King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

CODE 001

Math 102CODE 001Final ExamThursday 7/6/2007Net Time Allowed: 165 minutes

Name:		
ID:	Sec:	

Check that this exam has $\underline{25}$ questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. The region bounded by the curves $y = 4x - x^2$ and $y = 8x - 2x^2$ is rotated about the line x = -4. Then the volume of the resulting solid is given by

(a)
$$2\pi \int_0^4 (x+4)(x^2-4x)dx$$

(b) $2\pi \int_{-4}^4 (x+4)(x^2-4x)dx$
(c) $2\pi \int_0^4 (x-4)(x^2-4x)dx$
(d) $2\pi \int_0^4 (x-4)(4x-x^2)dx$
(e) $2\pi \int_0^4 (x+4)(4x-x^2)dx$

2. The length of the curve $y = \frac{2}{3}(x^2 - 1)^{3/2}, 1 \le x \le 3$ is equal to

(a)
$$\frac{15}{4}$$

(b) $\frac{46}{3}$
(c) 4
(d) 15
(e) $\frac{22}{3}$

- 3. The improper integral $\int_0^1 \ln(2x) dx$ is
 - (a) equal to $+\infty$
 - (b) convergent and has the value $-1+\ln 2$
 - (c) equal to $-\infty$
 - (d) convergent and has the value $1 + \ln 2$
 - (e) convergent and has the value $1 \ln 2$

4.
$$\int_0^{\ln\sqrt{3}} \frac{1}{e^x + e^{-x}} dx =$$

(a)
$$\frac{\pi}{4}$$

- (b) $\sqrt{3} 1$
- (c) $\frac{\pi}{12}$
- (d) $\frac{\pi}{3}$
- (e) e 1

- 5. The area between the curves $y = \sin 2x$ and $y = \cos x$ from x = 0 to $x = \frac{\pi}{2}$ is equal to
 - (a) 0
 - (b) 1
 - (c) $\frac{1}{2}$
 - (d) $\frac{1}{4}$

(e)
$$\sqrt{3} - \frac{3}{2}$$

6. The indefinite integral $\int_0^{\pi/4} \frac{\sin 3x}{\cos x} dx$ is equal to

- (a) $1 + \ln \sqrt{2}$
- (b) $1 + \ln 2$
- (c) $1 + \sqrt{2}$
- (d) $1 \ln 2$
- (e) $1 \ln \sqrt{2}$

- 7. By recognizing the sum as a Riemann sum for a function defined on [0, 1], the value of the limit $\lim_{n\to\infty}\sum_{i=1}^n \frac{1}{n}e^{-i/n}$ is
 - (a) 0
 - (b) e 1
 - (c) 1
 - (d) -3
 - (e) $1 e^{-1}$

8. The integral
$$\int \frac{dx}{x+x^{3/2}}$$
 is equal to

- (a) $\ln x 2\ln(\sqrt{x} + 1) + C$
- (b) $\ln x \ln \sqrt{x} + 1 + C$
- (c) $\ln x + 2\ln(\sqrt{x} + 1) + C$
- (d) $\ln x 2\ln(\sqrt{x} 1) + C$
- (e) $\ln x + \ln(\sqrt{x} + 1) + C$

9. The value of
$$\int_0^1 x^3 \sqrt{1-x^2} \, dx$$
 is equal to

(a) $\frac{2}{15}$ (b) $\frac{2}{3}$ (c) $\frac{4}{15}$ (d) $\frac{1}{5}$ (e) $\frac{8}{15}$

10. The integral
$$\int \frac{dx}{1-\sin x}$$
 is equal to

- (a) $\cot x + \csc x + C$
- (b) $\tan x \sec x + C$
- (c) $\tan x + \csc x + C$
- (d) $\tan x + \sec x + C$
- (e) $\sec x \tan x + C$

11. The average value of $f(x) = \sqrt{9 - x^2}$ on [0, 3] is equal to

(a)
$$\frac{10\pi}{4}$$

(b) $\frac{3\pi}{16}$
(c) $\frac{3\pi}{4}$
(d) $\frac{9\pi}{16}$
(a) 2π

(e)
$$3\pi$$

12. If
$$F(x) = \int_3^{x^2} \frac{\tan^{-1}\sqrt{t}}{\sqrt{t}} dt$$
, $x > 0$, then $8F(\sqrt{3}) + 9F'(\sqrt{3}) =$

- (a) 6π
- (b) 8π
- (c) $17\sqrt{3}\pi$
- (d) 3π
- (e) $\sqrt{3}\pi$

13. The improper integral
$$\int_e^\infty \frac{dx}{x(\ln x)^2}$$

- (a) diverges
- (b) converges to 0
- (c) converges to $\frac{1}{e}$
- (d) converges to e
- (e) converges to 1

14. Consider the series
$$\sum_{n \ge 2} \frac{\cos^2 n}{n^2 + 2n + 1}$$

- (a) The series diverges
- (b) The series converges by alternating series test
- (c) The series converges and its sum is zero
- (d) The series converges and its sum is less than $\frac{1}{2}$

(e) The series converges with sum more than or equal to $\frac{1}{2}$

15. The series
$$\sum_{n=1}^{\infty} \frac{\cos(\pi n)}{n!}$$

- (a) converges conditionally
- (b) converges absolutely
- (c) is convergent to 0
- (d) is convergent to $\frac{1}{e}$
- (e) is divergent

- 16. The radius and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{2^n (x-3)^n}{\sqrt{n+3}}$ are respectively
 - (a) $\frac{1}{2}$ and $\left(\frac{5}{2}, \frac{7}{2}\right)$ (b) 1 and [2, 4) (c) $\frac{1}{2}$ and $\left[\frac{5}{2}, \frac{7}{2}\right)$
 - (d) 1 and (2,4)
 - (e) $\frac{1}{2}$ and $\left(\frac{5}{2}, \frac{7}{2}\right]$

17. The series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p}$$

- (a) converges for $p \le 0$
- (b) converges for all real numbers p
- (c) diverges for all p
- (d) converges only for p = 0
- (e) converges for p > 0

18. The limit of the sequence $\{n\sqrt[n]{e} - n\}_{n=1}^{+\infty}$

- (a) is equal to 1
- (b) is equal to 0
- (c) is equal to e
- (d) does not exist
- (e) is equal to -2

19. The series
$$\sum_{n=0}^{\infty} \frac{n!}{2 \cdot 5 \cdot 8 \cdots (3n+2)}$$

- (a) diverges by the test for divergence
- (b) diverges by comparison test
- (c) converges

(d)
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$

(e)
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$$

20. The series
$$\sum_{k=1}^{\infty} \left(1 + \frac{1}{k}\right)^{-k}$$

- (a) converges to e
- (b) diverges

(c) converges to
$$\frac{1}{e}$$

- (d) converges to 0
- (e) converges to 1

- 21. The value of *a* for which the series $\sum_{n=0}^{\infty} 4^n (3+a)^{-n}$ converges to 2 is equal to
 - (a) 5
 - (b) 1
 - (c) 3
 - (d) 0
 - (e) 6

- 22. If you want to use the integral test to test the series $\sum_{n=1}^{\infty} n e^{-n^2}$ for convergence, then your conclusion is
 - (a) the integral test is not applicable in this case
 - (b) the integral converges to $\frac{1}{2e}$
 - (c) the integral converges to 3e
 - (d) the integral diverges
 - (e) the integral converges to $\frac{1}{e^2}$

- 23. For x > 0, the series $\sum_{n=0}^{\infty} \frac{(-2)^n (\ln x)^n}{n!}$ converges to [Hint: Use the Maclaurin series of e^x]
 - (a) x
 - (b) e^x
 - (c) $\frac{1}{x}$
 - (d) $\frac{1}{x^2}$
 - (e) x^2

24. An integral for the area of the surface obtained by rotating the curve $y = \sec x$, $0 \le x \le \frac{\pi}{4}$ about the *y*-axis is

(a)
$$\int_0^{\pi/4} 2\pi y \sqrt{1 + (\sec^{-1} x \tan^{-1} x)^2} \, dx$$

(b)
$$\int_0^{\pi/4} 2\pi \sec^{-1} y \sqrt{1 + \frac{1}{y^2(y^2 + 1)}} \, dy$$

(c)
$$\int_{1}^{\sqrt{2}} 2\pi y \sqrt{1 + \frac{1}{y^2(y^2 - 1)}} \, dy$$

(d) $\int_{1}^{\sqrt{2}} 2\pi x \sqrt{1 + (\sec x \tan x)^2} \, dx$

(e)
$$\int_0^{\pi/4} 2\pi x \sqrt{1 + (\sec x \tan x)^2} \, dx$$

25. A power series representation for $f(x) = \frac{3x^3}{(x-3)^2}$ is given by

(a)
$$\sum_{n=1}^{\infty} \frac{x^{n+3}}{3^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n}{3^{n+2}} x^n$$

(c)
$$\sum_{n=1}^{\infty} n \left(\frac{x}{3}\right)^n$$

(d)
$$\sum_{n=1}^{\infty} \frac{n+2}{3^n} x^n$$

(e)
$$\sum_{n=1}^{\infty} \frac{n}{3^n} x^{n+2}$$