King Fahd University of Petroleum and Minerals Department of Mathematical Sciences Math201.03&04, Exam II, Semester 052 April 19, 2006, (19 Rabi' I, 1427) <u>Allowed Time: 100 minutes</u>

- Find the volume of the parallelpiped that has the vectors u=<1, 1, 3>, v=<2, 0, 2> and w=<1, -2, 1> as adjacent sides. (8 points)
- 2. Show that the following two lines are skew: (10 points)

$$L_1: x = 1 + 5t, y = 3 + 6t, z = -7t$$
$$L_2: x = 2 + t, y = -2 + t, z = 1 + 2t$$

- 3. Find the equation of the plane P that passes through (1, 2, 3) and is perpendicular to the planes $P_1: x + 2y z = 1$ and $P_2: 3x y + 4z = 5$. (10 points)
- 4. Find a point whose distance from the plane 2x 3y + z = 4 is 2 units. (8 points)
- 5. If a point Q has cylindrical coordinates $(2, \frac{\pi}{3}, a)$ and spherical coordinates
 - $(b,c,\frac{\pi}{3})$, then find the rectangular coordinates of Q. (10 points)
- 6. (6+6 points)
 - a. Describe the region in 3-space that satisfies the inequalities $1 \le r \le 4$, $0 \le z \le 5$. (Inequalities are given in cylindrical coordinates.)
 - b. Find the equation of the surface that results when the surface $z = y^3 x^3$ is reflected about the plane x = 0.

7. Let
$$f(x, y) = \sqrt{x^2 + y^2} - 4 \cdot (7 + 4 + 7)$$

- a. Find the domain of f (Give your answer in set notation.) and sketch the domain of f.
- b. Describe the level curve of height 3 of f.
- c. Identify and sketch the graph of f.
- 8. Find the following limits: (8+8 points)
 - a. $\lim_{(x,y)\to(0,0)} \frac{x-2}{x^4+y^6}$.

b.
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(\sqrt{y})}{3x^2-y}$$

9. Let $f(x, y) = \sin^{-1} x + \tan^{-1}(xy)$. Find $\frac{\partial^3 f}{\partial x^2 \partial y}$. Simplify your answer. (8)

points)

All the best, Dr. Ibrahim Al-Rasasi. (\mathbf{I})

Solution of Exam IL-052

(2)

□ Volume of the parallelpiped = 1 U. VXWI $\vec{u} \cdot \vec{v} \times \vec{w} = \begin{vmatrix} 1 & 1 & 3 \\ 2 & \sigma & 2 \\ -7 & 1 \end{vmatrix} = 1(\sigma + 4) - 1(2 - 2) + 3(-4 - \sigma) = -8$ Volume = | U. VXW | = 1-81 = 8 Unit cubed. El To show that L, & Lz are skew, we need to show two things: 1. Li & Li are not pointlet 2. Li & Le do not intersect. 1. L. & Lz are not prcallel . parallel vector to L. 1. V. = (5,6,-7) parallel vector to Lz is Vz . (1,1,27 $\vec{V}_1 \times \vec{V}_2 = \begin{vmatrix} 1 & 1 & 1 \\ 5 & 6 & -7 \\ 1 & 1 & 1 \end{vmatrix} = 191 - 17j - k$ Since V, XV2 + 0, then V, SV2 are not parallel and hence L, & L2 are not phanlel. 2. L. & Lz do not Intersect we try to Find The points of intersection. $1+st_1=2+t_2=--(i)$ 3+6t, =-2+t2 ~- @ -74 = 1+2t2 - (3) $(1-2) \implies -2-t_1 = 4 \implies t_1 = -6$ Sub $t_1 = -6$ in (1): $1 + 5(-6) = 2 + t_2 \implies t_2 = -31$ Check if t1=-6 & t2=-31 satisfy (3): $-7t_1 = 1+2t_2 \implies -7(-6) \equiv 1+2(-31) \implies 42 = -61 (NO)$ Since t, =-6 & tz = -31 do not satisfy (3), then Li & Lz do not intersect. Conclusion. Since Li & Lz are not parallel and do not Intersects then LixLz are skew lines.

The required plane
$$P$$
: mormal vector = \vec{n}
a point in P is $(1, 2, 3)$
plane $P_1: 2+2y-2=1 \implies normal Vector is $\vec{n}_1 \le (1, 2, 3)$
plane $P_2: 3x-y+42:5 \implies normal Vector is $\vec{n}_1 \le (3, 2, -1)$
plane $P_2: 3x-y+42:5 \implies normal Vector is $\vec{n}_2 \le (3, 2, -1)$
New $P \perp P_2 \implies \vec{n} \perp \vec{n}_2$.
So \vec{n} is per orthogonal to both \vec{n}_1 and \vec{n}_2 . Thus we can take
 $\vec{n} = \vec{n}_1 \times \vec{n}_2$.
 $\vec{n} = \vec{n}_1 \times \vec{n}_1 = \begin{vmatrix} i & j & k \\ 1 & 2 & -i \end{vmatrix} = 7i - 7j - 7k$
The equation j the plane P is
 $7(x-1) - 7(y-2) - 7(z-5) = 0$
 $\implies \lfloor x-y-2 = -4 \rfloor$
We can let be find a point (x_0, y_0, z_0) whose distance from the plane
 $2x - 3g+2 = 4$ is 2 units. That is
 $2 = \frac{12x_0 - 3j_0 + 2i_0 - 4i_0}{\sqrt{14}} = \frac{12x_0 - 3j_0 + 2i_0 - 4i_0}{\sqrt{14}}$
We can choose $x_0 = 0$, $y_0 = 0$, and $2i_0 = 2i_0 + 4i_0$
There are other of (infinite ly many) (theirs.)
 $\vec{p} = (x_0, y_0, y_0, z_0) \in (i, c, 2i_0 + 4)$
There are other of (artimute ly many) (theirs.)
 $\vec{p} = r \sin \theta = 2 \sin \frac{\pi}{3} = 2i_0 \frac{\pi}{3} = 1$
 $y = r \sin \theta = 2 \sin \frac{\pi}{3} = 2i_0 \frac{\pi}{3} = 5i_0$
 $\cdot \tan \theta = \frac{r}{2} \implies \tan(3) - \frac{\pi}{2} \implies 5i_0 = 2 = \frac{\pi}{3}$
Thus $(2i_1y, i_0) = (1, \sqrt{3}, \frac{\pi}{3})$.$$$

(a)
$$1 \le r \le 4$$
, $a \le 2 \le 5$
If is The region in 3-spic-that has believen the two Gludeis $r=1$ and
 $r \le q$ (the bia Gluder are included) & burg above the xy-plane (2-a)
and below the plane $2 \le g$ (the two plane, the included)
 5 (2)
(b) $Z = \gamma^3 - \chi^3$
If this start be is collected about the plane $\chi = c$, the
equation of the new surface is given by $(x \to -\chi)$.
 $Z : y^3 - (-\chi)^5$
 $\Rightarrow Z : y^3 + \chi^3$
(2) $f(x_1y) = \sqrt{X+y^2+1}$
a) We must have $x^2 + y^2 - 4 \ge 0$ since $x^2 + y^2 \ge 4$.
Dreman = $\{(x_2) \le n \ge -x_1, x^2 + y^2 \ge 4\}$
 $\frac{\ln w x d_2}{12}$, the domain consult of all points in the xy-plane lying
on & out size. The Circle $\chi + y^2 = 4$.
 $\frac{\sqrt{12}}{12}$
(b) The level Curves of height 3 of f is the graph of the equation
 $\frac{f(x_0)}{12} = 3$
 $\Rightarrow -\frac{f(x_0) - 4}{12} = 3$
 $\Rightarrow \chi^2 + y^2 = 13$, a Circle Centered at the circin X.
 $w the readies $\sqrt{13}$.$

. .

()
$$\overline{Z} = \sqrt{x^2 + y^2 + x} = \overline{x^2 + x^2 + y^2} = 4$$

 $\Rightarrow 4 = x^2 + y^2 - x^2$
 $\Rightarrow \frac{x^2}{4} + \frac{x^2}{4} - \frac{x^2}{4} = x$
is hipselfield of you, that is upper path of
the hipselfield of our Struct $\frac{x}{4} + \frac{y^2}{4} - \frac{x^2}{4} - x$, is the paper path of
the hipselfield of our Struct $\frac{x}{4} + \frac{y^2}{4} - \frac{x^2}{4} - x$, is the part that
the hipselfield of our Struct $\frac{x}{4} + \frac{y^2}{4} - \frac{x^2}{4} - x$, is the part that
the hipselfield of our Struct $\frac{x}{4} + \frac{y^2}{4} - \frac{x^2}{4} - x$, is the part that
the hipselfield of our Struct $\frac{x}{4} + \frac{y}{4} - \frac{x^2}{4} - \frac{x}{4} - \frac{x}{4} + \frac$

$$-\frac{q \log \eta}{l_{k}} \frac{f_{k}(-c_{2}\sqrt{r_{1}})}{\frac{1-c_{2}\sqrt{r_{1}}}{3x^{2}-y}} = \lim_{y \to 0} \frac{1-c_{2}\sqrt{r_{1}}}{-\frac{1-c_{2}\sqrt{r_{1}}}{y}} \qquad (\frac{c}{c})$$

$$\lim_{(M_{1})\to(r_{1}, r_{1})} \frac{1-c_{2}\sqrt{r_{1}}}{3x^{2}-y} = \lim_{y \to 0} \frac{1-c_{2}\sqrt{r_{1}}}{-\frac{1}{y}} \qquad (\frac{c}{c})$$

$$\lim_{z\to\infty} \frac{1-c_{2}\sqrt{r_{1}}}{-\frac{1}{y}} = \lim_{y\to0} -\frac{c_{2}\sqrt{r_{1}}}{-\frac{1}{y}} = \lim_{y\to0} -\frac{c_{2}\sqrt{r_{1}}}{2} = -\frac{1}{2}$$

$$\lim_{z\to\infty} \frac{1-c_{2}\sqrt{r_{1}}}{-\frac{1}{y}} = \lim_{y\to0} -\frac{c_{2}\sqrt{r_{1}}}{-\frac{1}{y}} = \lim_{y\to0} -\frac{c_{2}\sqrt{r_{1}}}{2} = -\frac{1}{2}$$

$$\lim_{z\to\infty} \frac{1-c_{2}\sqrt{r_{1}}}{-\frac{1}{y}} = \lim_{y\to0} -\frac{c_{2}\sqrt{r_{1}}}{2} = -\frac{1}{2}$$

$$\lim_{z\to\infty} \frac{1-c_{2}\sqrt{r_{1}}}{-\frac{1}{y}} = \lim_{z\to\infty} \frac{1-c_{2}\sqrt{r_{1}}}{-\frac{1}{y}}$$

$$\frac{c_{1}}{\sqrt{r_{1}}} = \lim_{z\to\infty} \frac{1-c_{2}\sqrt{r_{1}}}{\sqrt{r_{1}}} = \frac{c_{2}\sqrt{r_{1}}}{\sqrt{r_{1}}}$$

$$\frac{c_{1}}{\sqrt{r_{1}}} = \frac{c_{2}\sqrt{r_{1}}}{(1+x^{2}y^{2})^{2}} + \frac{c_{2}\sqrt{r_{1}}}{(1+x^{2}y^{2})^{2}} = \frac{1-x^{2}y^{2}}{(1+x^{2}y^{2})^{2}}$$

$$\frac{c_{1}}{\sqrt{r_{1}}} = \frac{(1+x^{2}y^{2})^{2}}{(1+x^{2}y^{2})^{2}} - (1-x^{2}y^{2}) \cdot 2(1+x^{2}y^{1})(2xy^{2})} = \frac{1-x^{2}y^{2}}{(1+x^{2}y^{1})^{2}}$$

$$= \frac{(1+x^{2}y^{1})^{2} - (2xy^{2})}{(1+x^{2}y^{2})^{4}} = \frac{(1-x^{2}y^{2})}{(1+x^{2}y^{2})^{4}}$$

- - -

--

ł

: