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Abstract. For a scalar inner function θ, the model space of Sz.-Nagy and

Foias is the subspace Kθ = H2⊖θH2 of the classical Hardy space H2 = H2(D)

over the unit disk D = {z ∈ C : |z| < 1} . For a bounded linear operator A on

the model space Kθ, its Berezin symbol is the function ÃKθ defined on D by

ÃKθ (λ) =
〈
Ak̂θ,λ, k̂θ,λ

〉
, where

∧

kθ,λ(z) =

(
1 − |λ|2

1 − |θ(λ)|2

)
1/2

1 − θ(λ)θ(z)

1 − λz

is the normalized reproducing kernel of the subspace Kθ. We shall consider

the following question: Let A : Kθ → Kθ is an operator for which there

exists a constant δ > 0 such that
∣∣∣ÃKθ (λ)

∣∣∣ ≥ δ > 0,for all λ ∈ D. Under which

additional conditions is A invertible ? In this article we investigate this question

in the case where θ is an interpolation Blaschke product. In particular, the

invertibility property of truncated Toeplitz operators is investigated. We also

give further related results on the Toeplitz operators on the Bergman space

L2
a(D).

1. Introduction

In this paper we continue the investigation of a generalized Douglas problem

started by the first author in [20]. We consider the question of invertibility of oper-

ators on the model space Kθ = H2⊖θH2 of Sz.-Nagy and Foias, where H2 = H2(D)

is the Hardy space of all analytic functions in the unit disk D = {z ∈ C : |z| < 1}
for which

‖f‖2
2

def
= sup

0≤r<1

∫

T

|f(rζ)|2 dm(ζ) < ∞,

where T = ∂D = {ζ : |ζ| = 1} is the unit circle, m is the normalized Lebesgue

measure on T, and θ is an inner function (i.e., θ ∈ H2 and |θ(ζ)| = 1 a.a. ζ ∈ T).

In particular, the invertibility of the truncated Toeplitz operators Tϕ,θ := PθTϕ|Kθ,

ϕ ∈ L∞ (T) , is investigated. For more information about the theory of truncated

Toeplitz operators, see for example [3] and [25, 26].
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Recall that H2 is a reproducing kernel Hilbert space, with the kernel

kλ(z) =
1

1 − λz
(λ, z ∈ D)

known as the Szegö kernel. Thus 〈f, kλ〉 = f(λ) for all f ∈ H2 and λ ∈ D. Therefore

the function

kθ,λ(z)
def
= Pθkλ(z) =

1 − θ(λ)θ(z)

1 − λz
(λ, z ∈ D)

where Pθ is the orthogonal projection from H2 onto Kθ, is the reproducing kernel

for the space Kθ. For any bounded linear operator A : Kθ → Kθ, the Berezin

symbol of A is the function ÃKθ (λ) on D defined by the formula

ÃKθ (λ)
def
=
〈
Ak̂θ,λ, k̂θ,λ

〉
, λ ∈ D,

where

k̂θ,λ(z)
def
=

kθ,λ(z)

‖kθ,λ(z)‖ =

(
1 − |λ|2

1 − |θ(λ)|2

)1/2
1 − θ(λ)θ(z)

1 − λz

denotes the normalized reproducing kernel of Kθ. Let B(Kθ) denote the algebra of

all bounded linear operators on the space Kθ. In this article we shall investigate

the following question: Let A ∈ B(Kθ) satisfying
∣∣∣ÃKθ (λ)

∣∣∣ ≥ δ > 0 (∀λ ∈ D)

for some δ > 0. Under which conditions is A invertible in Kθ?

This question is closely related to a problem of Douglas [9] and works of Tolokon-

nikov, Nikolski, Wolff (see [24]) and the first author’s paper [20]. Here, using the

techniques of reproducing kernels and Berezin symbols, and an interpolation theo-

rem of Shvedenko [27], we obtain sufficient conditions ensuring the invertibility of

a linear bounded operators on the model space KB with a suitable interpolation

Blaschke product B (see Theorem 1 below). In particular, we investigate in terms of

Berezin symbol the invertibility of some truncated Toeplitz operators (see Theorem

2 below). We also characterize in terms of Berezin symbols the normal operators

on the Hardy space H2, and study the compactness property of some products of

Toeplitz operators on the Hardy and Bergman spaces.

2. Notations and Preliminaries

2.1. Berezin symbol. The Berezin symbol of a linear bounded operator T acting

on a functional Hilbert space H = H(D) over the unit disk D, with a reproducing

kernel kλ (z) is the complex-valued function

T̃ (λ)
def
=
〈
T k̂λ, k̂λ

〉
, λ ∈ D,
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where k̂λ := kλ/ ‖kλ‖ denotes the normalized reproducing kernel of H. This notion

has been introduced for the first time by Berezin [5, 6]. It is well known (see

[11], [32]) that for a Toeplitz operator Tϕ, with symbol ϕ ∈ L∞(T), defined on

H2 by Tϕf = P+ϕf, where P+ is the orthogonal projection from L2(T) onto H2,

known as the Riesz projection, its Berezin symbol T̃ϕ is the harmonic extension ϕ̃

of ϕ ∈ L∞(T) into D.

It is natural to define the following two numerical characteristics for the operator

T ∈ B(H) :

Ber(T )
def
= Range(T̃ ) is the so-called Berezin set

and

ber(T )
def
= sup{|λ| : λ ∈ Ber(T )} is the so-called Berezin number.

Obviously, Ber(T ) ⊂ W (T ), where W (T ) is the numerical range of T . Also it is

easy to see that ber(T ) ≤ w(T ), where w(T ) denotes the numerical radius of T .

In the case where T = Tϕ, where ϕ is bounded, clearly Ber(Tϕ) = {ϕ̃(z) : z ∈ D}
and ber(Tϕ) = ‖ϕ‖∞ . In particular, Ber(Tz) = D and ber(Tz) = 1.

Note that on the most familiar functional Hilbert spaces, including the Hardy

space and the Bergman space, the Berezin symbol uniquely determines the operator.

In fact, if T̃1(λ) = T̃2(λ) for all λ, then T1 = T2. See for instance, Yang [31]; and

for more general cases, see Fricain [12, Theorem 1.1.1]. In other words the Berezin

symbol of a bounded operator contains a lot of information about the operator. It is

one of the most useful tools in the study of Toeplitz operators. The Berezin notion is

motivated by its connections with quantum physics and noncommutative geometry.

For more details and references see [5, 6]. Other properties and applications of

Berezin symbols and reproducing kernels can be found in [2, 4, 7, 8, 13, 14, 15, 24].

2.2. Carleson condition. We now recall some well-known facts (see, for instance

[24]) concerning reproducing kernels in H2(D). Let Λ = {λn}n≥1 be a sequence of

distinct points in D. We denote by

B = BΛ = Πn≥1bλn
,

where

bλn
(z) =

|λn|
λn

λn − z

1 − λnz
,

the corresponding Blaschke product. Then we have :

(i) If {λn}n≥1 satisfies the Blaschke condition, i.e.,
∑∞

n=1

(
1 − |λn|2

)
< ∞, then

{kλn
}n≥1 is a complete system in the model space KB.
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(ii) The family K def
=
{

k̂λn
: n ≥ 1

}
is a Riesz basis of KB if and only if {λn}n≥1

satisfies the Carleson condition, namely

inf
n≥1

|Bn(λn)| > 0,

where Bn
def
= B

bλn
. In this case, we will write Λ ∈ (C).

2.3. Riesz constant. We recall (see [24]) that if H is a complex Hilbert space,

and {xn}n≥1 ⊂ H, then the set X
def
= {xn : n ≥ 1} is called a Riesz basis of H

if there exists an isomorphism U mapping X onto an orthonormal basis of H . In

this case the operator U will be called the orthogonalizer of X. It is well known

(see [24]) that X is a Riesz basis in its closed linear span if there are two positive

constants C1, C2 such that

(1) C1


∑

n≥1

|an|2



1/2

≤

∥∥∥∥∥∥

∑

n≥1

anxn

∥∥∥∥∥∥
≤ C2


∑

n≥1

|an|2



1/2

for all finite complex sequences {an}n≥1 . Note that if U is an orthogonalizer of the

set X , then C1 =‖ U ‖−1 and C2 =‖ U−1 ‖ are the best constants possible in the

inequality (1). The product r(X)
def
= ‖U‖

∥∥U−1
∥∥ characterizes the deviation of the

basis X from an orthonormal one. r(X) will be referred to as the Riesz constant

of the family X. Clearly, r(X) ≥ 1. For more detail, see [17, 24].

2.4. Shvedenko constant. Let {Lk}∞k=1 be a sequence of linear continuous func-

tionals on the Hardy space Hp, 1 < p < ∞, (see Hoffman [18]). It is natural to try

to describe the space of sequences

Hp{Lk}
def
=
{
{Lk(f)}∞k=1 : f ∈ Hp

}
.

In particular, it is not without interest to try to find conditions under which the

inclusion S ⊂ Hp {Lk} is satisfied for a given space S of sequences of complex

numbers. For some class of Banach spaces S of sequences, Shvedenko [27] gave a

general criterion for such inclusion.

For 1 < p < ∞, it is well known that the functionals Lk have the following

representation

Lk (f) =
1

2π

∫ π

−π

f
(
eit
)
lk (eit)dt, f ∈ Hp,

where the functions lk (z) ∈ Hq
(

1
p + 1

q = 1
)

depend only on Lk. Notice that for

the evaluation functionals

Lk (f) = f (λk) , k = 1, 2, ...,
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where {λk}∞k=1 is a sequence of different points of D, it is easy to see that lk (z) =
1

1−λkz
, which is the Szegö kernel.

Let S be a Banach space of sequences satisfying the following conditions

(S1) S be a BK-space [28], i.e., the map w → wk, w = {wk}∞k=1 ∈ S, is contin-

uous. This is equivalent to the inequality |wk| ≤ ck ‖w‖S , where ‖w‖S is the norm

in S and ck > 0, k = 1, 2, .... In particular, this condition implies the inclusion

E∞ ⊂ S∗, where E∞ is the space of sequences containing only a finite number of

nonzero terms.

(S2) S is complexly conjugated, i.e., both of w = {wk}∞k=1 and w = {wk}∞k=1

belong to S and ‖w‖S = ‖w‖S .

It is not difficult to verify that the classical weighted spaces lp(wn), p ≥ 1, satisfy

conditions (S1) and (S2). The following key lemma is due to Shvedenko [27].

Lemma 1. For the Banach spaces S of sequences satisfying conditions (S1) and

(S2), the inclusion S ⊂ Hp {Lk} , 1 < p < ∞, is fulfilled if and only if

inf
<ak>∈E∞

‖∑k akkλk
(z)‖q

‖< ak >‖S∗

> 0, where
1

p
+

1

q
= 1.

In what follows we will call the number

ηΛ
def
= inf

<ak>∈E∞

‖
∑

k akkλk
(z)‖q

‖< ak >‖S∗

the Shvedenko constant corresponding to the sequence Λ
def
= {λk}∞k=1 .

It would be useful to note that Lemma 1 is simply the dual form of the con-

dition that the embedding operator J : (ak) → (ak) form a sequence space S

to the quotient space Hp/BHp is bounded. This duality is well known and was

systematically used in the interpolation theory, starting from seminal papers by

Carleson, Shapiro-Shields, and Vinogradov-Havin on the 1960ies and 1970ies (see,

for example, [24]). What is called the ”Shvedenko constant” ηΛ is nothing but

1/C, where C = ‖J∗ : Kq
B → S∗‖ . It is worth mentioning that the use of C as

an interpolation constant is not allowed for p 6= 2 since the latter one is equal to

‖J‖ =
∥∥J∗ : (Hp/BHp)

∗ → S∗
∥∥ , whereas (Hp/BHp)

∗
is isomorphic but not iso-

metric to Kq
B =

(
Lp/BHp + Hp

−

)∗
(excepting p = 2). We refer to the textbooks

by Duren [10], Garnett [16] or Koosis [22] for details.

3. Invertibility of operators on the model space KB

3.1. General case. The main result of this subsection is the following theorem.
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Theorem 1. Suppose that Λ = {λn}n≥1 is a Carleson sequence of distinct points of

D, B is the interpolation Blaschke product associated to {λn}n≥1 , K =
{

k̂λn
: n ≥ 1

}

is a corresponding Riesz basis of the space KB, and r(K) is the corresponding

Riesz constant associated the family K. Let A ∈ B (KB) be any operator such that∣∣∣ÃKB (λn)
∣∣∣ ≥ δ for all n ≥ 1 and some δ > 0. Let us denote

τA :=

(
∞∑

n=1

(
1 − |λn|2

) ∥∥∥
(
A − ÃKB (λn) I

)
k̂λn

∥∥∥
2
)1/2

and

τ∗
A :=

(
∞∑

n=1

(
1 − |λn|2

)∥∥∥
(
A − ÃKB (λn) I

)∗
k̂λn

∥∥∥
2
)1/2

.

If

δ >
r (K)

ηΛ
max {τA, τ∗

A} ,

then A is an invertible operator in KB. Moreover

∥∥A−1
∥∥ ≤ r (K) ηΛ

δηΛ − r (K) τA
,

where ηΛ is the Shvedenko constant corresponding to the sequence Λ = {λn}n≥1 .

Proof. Since
{∥∥∥Ak̂λn

− ÃKB (λn) k̂λn

∥∥∥
}

n≥1
and

{∥∥∥∥A∗k̂λn
− Ã∗

KB

(λn)k̂λn

∥∥∥∥
}

n≥1

are bounded sequences and Λ is a Blaschke sequence, the numbers τA and τ∗
A are

finite. Also, the family K =
{
k̂λn

: n ≥ 1
}

is a Riesz basis in KB, because Λ ∈ (C).

If U is an orthogonalizer of K, then

(2) ‖U‖−1


∑

n≥1

|an|2



1/2

≤

∥∥∥∥∥∥

∑

n≥1

ank̂λn

∥∥∥∥∥∥
≤
∥∥U−1

∥∥

∑

n≥1

|an|2



1/2

for any finite complex sequence {an}n≥1 . Hence by considering (2) and the condi-

tion
∣∣∣ÃKB (λn)

∣∣∣ ≥ δ > 0, n ≥ 1, we have that for any N > 0

∥∥∥∥∥

N∑

n=1

anÃKB (λn) k̂λn

∥∥∥∥∥ ≥ ‖U‖−1

(
N∑

n=1

∣∣∣anÃKB (λn)
∣∣∣
2
)1/2

≥ δ ‖U‖−1

(
N∑

n=1

|an|2
)1/2

≥ δ

‖U‖ ‖U−1‖

∥∥∥∥∥

N∑

n=1

ank̂λn

∥∥∥∥∥ ,

or

(3)

∥∥∥∥∥

N∑

n=1

anÃKB (λn) k̂λn

∥∥∥∥∥ ≥ δ

r (K)

∥∥∥∥∥

N∑

n=1

ank̂λn

∥∥∥∥∥ .
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Now
∥∥∥∥∥A

N∑

n=1

ank̂λn

∥∥∥∥∥ =

∥∥∥∥∥

N∑

n=1

anAk̂λn

∥∥∥∥∥

=

∥∥∥∥∥

N∑

n=1

an

(
Ak̂λn

− ÃKB (λn) k̂λn
+ ÃKB (λn) k̂λn

)∥∥∥∥∥

≥
∥∥∥∥∥

N∑

n=1

anÃKB (λn) k̂λn

∥∥∥∥∥−
N∑

n=1

|an|
∥∥∥Ak̂λn

− ÃKB (λn) k̂λn

∥∥∥ .

It follows from inequality (3) that

∥∥∥∥∥A
N∑

n=1

ank̂λn

∥∥∥∥∥ ≥ δ

r (K)

∥∥∥∥∥

N∑

n=1

ank̂λn

∥∥∥∥∥

−
N∑

n=1

|an|(
1 − |λn|2

)1/2

(
1 − |λn|2

)1/2 ∥∥∥Ak̂λn
− ÃKB (λn) k̂λn

∥∥∥ .

Using Holder inequality, we obtain

∥∥∥∥∥A
N∑

n=1

ank̂λn

∥∥∥∥∥ ≥ δ

r (K)

∥∥∥∥∥

N∑

n=1

ank̂λn

∥∥∥∥∥

−




N∑

n=1

|an|2(
1 − |λn|2

)




1/2(
N∑

n=1

(
1 − |λn|2

) ∥∥∥Ak̂λn
− ÃKB (λn) k̂λn

∥∥∥
2
)1/2

≥ δ

r (K)

∥∥∥∥∥

N∑

n=1

ank̂λn

∥∥∥∥∥−




N∑

n=1

|an|2
(
1 − |λn|2

)

(
1 − |λn|2

)2




1/2

τA.

Writing that




N∑

n=1

|an|2
(
1 − |λn|2

)

(
1 − |λn|2

)2




1/2

=

∥∥∥∥
{
an(1 − |λn|2)1/2

}N

n=1

∥∥∥∥
l2
(
(1−|λn|2)−1)

) ,

we have
∥∥∥∥∥A

N∑

n=1

ank̂λn

∥∥∥∥∥ ≥ δ

r (K)

∥∥∥∥∥

N∑

n=1

ank̂λn

∥∥∥∥∥−
∥∥∥∥
{
an(1 − |λn|2)1/2

}N

n=1

∥∥∥∥
l2
(
(1−|λn|2)−1)

) ηΛη−1
Λ τA,

where ηΛ is the Shvedenko constant for Λ. Because {λn}n≥1 is assumed to be a

Carleson sequence, it is well-known in this case that

H2 {Ln} = l2
(
1 − |λn|2

)
.
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Thus, by considering the obvious inclusion l2
((

1 − |λn|2
)−1

)
⊂ l2

(
1 − |λn|2

)
,

we have that l2
((

1 − |λn|2
)−1

)
⊂ H2 {Ln} . Therefore, by setting p = 2 and

S = l2
((

1 − |λn|2
)−1

)
in Lemma 1, we obtain

∥∥∥∥∥A
N∑

n=1

ank̂λn

∥∥∥∥∥ ≥ δ

r (K)

∥∥∥∥∥

N∑

n=1

ank̂λn

∥∥∥∥∥−
∥∥∥∥∥

N∑

n=1

an

(
1 − |λn|2

)1/2

kλn

∥∥∥∥∥ η−1
Λ τA

=
δ

r (K)

∥∥∥∥∥

N∑

n=1

ank̂λn

∥∥∥∥∥− η−1
Λ τA

∥∥∥∥∥

N∑

n=1

ank̂λn

∥∥∥∥∥ .

Finally, we arrive to the following inequality

(4)

∥∥∥∥∥A
N∑

n=1

ank̂λn

∥∥∥∥∥ ≥
(

δ

r (K)
− τA

ηΛ

)∥∥∥∥∥

N∑

n=1

ank̂λn

∥∥∥∥∥

for any complex numbers an, n = 1, N, and all N > 0. Since the Carleson condition

implies the Blaschke condition, Span (K) = KB, i.e., K is a complete system in KB.

Therefore, we deduce from (4) that

(5) ‖Af‖ ≥
(

δ

r (K)
− τA

ηΛ

)
‖f‖ ,

for any f ∈ KB.

By similar arguments, we prove that
∥∥∥∥∥A

∗
N∑

n=1

ank̂λn

∥∥∥∥∥ ≥
(

δ

r (K)
− τ∗

A

ηΛ

)∥∥∥∥∥

N∑

n=1

ank̂λn

∥∥∥∥∥ ,

which yields that

(6) ‖A∗f‖ ≥
(

δ

r (K)
− τ∗

A

ηΛ

)
‖f‖

for any f ∈ KB. Now, combining hypothesis (H) with both inequalities (5) and

(6), implies that A is invertible in KB and that

∥∥A−1
∥∥ ≤ r (K) ηΛ

ηΛδ − r (K) τA
,

which completes the proof. �

3.2. Truncated Toeplitz operators. Consider the truncated Toeplitz operator

Tϕ acting on the subspace Kθ in the following way

Tϕ,θf := PθTϕf, f ∈ Kθ,

where Tθ is the Toeplitz operator in the Hardy space H2 defined by Tϕf = P+ϕf,

ϕ ∈ L∞ (T) and θ is an inner function.
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In this subsection we will study the invertibility property of the truncated Toeplitz

operator Tϕ,θ, which is closely related with Problem 2 posed by the first author in

[20]. As an application of Theorem 1, we prove here the following theorem which

partially solves Problem 2 in [20]. As a corollary of this result, we obtain that the

so-called ”Tolokonnikov-Nikolski conditions”

1 ≥ |ϕ̃ (z)| ≥ δ >
45

46
(z ∈ D)

and

1 ≥ |ϕ̃ (z)| ≥ δ >
23

24
(z ∈ D)

for the invertibility of Toeplitz operators on H2 provide also invertibility of some

truncated Toeplitz operators (see, Corollary 2 below).

The main result of this subsection is the following theorem.

Theorem 2. Let Λ = {λn}n≥1 , ηΛ, B and r (K) be as in Theorem 1. Let ϕ ∈
L∞ (T) be a function satisfying ‖ϕ‖L∞ ≤ 1, for which there exists a constant δ > 0

such that

(7) |ϕ̃ (λn)| ≥ δ >

√
r (K)2 w2

Λ

η2
Λ + r (K)

2
w2

Λ

, for all n ≥ 1,

where wΛ :=
(∑∞

n=1

(
1 − |λn|2

))1/2

. Then the truncated Toeplitz operator Tϕ,B :=

PBTϕ|KB is invertible and

∥∥∥(Tϕ,B)
−1
∥∥∥ ≤

[
δ

r (K)
− wΛ

ηΛ

(
1 − δ2

)1/2
]−1

.

Proof. Considering that

k̂B,λ (z) =

(
1 − |z|2

1 − |B (λ)|2

)1/2
1 − B (λ)B (z)

1 − λz

is the normalized reproducing kernel for the subspace KB, it is easy to verify that

T̃ KB

ϕ,B (λn) = ϕ̃ (λn)
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for all n ≥ 1, where ϕ̃ = T̃ϕ is the harmonic extension of ϕ ∈ L∞ (T) into D.

Moreover, using the fact that PB k̂λn
= k̂λn

, we have

∥∥∥Tϕ,Bk̂λn
− ϕ̃ (λn) k̂λn

∥∥∥
2

=
〈
PBTϕk̂λn

, PBTϕk̂λn

〉
− ϕ̃ (λn)

〈
PBTϕk̂λn

, k̂λn

〉

−ϕ̃ (λn)
〈
k̂λn

, PBTϕk̂λn

〉
+ |ϕ̃ (λn)|2

= ˜TϕPBTϕ (λn) − ϕ̃ (λn)
〈
Tϕk̂λn

, k̂λn

〉

−ϕ̃ (λn)
〈
k̂λn

, Tϕk̂λn

〉
+ |ϕ̃ (λn)|2

= ˜TϕPBTϕ (λn) − |ϕ̃ (λn)|2

≤ ber (TϕPBTϕ) − δ2

≤ ‖TϕPBTϕ‖ − δ2

≤ ‖ϕ‖2
L∞ − δ2

≤ 1 − δ2.

Thus

(8)
∥∥∥Tϕ,B k̂λn

− T̃ KB

ϕ,B (λn) k̂λn

∥∥∥
2

≤ 1 − δ2, n ≥ 1.

Inequality (8) implies that

TTϕ,B
≤ wΛ

(
1 − δ2

)1/2
.

Now, considering that T ∗
ϕ,B = PBT ∗

ϕ|KB = PBTϕ|KB and T̃ϕ = T̃ϕ = ϕ̃, and using

the same argument as in the proof of Theorem 1, one can show that

‖Tϕ,Bf‖ ≥
[

δ

r (K)
− wΛ

ηΛ

(
1 − δ2

)1/2
]
‖f‖

and

∥∥T ∗
ϕ,Bf

∥∥ ≥
[

δ

r (K)
− wΛ

ηΛ

(
1 − δ2

)1/2
]−1

‖f‖

for every f ∈ KB. Therefore, Theorem 1 implies that Tϕ,B is invertible, and

∥∥∥T −1
ϕ,B

∥∥∥ ≤
[

δ

r (K)
− wΛ

ηΛ

(
1 − δ2

)1/2
]

,

which completes the proof, because the condition δ > r (K) wΛ

√
1

η2

Λ
+r(K)2w2

Λ

is

equivalent to the inequality

δ

r (K)
− wΛ

ηΛ

(
1 − δ2

)1/2
> 0.

�
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Remark 1. One of the important special classes of truncated Toeplitz operators is

the class of model operators ϕ (Mθ) of Sz.-Naggy and Foias defined for each ϕ ∈ H∞

by the formula

ϕ (Mθ) f = Pθϕf, f ∈ Kθ,

where θ is an inner function and Pθ = I − TθTθ is the orthogonal projection from

H2 onto Kθ = H2 ⊖ θH2. For such operators, the invertibility problem is solved

by means of the celebrated Carleson Corona Theorem [24] that the model operator

ϕ (Mθ) is invertible if and only if there exists a constant δ > 0 such that

(9) |ϕ (z)| + |θ (z)| ≥ δ

for all z ∈ D.

When θ is an interpolation Blaschke product B, i.e., Blaschke product with zeros

Λ = {λn}n≥1 ∈ (C) , it is also known (see, for instance, Hoffman [18, Chapter 10])

that condition (9) is equivalent to

(10) |ϕ (λn)| ≥ δ (n ≥ 1) .

It is relevant to note that under last condition (10) , for the invertibility of oper-

ator ϕ (MB) there is an elementary proof which does not depend neither corona nor

interpolation theorems. Indeed, if one supposes that the sequences
{

k̂λn

}
n≥1

is a

Riesz basis (as in Theorem 2), then it is obvious that an operator ϕ (MB) , ϕ ∈ H∞

(for which ϕ (MB)
∗
k̂λn

= Tϕk̂λn
= ϕ (λn)k̂λn

for every n ≥ 1), is invertible if

and only if δ := infn≥1 |ϕ (λn)| > 0, and if this is the case, we have by means of

inequality (2) that
∥∥∥ϕ (Mθ)

−1
∥∥∥ ≤ r(K)

δ .

Remark 2. If Λ = {λn} ∈ (C) is a sequence such that

η2
Λ + r (K)

2
w2

Λ = (r (K)wΛ + 1)
2

(i.e., if ηΛ =
√

1 + 2r (K)wΛ), then condition (7) in Theorem 2, becomes

(11) 1 ≥ |ϕ̃ (λn)| ≥ δ >
r (K)wΛ

r (K) wΛ + 1
.

In particular, if r (K)wΛ = 45, then ηΛ =
√

91. Therefore condition (11) becomes

1 ≥ |ϕ̃ (λn)| ≥ δ >
45

46
, which is a ”Tolokonnikov type” condition [30].

If r (K)wΛ = 23, we obtain that

1 ≥ |ϕ̃ (λn)| ≥ δ >
23

24
, which is a ”Nikolski type” condition [24].

(More details about ”Tolokonnikov-Nikolski type” invertibility conditions for the

Toeplitz operators on the Hardy space H2 can be found in [24].)
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This remark shows that the following corollary of Theorem 2 is true.

Corollary 1. We have:

(a) If δ > 45
46 , then Tϕ,B is invertible and

∥∥∥T −1
ϕ,B

∥∥∥ ≤
√

91r (K)√
91δ − 45

√
1 − δ2

.

(b) If δ > 23
24 , then Tϕ,B is invertible and

∥∥∥T −1
ϕ,B

∥∥∥ ≤
√

47r (K)√
47δ − 23

√
1 − δ2

.

4. Further Results

4.1. Normal and Toeplitz operators on H2. We shall characterize normal op-

erators on the Hardy space H2 in terms of Berezin symbols. Also, we shall discuss

compactness properties of products of some Toeplitz operators acting on Hardy and

Bergman spaces.

Theorem 3. Let A be a bounded operator on H2, and let Ã (λ) =
〈
Ak̂λ (z) , k̂λ (z)

〉

be its Berezin symbol, where k̂λ (z) =

√
1−|λ|2

1−λz
is a normalized reproducing kernel

of H2. Then

(i) A is a normal operator on H2 if and only if
∥∥∥
(
A − Ã (λ) I

)
k̂λ

∥∥∥ =
∥∥∥
(
A − Ã (λ) I

)∗
k̂λ

∥∥∥ for all λ ∈ D.

(ii) In particular, if A = Tϕ, where ϕ ∈ L∞, then the product T ∗
ϕTϕ

(
or TϕT ∗

ϕ

)

is compact if and only if ϕ = 0.

Proof. An easy computation shows that

(12)
∥∥∥Ak̂λ − Ã (λ) k̂λ

∥∥∥
2

= Ã∗A (λ) −
∣∣∣Ã (λ)

∣∣∣
2

and

(13)
∥∥∥A∗k̂λ − Ã∗ (λ) k̂λ

∥∥∥
2

= ÃA∗ (λ) −
∣∣∣Ã (λ)

∣∣∣
2

.

Since the Berezin symbol uniquely determines the operator A, it follows from for-

mulas (12), (13) that A is a normal operator on H2 if and only if
∥∥∥
(
A − Ã (λ) I

)
k̂λ

∥∥∥ =
∥∥∥
(
A − Ã (λ) I

)∗
k̂λ

∥∥∥ (∀λ ∈ D) ,

which proves (i).

On the other hand, it is known that (see Englís [11] and Karaev [21])
∥∥∥Tϕk̂λ − ϕ̃ (λ) k̂λ

∥∥∥→ 0 as λ → T radially.
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In fact, the functions k̂λ (λ ∈ D) are ”loosely speaking” asymptotic eigenfunctions

for the Toeplitz operator Tϕ, with asymptotic eigenvalues ϕ̃ (λ). Since T̃ϕ (λ) =

ϕ̃ (λ) is the harmonic extension of ϕ onto unit disk D, it follows from equalities (12)

and (13) that

(14)
∥∥∥Tϕk̂λ − ϕ̃ (λ) k̂λ

∥∥∥
2

= T̃ ∗
ϕTϕ (λ) − |ϕ̃ (λ)|2

and

(15)
∥∥∥T ∗

ϕk̂λ − ϕ̃ (λ) k̂λ

∥∥∥
2

= T̃ϕT ∗
ϕ (λ) − |ϕ̃ (λ)|2 .

Now, using the fact that the Berezin symbol of any compact operator on H2 vanishes

at the boundary T, and considering the above mentioned facts, we deduce from (14)

and (15) that if T ∗
ϕTϕ (or TϕT ∗

ϕ) is a compact operator on H2 then

lim
r→1−

∣∣ϕ̃
(
reit
)∣∣2 =

∣∣ϕ
(
eit
)∣∣2 = 0

for almost all t ∈ [0, 2π), and hence ϕ = 0. This proves (ii), and the theorem is then

proved. �

4.2. The Bergman space Toeplitz operators. In the Bergman space, as usual,

things are much more complicated. Assertion (ii) of Theorem 3 is not true for the

Bergman space Toeplitz operators. In Example 1 below , we were able to find a

nonzero radial symbol f such that the product T 2
f is equal to a compact Toeplitz

operator Tg.

Let dA = rdr dθ
π , where (r, θ) are the polar coordinates in the complex plane

C, denote the normalized Lebesgue area measure on the unit disk D, so that the

measure of D equals 1. The Bergman space L2
a(D) is the Hilbert space consisting

of the analytic functions on D that are also square integrable with respect to the

measure dA. We denote the inner product in L2(D, dA) by 〈, 〉. It is well known

that L2
a(D) is a closed subspace of the Hilbert space L2(D, dA), and has the set

{
√

n + 1zn | n ≥ 0} as an orthonormal basis. We let P be the orthogonal projection

from L2(D, dA) onto L2
a(D). For a bounded function f on D, the Toeplitz operator

Tf with symbol f is defined by

Tf (h) = P (fh) for h ∈ L2
a(D).

It is well known that if the symbol f is a radial function, i.e. f(z) = f(|z|),
then the matrix of the Toeplitz operator Tf , with respect to the orthonormal

basis {
√

n + 1zn | n ≥ 0} of L2
a(D), is a diagonal matrix with the sequence
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{
2(n + 1)

∫ 1

0

f(r)r2n+1 dr

}

n≥0

as elements of the main diagonal. In fact

〈Tf(
√

n + 1zn),
√

m + 1zm〉 = 〈P (f
√

n + 1zn),
√

m + 1zm〉

=
√

n + 1
√

m + 1〈fzn, zm〉

=
√

n + 1
√

m + 1

∫ 1

0

∫ 2π

0

f(r)rn+m+1ei(n−m)θ dθ

2π
dr

=





2(n + 1)

∫ 1

0

f(r)r2n+1 dr if n = m

0 if n 6= m

Moreover, it has been shown in [23, Proposition 4.3 p.530], that the product T 2
f is

equal to a Toeplitz operator Tg if and only if there exists a radial symbol g solution

to the following Mellin convolution equation

(16)

∫ 1

r

g(t)
dt

t
=

∫ 1

r

f
(r

t

)
f(t)

dt

t
.

Now we are ready to present our counterexample to condition (ii) of Theorem 3 in

the case of Bergman space Toeplitz operators.

Example 1. Let f (r) = r ln r. By solving equation (16) for g, we obtain

g (r) =
r

2

(
1

3
ln r − 1

)
(ln r)

2
.

Hence T 2
f = Tg. Obviously f and g are not bounded but they are the so-called ”nearly

bounded functions” [1, p.204]. Thus the Toeplitz operators associated to these two

symbols are bounded. Since g is a radial symbol, Tg is a diagonal operator with

the sequence

{
2 (n + 1)

∫ 1

0

g (r) r2n+1dr

}

n≥0

as elements of the main diagonal. In

this case, it is well known that Tg will be compact if and only if

lim
n→+∞

2 (n + 1)

∣∣∣∣
∫ 1

0

g (r) r2n+1dr

∣∣∣∣ = 0.

Now since Tg = T 2
f , a direct calculation shows that

2 (n + 1)

∫ 1

0

g (r) r2n+1dr =

(
2 (n + 1)

∫ 1

0

f (r) r2n+1dr

)2

=
4 (n + 1)

2

(2n + 3)
4 , for all n ≥ 0.

It is clear that the fraction above will tend to zero as n goes to infinity. Hence Tg,

and therefore T 2
f is compact. But f is not the zero function.
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