a bounded holomorphic function in the half plane {z : Re z > 2}. It is known that
if there exists a sequence (ny)r>0 C N, such that
~ 1
¢(ng) =0 and Z— =00

n
=0 'k

then by the Muntz-Szasz theorem (see [7]), ¢ = 0.
A function f is said to be quasihomogeneous of degree k if and only if

fre® = o),

where ¢ is a radial function (see [6]). A direct calculation gives the following lemma which
we shall use often.

Lemma 1. Let p 2 0 an integer and ¢ a bounded radial function. Then, for all
n=0,1,2,...:

Timy(@") = 201+ p+ DPQ2n+ p+2) "7

0 fo<n<p-—1

. ny _ i
EW%@"Lm—p+na%—p+mfﬂ if n = p.

Next, we introduce the notion of radialization (see [10]). If f € L'(D, dA), we define
the “radialization” of f by

2
1 .
rad(f)(z) = Z/f(e”z)dt.
0

It is easy to see that a function f is radial if and only if rad(f) = f.
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Lemma 2. For a bounded function f and for all integers m, n = 0:

nom Tiz". 7™ ifn =
<Trad(f)Z ,6 ):{< fa2 ) g:z;é:;

Proof. Writing out the integrals, changing the order of integration and making a change
of variable, we have for all integers m, n = 0,

27
1 o
(Trad(p)2", 2™) Efff(E”z)z”z’"dA(z) dt
0D

2
1 .
- /el(m—n)tdt /f(w)w"i)mdA(w)
2w
0 D
| 2
- i(mfn)tdt Te7"
7 /6 (Trz", 2")
0

(T ") ifn=m
—]o ifn#£m. O

Proposition 3. A bounded function f is quasihomogeneous of degree p € Z if and only
if, for all integers n = 0, there exists A, € C such that

a0 ifn < max(—p, 0)
(1) Ty(z") = {)ann-‘rp ifn 2 max(—p,0).

Proof. Let f be a quasihomogeneous function of degree p, i.e., f = e’?¢p, where
¢ is a radial function. The necessity of condition (1) is a direct consequence of Lemma 1.

Conversely, suppose that equation (1) is true for any p € Z. Then, for any positive
integers n and m:

ifp 20
0 ifn#m
(Ter 2", 2" = (2", 2"FP) = Am ifn = m:
m+p+1
andif p <0
0 ifn#m
(Tmp g2 ") = (f7F ") = { Amep o .

m+1



Vol. 85, 2005 On Toeplitz operators with quasihomogeneous symbols 251

Thus, if we note

_[zrp ifpzo0
= z77Pf ifp<0’

then by Lemma 2, we have for all integers m, n 2 0,
<Trad(<p)zn7 Zm> = (T(pznv Zm>

hence, Trad(p) = Typ. Thus rad(¢) = ¢ and ¢ is a radial function. But this easily implies
that f is a quasihomogeneous function of degree p. [

Proposition 4. Letr f| and f> be two quasihomogeneous bounded functions of degrees
p and s respectively. If there exists a function h such that Ty Ty, = Ty, then h is a
quasihomogeneous function of degree p + s.

Proof. Let ¢1 and ¢; be the two radial functions, such that
fi=ePo and  fo = Pos.

By Lemma 1, if p and s are greater than or equal to 0, then forall n = 0, there exists A,, € C
such that

+phs
TeipewlTeixom(z") = AP,

When p = 0and s < 0, we have

0 ifn < —s
. . ny —
Te'P9¢1 Te”(’(pz(z ) = {)\n TP ifp > — .

So, if Ty, Ty, = T then by Proposition 3, & is a quasihomogeneous function of degree
p+s.

If p and s are both negative, or if p < 0 and s = 0, then by considering the adjoint
operator we obtain the same result. [

Proposition 4 helps us to identify the Toeplitz operators which are idempotents. The
following corollary is an immediate consequence.

Corollary 5. If f is a quasihomogeneous function of degree different from 0 and
ifT? = Ty, then f = 0.

3. Commuting Toeplitz operators. In this section, we will see that two Toeplitz opera-
tors with quasihomogeneous symbols such that the signs of their quasihomogeneous degrees
are opposite commute only in the trivial case, i.e., if one of them is the constant operator.
Then Remark 12 shows that a function in L>(ID, dA) whose polar decomposition has only
negative components cannot commute with a non trivial Toeplitz operator whose symbol is
of positive quasihomogeneous degree.
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Proposition 6. Let v be a bounded radial function and e¢'P’ ¢ a quasihomogeneous
bounded function of degree p > 0. If
T-‘/f Teip9¢ = Teip9¢ T]//
then, ¢ = 0 or ¥ is a constant.

Proof. If T,ipe ® and Ty commute, then for all n =0,

Qn+2p+2)¢Q2n+p+2)¥2n+2p +2)
= (Q2n+2)¢Q2n + p +2)¥(2n +2).
LetE ={n: 5(211 +p+2)=0}L1If Y % = 00, then ¢ = 0, as discussed in Section 2.

nek

Otherwise, Y % = 00, where E€ is the complement of E in N, and so we have
neE¢

Cn+2p+2)¥Cn+2p+2)=Cn+2)¥(2n+2), Vn € EC.
This implies that

(24 2p)¥ (z +2p) = 2P/ (2), Yz € {Rez > O}.
For any integer n¢ greater than 0, the last equation gives us

(no + 2kp)¥ (no + 2kp) = no¥ (no),  Vk € N.

If we denote by C the constant nofﬁ (ng), we obtain

o~

C
Y(no + 2kp) = ———
no

—C1 2kp), VkeN
T 2kp (no + 2kp) €

and so, ¥ isequal to Cll. [
Remark7. If p < 0 the same result is true by considering the adjoint of the operator.

Proposition 8. Let p = s be two integers greater than 0 and ¢ and  two bounded
radial functions. If

Teip(?(pTe—is()]// == Te—is()w Teip9¢
then,  =0ory = 0.
Proof. If T,ips and T,-iso, commute, then, for each n >0,

@ ¢@n+p+2)YQ@n+2p—s+2)=0, ifn <s—1;
b) ¢Cn+p+2)Yy2n+2p—5+2)=CrpCn+p -2 +2)Y2n —s+2)
ifn = s.

n—s+1
n+p+1°

where C,, =
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Now, equation (a) implies that for all ng < s — 1, there exists a sequence (ny)ren, Which
is defined by ngy; = ny + s or ng + p, such that

) ¢y +p+2)U Qg +2p —s+2) =0.

It is clear that

1
Zan—i-l:OO

keN

Let Ey = {k: ¢Qnx+ p+2) =0} and E» = {k : ¥ 2nx +2p — s + 2) = 0}. Since

3 1 3 1 3 1
§ —+ —7
keNan—i-l keE]an—l-l h 2n; + 1

cky

: 1 L4 —
we see that at least one of the series kZ zogr and Y. -7 diverges, and so ¢ = 0
ory =0. 0O <k kebp

This result is not true if both of the integers p and s are positive. There are lots of examples
of functions of positive quasihomogeneous degree which are the symbols of commuting
Toeplitz operators (see [4]). In the general case we have the following proposition.

Proposition 9. Let p, s be two integers greater than 0 and ¢ # 0 a bounded radial
function. If there exists a bounded radial function r not identically zero, such that

Teip€¢Tei59.¢. == Tei:(QI//Teip@(b
then, ¥ is unique up to a constant factor.

Proof. Suppose there exist two functions ¥r; # 0 and ¥r» # 0, such that
Tipo g Tyisoy,, = Tyisoy, T,ipog,
Teip0¢ Teisf),/,z - Teisewz Tei1)9¢.

This is equivalent to:

PCn+p+2s+2)Y12n+s+2)
=Chdpn+p+2)Y1n+2p+s+2)

P2n+p+2s+2Yn2n+s+2)
=Chdn+ p+2)02n+2p+s+2)

with C,, = Zif Ill . From these equalities, one obtains:

3) U+ 2 P YaCn +2p +2) = PR +2p +2) TP (n +2)

forallnintheset E = {n € N: ¢(2n +2s + p+2)¢(2n + p +2) # 0}.
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Clearly, we have ) % = oo because we supposed that ¢ # 0.
nek
From this and equation (3), we have

“) T TV +2p) = P+ 2p) P2 (2), Vz € {Rez > —s).
Now, since 1 is not identically zero, there exists an integer ng such that

T Yi(ng) # 0.
Let F = {k € N : 791 (no + 2kp) = 0}. If k; m = o0, then equation (4) implies

that ﬁ%(no + 2kp) =0 for all k € F. Thus, r¥¢¥», = 0 and so ¥, = 0. Otherwise, we
have ) m = o0 and so by equation (4) we obtain that

keFe¢
/S\
(r’y2 = A r’y1)(no + 2kp) =0, where A = /\L(n()).
r*yri(no)

Thus, in this case, Y» = Ay, O

Now, let R be the space of functions which are square integrable in [0, 1] with respect
to the measure rdr. By using the fact that the trigonometric polynomials are dense in
LZ(D, dA) and that for k1 # ko, eFOR s orthogonal to k29 R one see that:

L*(D, dA) = @eiken.

keZ
Thus, each function ¢ € LZ(ID), dA) can be written as (see [4]):
) Y(re®) =3 " "y (r),  where Y € R.
keZ

Moreover, if Y € L (D, dA) C L2(]D), dA) then for each r € [0, 1),

zeD

2
. o, dO
[y ()] = /w(re"’)e—’k"g < suplY(z)l, VkeZ
0

hence, the functions ¥ are bounded in the disk.

Lemma 10. Let ¢??¢ be a bounded function of quasihomogeneous degree p > 0
and let

Y(re®) =" e yp(r) € LoD, dA).

keZ

Then,

Ty T,y = TipeyTy <= Tyiroy, Toipey = ToipsyToirey,, Vk € Z.
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Proof. Since

Ty Teip9¢(zn) = Z T,ixo e Teipe(pzn
k+p+n=0

and

Ty Ty (") = Z Tyivo g Tyiro y, 7"
k+n=0

then, for each couple (m, n) € N2 .

6) (Ty T,imwg2", 2") = <Tei(m7n7p)01/fmin7p Teip9¢zn, ")

and

(7) <Teip0¢ Tw Zn , Zm > = <Teip0¢ Tei(mfnf]))ﬁ llfmfnfp Zn 5 Zm >
On the other hand,

(Tipo g Tyiko y, 7", ")

_{O ifk£m—-n—p

(Teip9¢Tei(m—n—p)(iwm_n_pZn, Zm> lfk =m-—-n—p

_]o iftk#m—-n—p
- (Teipe¢T¢z",zm) iftk=m—-n—p

and

(T ik Vi Teip9¢zn , 7™

_ o ifk#£#m—n—p
- <Tei(m—n—p)0wmin7p Teip0¢Zn, Zm> ifk=m-n— P
)0 ifk#m—-n—p

- (Ty Tipepz". ") iftk=m—n—p"~

This shows that, if T,ipe s Ty = Ty T,ips g, then for each (m, n) € N? and for all k € Z,
(Toirog Tyinoy, 2" ") = (Tyinoy, Tipn 2", 2",

and so Tipo g Tike y, = Toiroy, Toipoy, Vk € Z.
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Conversely, if for all k € Z, T,ipoyT,ikoy, = Tyitey, T,ip g, then in particular, for any
pairm, n € N, if k =m — n — p, we have:

<Teip6¢ Tei(mfnfp)meinipzn, Zm> = (Tei(mfnfp)gwm,n,p Teipé)d)zn, Zm).
Thus, by formulas (6) and (7),
<Teip9¢T1/;Zn, 7™M = (TwTeip%,Zn, ™)

for all m and n in N. Finally, T,ipe o Ty = Ty Tipoy. |

Theorem 11. Let ¢’ ¢ be a non-zero bounded function of quasihomogeneous degree
p>0.1If

Y(re®) =" e yr(r) € LD, dA)

keZ

is such that Ty Teip0¢ = Te,-p% Ty, then Y, = 0 for all k < 0.

Proof. By Lemma 10, Ty T,ipo gy = T,ipo Ty implies that T,ico,,, commutes with T,ipe g
for each k € Z. Thus, if k¥ < 0 then the Proposition 8 gives Y =0 forallk <0. [O

Remark 12. Let ¢ be as in Theorem 11 and ¢ a non constant bounded radial function
such that Ty Ty = TyTy. Then, Lemma 10 gives us Ty T oy, = Tyiroy, Ty for all k € Z.
Now, Proposition 6 implies that ¥ = O for all kK > 0, while Remark 7 shows that ¥ = 0
forall k < 0. So ¥ = .

This remark gives another proof of Theorem 6 in [4].
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