INVERTIBILITY OF OPERATORS ON MODEL SPACES AND TOEPLITZ OPERATORS

MÜBARIZ T. KARAEV AND ISSAM LOUHICHI

Abstract. For a scalar inner function \(\theta \), the model space of Sz.-Nagy and Foias is the subspace \(K_\theta = H^2 \ominus \theta H^2 \) of the classical Hardy space \(H^2 = H^2(\mathbb{D}) \) over the unit disc \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \). For a bounded linear operator \(A \) on the model space \(K_\theta \), its Berezin symbol is the function \(\hat{A}_{K_\theta} \) on defined on \(\mathbb{D} \) by \(\hat{A}_{K_\theta}(\lambda) = \langle Ak_{\theta,\lambda}, k_{\theta,\lambda} \rangle \), where \(k_{\theta,\lambda}(z) = \frac{1}{1 - \lambda z} \) is the normalized reproducing kernel of the subspace \(K_\theta \). We shall consider the following question: Let \(A : K_\theta \to K_\theta \) be an operator for which there exist a constant \(\delta > 0 \) such that \(|\hat{A}_{K_\theta}(\lambda)| \geq \delta > 0 \), for all \(\lambda \in \mathbb{D} \). Under which conditions is \(A \) invertible? In this article we investigate this question in the case where \(\theta \) is an interpolation Blaschke product. First we obtain Theorem 1 and Theorem 2, and then we use the latter to deduce further related results for Toeplitz operators on the Bergman space \(L^2_\alpha(\mathbb{D}) \).

1. Introduction

In this paper we continue the investigation of a generalized Douglas problem started by the first author in [16]. We consider the question of invertibility of operators on the model space \(K_\theta = H^2 \ominus \theta H^2 \) of Sz.-Nagy and Foias, where \(H^2 = H^2(\mathbb{D}) \) is the Hardy space of all analytic functions in the unit disk \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \) for which \(\| f \|_2^2 \overset{def}{=} \sup_{0 \leq r < 1} \int_T |f(r\zeta)|^2 dm(\zeta) < \infty \), where \(T = \partial \mathbb{D} = \{ \zeta : |\zeta| = 1 \} \) is the unit circle, \(m \) is the normalized Lebesgue measure on \(T \), and \(\theta \) is an inner function, i.e. \(\theta \in H^2 \) and \(|\theta(\zeta)| = 1 \) a.a. \(\zeta \in T \). Recall that \(H^2 \) is a reproducing kernel Hilbert space, with the kernel

\[
k_\lambda(z) = \frac{1}{1 - \lambda z}, \quad \lambda, z \in \mathbb{D},
\]

known as the Szegö kernel. Thus \(\langle f, k_\lambda \rangle = f(\lambda) \) for all \(f \in H^2 \) and \(\lambda \in \mathbb{D} \). Therefore the function

\[
k_{\theta,\lambda}(z) \overset{def}{=} P_\theta k_\lambda(z) = \frac{1 - \overline{\theta(\lambda)}\theta(z)}{1 - \lambda z}, \quad \lambda, z \in \mathbb{D},
\]

2000 Mathematics Subject Classification. Primary 47A35; Secondary 47B20.
Key words and phrases. Model space, Shvedenko constant, interpolation, Blaschke product, Reproducing kernel, Berezin symbol, Toeplitz operator.
where \(P_\theta \) is the orthogonal projection from \(H^2 \) onto \(K_\theta \), is the reproducing kernel for the space \(K_\theta \). For any bounded linear operator \(A : K_\theta \to K_\theta \), the Berezin symbol of \(A \) is the function \(\widetilde{A}_{K^\theta}(\lambda) \) on \(\mathbb{D} \) defined by
\[
\widetilde{A}_{K^\theta}(\lambda) \overset{\text{def}}{=} \langle \hat{A}_{K^\theta,\lambda}, \hat{K}_{\theta,\lambda} \rangle, \ \lambda \in \mathbb{D},
\]
where
\[
\hat{K}_{\theta,\lambda}(z) \overset{\text{def}}{=} \frac{k_{\theta,\lambda}(z)}{\|k_{\theta,\lambda}(z)\|} = \left(\frac{1 - |\lambda|^2}{1 - |\theta(\lambda)|^2} \right)^{1/2} \frac{1 - \theta(\lambda)\overline{\theta}(z)}{1 - \overline{\lambda}z}
\]
denotes the normalized reproducing kernel of \(K_\theta \). Let \(\mathcal{B}(K_\theta) \) denote the algebra of all bounded linear operators on the space \(K_\theta \). In this article we shall investigate the following question: Let \(A \in \mathcal{B}(K_\theta) \) satisfying
\[
\left| \widetilde{A}_{K^\theta}(\lambda) \right| \geq \delta > 0 \ (\forall \lambda \in \mathbb{D})
\]
for some \(\delta > 0 \). Under which conditions is \(A \) invertible in \(K_\theta \)?

This question is closely related to a problem due to Douglas and works of Tolokonnikov, Nikolski and Wolff (see [19]), and the first author’s paper [16]. Here, using the techniques of reproducing kernels and Berezin symbols, and an interpolation theorem of Shvedenko [20], we obtain sufficient conditions ensuring the invertibility of a linear bounded operators on the model space \(K_B \) with a suitable interpolation Blaschke product \(B \) (see Theorem 1). In particular, we give a new proof for invertibility of some functions of model operators \(\varphi(M_B) \), which does not use the Carleson’s Corona Theorem (see Theorem 2). We also characterize in terms of Berezin symbols the normal operators on the Hardy space \(H^2 \), and study the compactness property of some products of Toeplitz operators on the Hardy and Bergman spaces.

2. Notations and Preliminaries

2.1. Berezin symbol

The Berezin symbol of a linear bounded operator \(T \) acting on a functional Hilbert space \(\mathcal{H} = \mathcal{H}(\mathbb{D}) \) over the unit disk \(\mathbb{D} \), with a reproducing kernel \(k_\lambda(z) \) is the complex-valued function
\[
\widetilde{T}(\lambda) \overset{\text{def}}{=} \langle T\hat{k}_\lambda, \hat{k}_\lambda \rangle, \ \lambda \in \mathbb{D},
\]
where \(\hat{k}_\lambda := \frac{k_\lambda}{\|k_\lambda\|} \) denotes the normalized reproducing kernel of \(\mathcal{H} \). This notion has been introduced for the first time by Berezin [4, 5]. It is well known (see [8], [25]) that for a Toeplitz operator \(T_\varphi \), with symbol \(\varphi \in L^\infty(\mathbb{T}) \), defined on \(H^2 \) by \(T_\varphi f = P_\varphi f \), where \(P_\varphi \) is the orthogonal projection from \(L^2(\mathbb{T}) \) onto \(H^2 \), known as the Riesz projection, its Berezin symbol \(\widetilde{T}_\varphi \) is the harmonic extension \(\widetilde{\varphi} \) of \(\varphi \in L^\infty(\mathbb{T}) \) into \(\mathbb{D} \).

For an operator \(T \in \mathcal{B}(\mathcal{H}) \) we define the following two numerical characteristics

\[
Ber(T) \overset{\text{def}}{=} \text{Range}(\widetilde{T}) \ 	ext{is the so-called Berezin set}
\]
and
\[
ber(T) \overset{\text{def}}{=} \sup\{ |\lambda| : \lambda \in Ber(T) \} \ 	ext{is the so-called Berezin number.}
\]

Obviously, \(Ber(T) \subset W(T) \), where \(W(T) \) is the numerical range of \(T \). Also it is easy to see that \(ber(T) \leq w(T) \), where \(w(T) \) denotes the numerical radius of \(T \).
In the case where $T = T_\varphi$ where φ is bounded, clearly $\text{Ber}(T_\varphi) = \{\tilde{\varphi}(z) : z \in \mathbb{D}\}$ and $\text{ber}(T_\varphi) = \|\varphi\|_\infty$. In particular, $\text{Ber}(T_z) = \mathbb{D}$ and $\text{ber}(T_z) = 1$.

Note that on the most familiar functional Hilbert spaces, including the Hardy space and the Bergman space, the Berezin symbol uniquely determines the operator. In fact, if $T_1(\lambda) = T_2(\lambda)$ for all λ, then $T_1 = T_2$. See for instance, Yang [24]; and for more general cases, see Fricain [9, Theorem 1.1.1]. In other words the Berezin symbol of a bounded operator contains a lot of information about the operator. It is one of the most useful tools in the study of Toeplitz operators. The Berezin notion is motivated by its connections with quantum physics and noncommutative geometry. For more details and references see [4, 5]. Other properties and applications of Berezin symbols and reproducing kernels can be found in [2, 3, 6, 7, 10, 11, 12].

2.2. Carleson condition. We now recall some well-known facts (see, for instance [19]) concerning reproducing kernels in $H^2(\mathbb{D})$. Let $\Lambda = \{\lambda_n\}_{n \geq 1}$ be a sequence of distinct points in \mathbb{D}. We denote by

$$B = B_\Lambda = \Pi_{n \geq 1} b_{\lambda_n},$$

where

$$b_{\lambda_n}(z) = \frac{|\lambda_n|}{\lambda_n} \frac{\lambda_n - z}{1 - \bar{\lambda_n}z},$$

the corresponding Blaschke product. Then

(i) If $\{\lambda_n\}_{n \geq 1}$ satisfies the Blaschke condition, i.e. $\sum_{n=1}^{\infty} \left(1 - |\lambda_n|^2\right) < \infty$, then $\{k_{\lambda_n}\}_{n \geq 1}$ is a complete system in the model space K_B.

(ii) The family $\mathcal{K} \triangleq \{\hat{k}_{\lambda_n} : n \geq 1\}$ is a Riesz basis of K_B if and only if $\{\lambda_n\}_{n \geq 1}$ satisfies the Carleson condition, namely

$$\inf_{n \geq 1} |B_n(\lambda_n)| > 0,$$

where $B_n \triangleq \frac{B}{b_{\lambda_n}}$. In this case, we will write $\Lambda \in (C)$.

2.3. Riesz constant. We recall (see [19]) that if H is a complex Hilbert space, and $\{x_n\}_{n \geq 1} \subset H$, then the set $X \triangleq \{x_n : n \geq 1\}$ is called a Riesz basis of H if there exists an isomorphism U mapping X onto an orthonormal basis of H. In this case the operator U will be called the orthogonalizer of X. It is well known (see [19]) that X is a Riesz basis in its closed linear span if there are two positive constants C_1 and C_2 such that

$$\left(\sum_{n \geq 1} |a_n|^2\right)^{1/2} \leq \left\|\sum_{n \geq 1} a_n x_n\right\| \leq C_2 \left(\sum_{n \geq 1} |a_n|^2\right)^{1/2}$$

for all finite complex sequences $\{a_n\}_{n \geq 1}$. Note that if U is an orthogonalizer of the set X, then $C_1 = \|U\|^{-1}$ and $C_2 = \|U^{-1}\|$ are the best constants possible in the inequality (1). The product $r(X) \triangleq \|U\|\|U^{-1}\|$ characterizes the deviation of the basis X from an orthonormal one. $r(X)$ will be referred to as the Riesz constant of the family X. Clearly, $r(X) \geq 1$. For more detail, see [13, 19].
2.4. Shvedenko constant. Let \(\{L_k\}_{k=1}^{\infty} \) be a sequence of linear continuous functionals on the Hardy space \(H^p \), \(1 < p < \infty \), (see Hoffman [14]). It is natural to try to describe the space of sequences
\[
H^p \{ L_k \} \overset{def}{=} \left\{ \{L_k(f)\}_{k=1}^{\infty} : f \in H^p \right\}.
\]
In particular, it is not without interest to try to find conditions under which the inclusion \(S \subset H^p \{ L_k \} \) is satisfied for a given space \(S \) of sequences of complex numbers. For some class of Banach spaces \(S \) of sequences, Shvedenko [20] gave a general criterion for such inclusion.

For \(1 < p < \infty \), it is well known that the functionals \(L_k \) have the following representation
\[
L_k(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it}) l_k(e^{it}) \, dt, f \in H^p,
\]
where the functions \(l_k(z) \in H^q \left(\frac{1}{p} + \frac{1}{q} = 1 \right) \) depend only on \(L_k \). Notice that for the evaluation functionals \(L_k(f) = f(\lambda_k) \), \(k = 1, 2, ... \), where \(\{\lambda_k\}_{k=1}^{\infty} \) is a sequence of distinct points of \(\mathbb{D} \), it is easy to see that \(l_k(z) = \frac{1}{1 - \lambda_k z} \), which is the Szegö kernel.

Let \(S \) be a Banach space of sequences satisfying the following conditions

(S1) \(S \) be a BK-space [21], i.e. the map \(w \rightarrow w_k, w = \{w_k\}_{k=1}^{\infty} \in S \), is continuous. This is equivalent to the inequality \(|w_k| \leq c_k \|w\|_S \), where \(\|w\|_S \) is the norm in \(S \) and \(c_k > 0, k = 1, 2, ... \). In particular, this condition implies the inclusion \(E_\infty \subset S^* \), where \(E_\infty \) is the space of sequences containing only a finite number of nonzero terms.

(S2) \(S \) is complexly conjugated, i.e. both of \(w = \{w_k\}_{k=1}^{\infty} \) and \(\overline{w} = \{\overline{w_k}\}_{k=1}^{\infty} \) belong to \(S \) and \(\|w\|_S = \|\overline{w}\|_S \).

It is not difficult to verify that the classical weighted spaces \(l^p(w_n), p \geq 1 \), satisfy conditions (S1) and (S2). The following key lemma is due to Shvedenko [20].

Lemma 1. For the Banach spaces \(S \) of sequences satisfying conditions (S1) and (S2), the inclusion \(S \subset H^p \{ L_k \} \), \(1 < p < \infty \), is fulfilled if and only if
\[
\inf_{<a_k> \in E_\infty} \left\| \sum_k a_k l_k(\lambda_k)(z) \right\|_q > 0, \text{ where } \frac{1}{p} + \frac{1}{q} = 1.
\]

In what follows we will call the number
\[
\eta_\Lambda \overset{def}{=} \inf_{<a_k> \in E_\infty} \left\| \sum_k a_k l_k(\lambda_k)(z) \right\|_q
\]
the Shvedenko constant corresponding to the sequence \(\Lambda \overset{def}{=} \{\lambda_k\}_{k=1}^{\infty} \).

3. Invertibility of operators on the model space \(K_B \)

3.1. Main result. The main result of this article is the following theorem which is essentially an improvement [16, Theorem 3.1 p.185].
Theorem 1. Assume that \(\Lambda = \{ \lambda_n \}_{n \geq 1} \) is a Carleson sequence of distinct points of \(\mathbb{D} \). Let \(B \) be the interpolation Blaschke product associated to \(\{ \lambda_n \}_{n \geq 1} \), \(K = \{ \hat{k}_{\lambda_n} : n \geq 1 \} \) be the corresponding Riesz basis of the space \(K_B \), and \(r(K) \) be the corresponding Riesz constant associated the family \(K \). For any \(A \in \mathcal{B}(K_B) \) and any bounded sequence \(b = \{ b_n \}_{n \geq 1} \) of complex numbers \(b_n \), for which there exists a constant \(\delta > 0 \) such that \(|b_n| \geq \delta \) for all \(n \geq 1 \), we denote

\[
\tau_{A,b} := \left(\sum_{n=1}^{\infty} \left(1 - |\lambda_n|^2 \right) \left\| (A - b_n I) \hat{k}_{\lambda_n} \right\|^2 \right)^{1/2}
\]

and

\[
\tau_{A,b}^* := \left(\sum_{n=1}^{\infty} \left(1 - |\lambda_n|^2 \right) \left\| (A - b_n I)^* \hat{k}_{\lambda_n} \right\|^2 \right)^{1/2}.
\]

If

\[
\frac{r(K)}{\eta_A} \max \{ \tau_{A,b}, \tau_{A,b}^* \} < 1,
\]

then \(A \) is an invertible operator in \(K_B \). Moreover

\[
\|A^{-1}\| \leq \frac{r(K)}{\delta \eta_A - r(K)} \tau_{A,b},
\]

where \(\eta_A \) is the Shvedenko constant corresponding to the sequence \(\Lambda = \{ \lambda_n \}_{n \geq 1} \).

Proof. Since \(\{ \| A \hat{k}_{\lambda_n} - b_n \hat{k}_{\lambda_n} \| \}_{n \geq 1} \) and \(\{ \| A^* \hat{k}_{\lambda_n} - b^*_n \hat{k}_{\lambda_n} \| \}_{n \geq 1} \) are bounded sequences and \(\Lambda \) is a Blaschke sequence, the numbers \(\tau_{A,b} \) and \(\tau_{A,b}^* \) are finite. Also, the family \(K = \{ \hat{k}_{\lambda_n} : n \geq 1 \} \) is a Riesz basis in \(K_B \), because \(\Lambda \in (C) \). If \(U \) is an orthogonalizer of \(K \), then

\[
(2) \quad \|U\|^{-1} \left(\sum_{n \geq 1} |a_n|^2 \right)^{1/2} \leq \left\| \sum_{n \geq 1} a_n \hat{k}_{\lambda_n} \right\| \leq \|U^{-1}\| \left(\sum_{n \geq 1} |a_n|^2 \right)^{1/2}
\]

for any finite complex sequence \(\{a_n\}_{n \geq 1} \). Hence by considering the condition \(|b_n| \geq \delta > 0, n \geq 1 \), we have that for any \(N > 0 \)

\[
\left\| \sum_{n=1}^{N} a_n b_n \hat{k}_{\lambda_n} \right\| \geq \|U\|^{-1} \left(\sum_{n=1}^{N} |a_n b_n|^2 \right)^{1/2}
\]

\[
\geq \delta \|U\|^{-1} \left(\sum_{n=1}^{N} |a_n|^2 \right)^{1/2}
\]

\[
\geq \frac{\delta}{\|U\| \|U^{-1}\|} \left\| \sum_{n=1}^{N} a_n \hat{k}_{\lambda_n} \right\|.
\]

Since \(r(K) = \|U\| \|U^{-1}\| \), we obtain

\[
(3) \quad \left\| \sum_{n=1}^{N} a_n b_n \hat{k}_{\lambda_n} \right\| \geq \frac{\delta}{r(K)} \left\| \sum_{n=1}^{N} a_n \hat{k}_{\lambda_n} \right\|.
\]
Now
\[\left\| A \sum_{n=1}^{N} a_n \hat{\lambda}_n \right\| = \left\| \sum_{n=1}^{N} a_n A \hat{\lambda}_n \right\| = \left\| \sum_{n=1}^{N} a_n (A \hat{\lambda}_n - b_n \hat{\lambda}_n + b_n \hat{\lambda}_n) \right\| \geq \left\| \sum_{n=1}^{N} a_n b_n \hat{\lambda}_n \right\| - \sum_{n=1}^{N} |a_n| \left\| A \hat{\lambda}_n - b_n \hat{\lambda}_n \right\|. \]

From inequality (3), it follows that
\[\left\| A \sum_{n=1}^{N} a_n \hat{\lambda}_n \right\| \geq \frac{\delta}{r(\mathcal{K})} \left\| \sum_{n=1}^{N} a_n \hat{\lambda}_n \right\| - \sum_{n=1}^{N} |a_n| \left(1 - |\lambda_n|^2 \right)^{1/2} \left\| A \hat{\lambda}_n - b_n \hat{\lambda}_n \right\|. \]

Using Holder inequality, we obtain
\[\left\| A \sum_{n=1}^{N} a_n \hat{\lambda}_n \right\| \geq \frac{\delta}{r(\mathcal{K})} \left\| \sum_{n=1}^{N} a_n \hat{\lambda}_n \right\| - \left(\sum_{n=1}^{N} \frac{|a_n|^2}{\left(1 - |\lambda_n|^2 \right)^2} \right)^{1/2} \left(\sum_{n=1}^{N} (1 - |\lambda_n|^2) \right)^{1/2} \| \lambda_2 \| \eta_A \eta_b. \]

Writing that
\[\left(\sum_{n=1}^{N} \frac{|a_n|^2 (1 - |\lambda_n|^2)}{\left(1 - |\lambda_n|^2 \right)^2} \right)^{1/2} = \left\{ a_n (1 - |\lambda|^2)^{1/2} \right\}_{n=1}^{N} \| \eta_A \| \eta_b. \]
we have
\[\left\| A \sum_{n=1}^{N} a_n \hat{\lambda}_n \right\| \geq \frac{\delta}{r(\mathcal{K})} \left\| \sum_{n=1}^{N} a_n \hat{\lambda}_n \right\| - \left\{ a_n (1 - |\lambda|^2)^{1/2} \right\}_{n=1}^{N} \| \eta_A \| \eta_b. \]

Because \(\{\lambda_n\}_{n \geq 1} \) is assumed to be a Carleson sequence, it is well-known in this case that
\[H^2 \{L_n\} = l^2 \left(1 - |\lambda_n|^2 \right). \]

Thus, by considering the obvious inclusion \(l^2 \left(1 - |\lambda_n|^2 \right)^{-1} \subset l^2 \left(1 - |\lambda_n|^2 \right), \)
we have that \(l^2 \left(1 - |\lambda_n|^2 \right)^{-1} \subset H^2 \{L_n\}. \) Therefore, by setting \(p = 2 \) and
Finally, we arrive to the following inequality

\[
S = \frac{1}{2} \left(\left(1 - |\lambda_n|^2 \right)^{-1} \right)
\]

in Lemma 1, we obtain

\[
\left\| A \sum_{n=1}^{N} a_n \hat{k}_{\lambda_n} \right\| \geq \frac{\delta}{r(\mathcal{K})} \left\| \sum_{n=1}^{N} a_n \hat{k}_{\lambda_n} \right\| - \left\| \sum_{n=1}^{N} a_n \left(1 - |\lambda_n|^2 \right)^{1/2} k_{\lambda_n} \right\| \eta_A^{-1} \tau_{A,b}
\]

\[
= \frac{\delta}{r(\mathcal{K})} \left\| \sum_{n=1}^{N} a_n \hat{k}_{\lambda_n} \right\| - \eta_A^{-1} \tau_{A,b} \left\| \sum_{n=1}^{N} a_n \hat{k}_{\lambda_n} \right\|
\]

which completes the proof. □

Therefore, we deduce from (4) that

\[
\|Af\| \geq \left(\frac{\delta}{r(\mathcal{K})} - \frac{\tau_{A,b}}{\eta_A} \right) \|f\|
\]

for any \(f \in K_B \).

By similar similar arguments, we prove that

\[
\left\| A^* \sum_{n=1}^{N} a_n \hat{k}_{\lambda_n} \right\| \geq \frac{\delta}{r(\mathcal{K})} \left(\frac{\tau_{A,b}}{\eta_A} \right) \left\| \sum_{n=1}^{N} a_n \hat{k}_{\lambda_n} \right\|
\]

which yields that

\[
\|A^*f\| \geq \left(\frac{\delta}{r(\mathcal{K})} - \frac{\tau_{A,b}}{\eta_A} \right) \|f\|
\]

for any \(f \in K_B \). Now, combining hypothesis (H) with both inequalities (5) and (6), implies that \(A \) is invertible in \(K_B \) and that

\[
\|A^{-1}\| \leq \frac{r(\mathcal{K}) \eta_A}{\eta_A \delta - r(\mathcal{K}) \tau_{A,b}}
\]

which completes the proof.

Since \(\widetilde{A} K_B (\lambda) = \overline{A K_B (\lambda)} \) and \(\left| \widetilde{A}^+ K_B (\lambda) \right| = \left| \overline{A K_B (\lambda)} \right| \leq \|A\| \) for every \(A \) in \(B(K_B) \), the following is an immediate corollary of Theorem 1.

Corollary 1. Under the same hypothesis as in Theorem 1, if the sequence \(b \) is chosen to be \(b = \{ \overline{A K_B (\lambda_n)} \} \) with \(\left| \overline{A K_B (\lambda_n)} \right| \geq \delta > 0 \), for all \(n \geq 1 \). Then \(A \) is invertible in \(K_B \) and

\[
\|A^{-1}\| \leq \frac{r(\mathcal{K}) \eta_A}{\delta \eta_A - r(\mathcal{K}) \tau_{A,b}}
\]
3.2. Model operators. Consider the model operator M_θ of Sz.-Nagy and Foias, acting on the subspace K_θ in the following way

$$M_\theta f = P_\theta S f,$$

where S is the unilateral shift operator in the Hardy space H^2 defined by $S g(z) = zg(z)$, θ is an inner function and $P_\theta = I - T_\theta T_\theta^*$ is the orthogonal projection from H^2 onto K_θ. It is well-known [22] that the operator M_θ admits a functional calculus in the class H^∞, i.e. for any function $\varphi \in H^\infty$, the operator $\varphi(M_\theta)$ is defined by

$$\varphi(M_\theta) f = P_\theta \varphi f, \ f \in K_\theta.$$

It is also known [19] that the operator $\varphi(M_\theta)$ is invertible if and only if there exists a constant $\delta > 0$ such that

$$|\varphi(z)| + |\theta(z)| \geq \delta,$$

for all $z \in \mathbb{D}$. The proof of this statement is based on the classical Carleson’s Corona Theorem [19]. When θ is an interpolation Blaschke product B, i.e. Blaschke product with zeros $\Lambda = \{\lambda_n\}_{n \geq 1} \in (C)$, it is also known (see, for instance, Hoffman [14, Chapter 10]) that condition (7) becomes

$$|\varphi(\lambda_n)| \geq \delta, \text{ for all } n \geq 1.$$

In the next proposition, we present a new proof of the invertibility of the operator $\varphi(M_B)$, which does not uses the Carleson’s Corona Theorem.

Theorem 2. Let $\Lambda = \{\lambda_n\}_{n \geq 1}$, η_Λ, B and $r(K)$ be as in Theorem 1. Let $\varphi \in H^\infty$ be a function satisfying $\|\varphi\|_\infty \leq 1$, for which there exists a constant $\delta > 0$ such that

$$|\varphi(\lambda_n)| \geq \delta > r(K)\eta_\Lambda \sqrt{\frac{1}{\eta_\Lambda^2 + r(K)^2 w_\Lambda^2}}, \text{ for all } n \geq 1,$$

where $w_\Lambda \overset{\text{def}}{=} \left(\sum_{n=1}^{\infty} \left(1 - |\lambda_n|^2\right)^{1/2}\right)$. Then the operator $\varphi(M_B)$ is invertible in K_B and

$$\left\|\varphi(M_B)^{-1}\right\| \leq \frac{r(K)}{\delta}.$$

Proof. The proof uses the following formula

$$\varphi(M_B)^{K_B}(z) = \frac{\varphi(z) - B(z) \varphi B(z)}{1 - |B(z)|^2},$$

from the first author’s paper [15, formula (1)], which implies that

$$b_n := \varphi(M_B)^{K_B}(\lambda_n) = \varphi(\lambda_n), \text{ for all } n \geq 1.$$

This shows that the inequality $|\varphi(\lambda_n)| \geq \delta$ is in fact equivalent to

$$\left|\varphi(M_B)^{K_B}(\lambda_n)\right| \geq \delta > 0, \text{ for all } n \geq 1.$$
Moreover, using the fact that $P_B \hat{k}_{\lambda_n} = \hat{k}_{\lambda_n}$, we have
\[
\left\| \varphi(M_B) \hat{k}_{\lambda_n} - \varphi(\lambda_n) \hat{k}_{\lambda_n} \right\|^2 = \left\langle P_B T_\varphi \hat{k}_{\lambda_n}, P_B T_\varphi \hat{k}_{\lambda_n} \right\rangle - \varphi(\lambda_n) \left\langle \hat{k}_{\lambda_n}, P_B T_\varphi \hat{k}_{\lambda_n} \right\rangle + |\varphi(\lambda_n)|^2
\]
\[
= T_\varphi P_B T_\varphi (\lambda_n) - \varphi(\lambda_n) \left\langle T_\varphi \hat{k}_{\lambda_n}, \hat{k}_{\lambda_n} \right\rangle - \varphi(\lambda_n) \left\langle \hat{k}_{\lambda_n}, T_\varphi \hat{k}_{\lambda_n} \right\rangle + |\varphi(\lambda_n)|^2
\]
\[
= T_\varphi P_B T_\varphi (\lambda_n) - |\varphi(\lambda_n)|^2
\]
\[
\leq \text{ber} \left(T_\varphi P_B T_\varphi\right) - \delta^2
\]
\[
\leq \left\| T_\varphi P_B T_\varphi \right\| - \delta^2
\]
\[
\leq \| \varphi \|^2_{\infty} - \delta^2
\]
\[
\leq 1 - \delta^2.
\]

Thus
\[
\left\| \varphi(M_B) \hat{k}_{\lambda_n} - \varphi(M_B) K_B (\lambda_n) \hat{k}_{\lambda_n} \right\|^2 \leq 1 - \delta^2.
\]

Inequality (9) implies that (after rewriting the definition of $\tau_{A,b}$ in Theorem 1, with $A = \varphi(M_B)$ and $b_n = \varphi(M_B) (\lambda_n)$)
\[
\tau_{\varphi(M_B),b} \leq w_\Lambda \left(1 - \delta^2\right)^{1/2}.
\]

Since $(\varphi(M_B))^* = T_\varphi | K_B$, it is easy to see that
\[
(\varphi(M_B))^* \hat{k}_{\lambda_n} - \varphi(M_B)^* K_B (\lambda_n) \hat{k}_{\lambda_n} = 0.
\]

Thus,
\[
\tau_{\varphi(M_B),b}^* = 0.
\]

Now, combining the equation above with the inequality (9) and using the same argument as in the proof of Theorem 1, one can show that
\[
\| \varphi(M_B) f \| \geq \left[\frac{\delta}{r(K)} \frac{w_\Lambda}{\eta_\Lambda} \left(1 - \delta^2\right)^{1/2} \right] \| f \|
\]
and
\[
\| \varphi(M_B)^* f \| \geq \frac{\delta}{r(K)} \| f \|,
\]
for any $f \in K_B$. Therefore Corollary 1 implies that $\varphi(M_B)$ is invertible, and since
\[
\left\| (\varphi(M_B))^{-1} \right\| = \left\| (\varphi(M_B)^*)^{-1} \right\|,
\]
we have that
\[
\left\| (\varphi(M_B))^{-1} \right\| \leq \frac{r(K)}{\delta},
\]
which completes the proof. \hfill \square

Remark 1. If $\Lambda = \{\lambda_n\} \in (C)$ is a sequence such that
\[
\eta_\Lambda^2 + r(K)^2 w_\Lambda^2 = (r(K) w_\Lambda + 1)^2
\]
In fact, the functions \hat{T} for the Toeplitz operator which proves (i).

A formulas (11), (12) since the Berezin symbol uniquely determines the operator A (12).

An easy computation shows that η (i.e. if $\eta = \sqrt{1 + 2r(K)w_A}$), then condition (8), satisfied by δ in Theorem 2, becomes

$$\delta > \frac{r(K)w_A}{r(K)w_A + 1}. \quad (10)$$

In particular, if $r(K) w_A = 45$, then $\eta = \sqrt{91}$. Therefore condition (10) becomes

$$\delta > \frac{45}{46} \quad \text{which is a "Tolokonnikov type" condition}[23].$$

If $r(K) w_A = 23$, we obtain that

$$\delta > \frac{23}{24} \quad \text{which is a "Nikolski type" condition}[19].$$

More details about "Tolokonnikov-Nikolski type" invertibility conditions for the Toeplitz operators on the Hardy space H^2 can be found in [19].

4. Further Results

4.1. Normal and Toeplitz operators. In this section we shall characterize normal operators on the Hardy space H^2 in terms of Berezin symbols. Also, we shall discuss compactness properties of products of some Toeplitz operators acting in Hardy and Bergman spaces.

Theorem 3. Let A be a bounded operator on H^2 and let $\tilde{A}(\lambda) = \left\langle A\hat{k}_\lambda(z), \hat{k}_\lambda(z) \right\rangle$ be its Berezin symbol, where $\hat{k}_\lambda(z) = \frac{\sqrt{1-|\lambda|^2}}{1-z\lambda}$ is a normalized reproducing kernel of H^2. Then

(i) A is a normal operator on H^2 if and only if

$$\left\| (A - \tilde{A}(\lambda) I) \hat{k}_\lambda \right\| = \left\| (A - \tilde{A}(\lambda) I)^* \hat{k}_\lambda \right\|, \quad \text{for all } \lambda \in \mathbb{D}. \quad (11)$$

(ii) In particular, if $A = T_\varphi$, where $\varphi \in L^\infty$, then the product $T_\varphi^*T_\varphi$ (or $T_\varphi T_\varphi^*$) is compact if and only if $\varphi = 0$.

Proof. An easy computation shows that

$$\left\| A\hat{k}_\lambda - \tilde{A}(\lambda) \hat{k}_\lambda \right\|^2 = \tilde{A}^* A(\lambda) - \left| \tilde{A}(\lambda) \right|^2 \quad (11)$$

and

$$\left\| A^* \hat{k}_\lambda - \tilde{A}^* (\lambda) \hat{k}_\lambda \right\|^2 = \tilde{A} A^*(\lambda) - \left| \tilde{A}(\lambda) \right|^2. \quad (12)$$

Since the Berezin symbol uniquely determines the operator A, it follows from formulas (11), (12) that A is a normal operator on H^2 if and only if

$$\left\| (A - \tilde{A}(\lambda) I) \hat{k}_\lambda \right\| = \left\| (A - \tilde{A}(\lambda) I)^* \hat{k}_\lambda \right\| \quad (\forall \lambda \in \mathbb{D}),$$

which proves (i).

On the other hand, it is known that (see Englis [8] and Karaev [17])

$$\left\| T_\varphi \hat{k}_\lambda - \tilde{\varphi}(\lambda) \hat{k}_\lambda \right\| \to 0 \quad \text{as } \lambda \to \mathbb{T} \text{ radially.}$$

In fact, the functions $\hat{k}_\lambda (\lambda \in \mathbb{D})$ are "loosely speaking" asymptotic eigenfunctions for the Toeplitz operator T_φ, with asymptotic eigenvalues $\tilde{\varphi}(\lambda)$.
\(\overline{\varphi}(\lambda) \) is the harmonic extension of \(\varphi \) onto unit disk \(\mathbb{D} \), it follows from equalities (11) and (12) that

\[
\| T_{\overline{\varphi}} k_\lambda - \overline{\varphi}(\lambda) \hat{k}_\lambda \|^2 = T_{\overline{\varphi}}^* T_{\overline{\varphi}} (\lambda) - |\overline{\varphi}(\lambda)|^2
\]

and

\[
\| T_{\overline{\varphi}} k_\lambda - \overline{\varphi}(\lambda) \hat{k}_\lambda \|^2 = T_{\overline{\varphi}}^* T_{\overline{\varphi}} (\lambda) - |\overline{\varphi}(\lambda)|^2.
\]

Now, using the fact that the Berezin symbol of any compact operator on \(H^2 \) vanishes at the boundary \(T \), and considering the above mentioned facts, we deduce from (13) and (14) that if \(T_{\overline{\varphi}}^* T_{\overline{\varphi}} \) (or \(T_{\overline{\varphi}} T_{\overline{\varphi}}^* \)) is a compact operator on \(H^2 \) then

\[
\lim_{r \to 1} |\overline{\varphi}(re^{it})|^2 = |\varphi(e^{it})|^2 = 0,
\]

for almost all \(t \in [0, 2\pi] \), and hence \(\varphi = 0 \). This proves (ii) and the proposition is then proved. \(\square \)

In the Bergman space, as usual, things are much more complicated. The analogous of assertion (i) of Theorem 3 is not true for the Bergman space Toeplitz operators. In Example 1, we were able to find a \textbf{nonzero} radial symbol \(f \) such that the product \(T_f^2 \) is equal to a \textbf{compact} Toeplitz operator \(T_g \).

Let \(dA = rd\theta \frac{d\varphi}{\varphi} \), where \((r, \theta)\) are the polar coordinates in the complex plane \(\mathbb{C} \), denote the normalized Lebesgue area measure on the unit disk \(\mathbb{D} \), so that the measure of \(\mathbb{D} \) equals 1. The Bergman space \(L^2_a(\mathbb{D}) \) is the Hilbert space consisting of the analytic functions on \(\mathbb{D} \) that are also square integrable with respect to the measure \(dA \). We denote the inner product in \(L^2_a(\mathbb{D}, dA) \) by \(\langle \cdot, \cdot \rangle \). It is well known that \(L^2_a(\mathbb{D}) \) is a closed subspace of the Hilbert space \(L^2(\mathbb{D}, dA) \), and has the set \(\{ \sqrt{n+1}z^n \mid n \geq 0 \} \) as an orthonormal basis. We let \(P \) be the orthogonal projection from \(L^2(\mathbb{D}, dA) \) onto \(L^2_a(\mathbb{D}) \). For a bounded function \(f \) on \(\mathbb{D} \), the Toeplitz operator \(T_f \) with symbol \(f \) is defined by

\[
T_f(h) = P(\phi h) \quad \text{for} \quad h \in L^2_a(\mathbb{D}).
\]

It is well known that if the symbol \(f \) is a radial function, i.e. \(f(z) = f(|z|) \), then the matrix of the Toeplitz operator \(T_f \), with respect to the orthonormal basis \(\{ \sqrt{n+1}z^n \mid n \geq 0 \} \) of \(L^2_a(\mathbb{D}) \), is a diagonal matrix with the sequence \(\left\{ 2(n+1) \int_0^1 f(r)r^{2n+1} \, dr \right\}_{n \geq 0} \) as elements of the main diagonal. In fact

\[
\langle T_f(\sqrt{n+1}z^n), \sqrt{m+1}z^m \rangle = \langle P(f\sqrt{n+1}z^n), \sqrt{m+1}z^m \rangle
\]

\[
= \sqrt{n+1}\sqrt{m+1}\int_0^1 f(r)r^{n+m+1}e^{i(n-m)\theta} \frac{d\theta}{2\pi} dr
\]

\[
= \left\{ \begin{array}{ll} 2(n+1) \int_0^1 f(r)r^{2n+1} \, dr & \text{if} \ n = m \\ 0 & \text{if} \ n \neq m \end{array} \right.
\]

Moreover, it has been shown in [18, Proposition 4.3. p 530], that the product \(T_f^2 \) is equal to a Toeplitz operator \(T_g \) if and only if there exists a \textbf{radial} symbol \(g \) solution
to the following Mellin convolution equation

\begin{equation}
\int_{r}^{1} g(t) \frac{dt}{t} = \int_{r}^{1} f \left(\frac{r}{t} \right) f(t) \frac{dt}{t}.
\end{equation}

Now we are ready to present our counterexample to condition (ii) of Theorem 3 in the case of Bergman space Toeplitz operators.

Example 1. Let \(f(r) = r \ln r \). By solving equation (15) for \(g \), we obtain

\[g(r) = \frac{r}{2} \left(\frac{1}{3} \ln r - 1 \right) (\ln r)^2. \]

Hence \(T_f^2 = T_g \). Obviously \(f \) and \(g \) are not bounded but they are the so-called "nearly bounded functions" [1, p.204]. Thus the Toeplitz operators associated to these two symbols are bounded. Since \(g \) is a radial symbol, \(T_g \) is a diagonal operator with the sequence \(\left\{ 2 (n+1) \int_{0}^{1} g(r) r^{2n+1} dr \right\}_{n \geq 0} \) as elements of the main diagonal. In this case, it is well known that \(T_g \) will be compact if and only if

\[\lim_{n \to +\infty} 2 (n+1) \left| \int_{0}^{1} g(r) r^{2n+1} dr \right| = 0. \]

Now since \(T_g = T_f^2 \), a direct calculation shows that

\[2 (n+1) \int_{0}^{1} g(r) r^{2n+1} dr = \left(2 (n+1) \int_{0}^{1} f(r) r^{2n+1} dr \right)^2 \]

\[= \frac{4 (n+1)^2}{(2n+3)^2}, \text{ for all } n \geq 0. \]

It is clear that the fraction above will tend to zero as \(n \) goes to infinity. Hence \(T_g \) and therefore \(T_f^2 \) is compact. But \(f \) is not the zero function.

References

MÜBARIZ T. KARAEV, SULEYMAN DEMIREL UNIVERSITY, ISPARȚA VOCATIONAL SCHOOL, 32260 ISPARȚA, TURKEY

E-mail address: garayev@fef.sdu.edu.tr

ISSAM LOUHICHI, KING FAHD UNIVERSITY OF PETROLEUM & MINERALS, DEPARTMENT OF MATHEMATICS & STATISTICS, DHAHARN 31261, SAUDI ARABIA

E-mail address: issam@kfupm.edu.sa