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1. The region bounded by the curves y = 4x − x2 and y =
8x−2x2 is rotated about the line x = −4. Then the volume
of the resulting solid is given by

2π
∫ 4

0
(x + 4)(x2 − 4x)dx(a)

2π
∫ 4

−4
(x + 4)(x2 − 4x)dx(b)

2π
∫ 4

0
(x− 4)(x2 − 4x)dx(c)

2π
∫ 4

0
(x− 4)(4x− x2)dx(d)

2π
∫ 4

0
(x + 4)(4x− x2)dx(e)

2. The length of the curve y =
2

3
(x2 − 1)3/2, 1 ≤ x ≤ 3 is

equal to

15

4
(a)

46

3
(b)

4(c)

15(d)

22

3
(e)
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3. The improper integral
∫ 1

0
ln(2x)dx is

equal to +∞(a)

convergent and has the value −1 + ln 2(b)

equal to −∞(c)

convergent and has the value 1 + ln 2(d)

convergent and has the value 1− ln 2(e)

4.
∫ ln

√
3

0

1

ex + e−x
dx =

π

4
(a)

√
3− 1(b)

π

12
(c)

π

3
(d)

e− 1(e)
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5. The area between the curves y = sin 2x and y = cos x from

x = 0 to x =
π

2
is equal to

0(a)

1(b)

1

2
(c)

1

4
(d)

√
3− 3

2
(e)

6. The indefinite integral
∫ π/4

0

sin 3x

cos x
dx is equal to

1 + ln
√

2(a)

1 + ln 2(b)

1 +
√

2(c)

1− ln 2(d)

1− ln
√

2(e)
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7. By recognizing the sum as a Riemann sum for a function

defined on [0, 1], the value of the limit lim
n→∞

n∑

i=1

1

n
e−i/n is

0(a)

e− 1(b)

1(c)

−3(d)

1− e−1(e)

8. The integral
∫ dx

x + x3/2 is equal to

ln x− 2 ln(
√

x + 1) + C(a)

ln x− ln
√

x + 1 + C(b)

ln x + 2 ln(
√

x + 1) + C(c)

ln x− 2 ln(
√

x− 1) + C(d)

ln x + ln(
√

x + 1) + C(e)
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9. The value of
∫ 1

0
x3
√

1− x2 dx is equal to

2

15
(a)

2

3
(b)

4

15
(c)

1

5
(d)

8

15
(e)

10. The integral
∫ dx

1− sin x
is equal to

cot x + csc x + C(a)

tan x− sec x + C(b)

tan x + csc x + C(c)

tan x + sec x + C(d)

sec x− tan x + C(e)
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11. The average value of f(x) =
√

9− x2 on [0, 3] is equal to

10π

4
(a)

3π

16
(b)

3π

4
(c)

9π

16
(d)

3π(e)

12. If F (x) =
∫ x2

3

tan−1
√

t√
t

dt, x > 0, then 8F (
√

3)+9F ′(
√

3) =

6π(a)

8π(b)

17
√

3π(c)

3π(d)

√
3π(e)
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13. The improper integral
∫ ∞
e

dx

x(ln x)2

diverges(a)

converges to 0(b)

converges to
1

e
(c)

converges to e(d)

converges to 1(e)

14. Consider the series
∑

n≥2

cos2 n

n2 + 2n + 1

The series diverges(a)

The series converges by alternating series test(b)

The series converges and its sum is zero(c)

The series converges and its sum is less than
1

2
(d)

The series converges with sum more than or equal to
1

2
(e)
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15. The series
∞∑

n=1

cos(πn)

n!

converges conditionally(a)

converges absolutely(b)

is convergent to 0(c)

is convergent to
1

e
(d)

is divergent(e)

16. The radius and interval of convergence of the series
∞∑

n=0

2n(x− 3)n

√
n + 3

are respectively

1

2
and

(
5

2
,
7

2

)
(a)

1 and [2, 4)(b)

1

2
and

[
5

2
,
7

2

)
(c)

1 and (2, 4)(d)

1

2
and

(
5

2
,
7

2

]
(e)



Math 102 Final Exam Page 9 of 13 001

17. The series
∞∑

n=1

(−1)n−1

np

converges for p ≤ 0(a)

converges for all real numbers p(b)

diverges for all p(c)

converges only for p = 0(d)

converges for p > 0(e)

18. The limit of the sequence {n n
√

e− n}+∞
n=1

is equal to 1(a)

is equal to 0(b)

is equal to e(c)

does not exist(d)

is equal to −2(e)
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19. The series
∞∑

n=0

n!

2 · 5 · 8 · · · (3n + 2)

diverges by the test for divergence(a)

diverges by comparison test(b)

converges(c)

lim
n→∞

∣∣∣∣∣
an+1

an

∣∣∣∣∣ = 1(d)

lim
n→∞

∣∣∣∣∣
an+1

an

∣∣∣∣∣ > 1(e)

20. The series
∞∑

k=1

(
1 +

1

k

)−k

converges to e(a)

diverges(b)

converges to
1

e
(c)

converges to 0(d)

converges to 1(e)
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21. The value of a for which the series
∞∑

n=0
4n(3+a)−n converges

to 2 is equal to

5(a)

1(b)

3(c)

0(d)

6(e)

22. If you want to use the integral test to test the series
∞∑

n=1
n e−n2

for convergence, then your conclusion is

the integral test is not applicable in this case(a)

the integral converges to
1

2e
(b)

the integral converges to 3e(c)

the integral diverges(d)

the integral converges to
1

e2(e)
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23. For x > 0, the series
∞∑

n=0

(−2)n(ln x)n

n!
converges to

[Hint: Use the Maclaurin series of ex]

x(a)

ex(b)

1

x
(c)

1

x2(d)

x2(e)

24. An integral for the area of the surface obtained by rotating
the curve y = sec x,

0 ≤ x ≤ π

4
about the y-axis is

∫ π/4

0
2πy

√
1 + (sec−1 x tan−1 x)2 dx(a)

∫ π/4

0
2π sec−1 y

√√√√1 +
1

y2(y2 + 1)
dy(b)

∫ √
2

1
2πy

√√√√1 +
1

y2(y2 − 1)
dy(c)

∫ √
2

1
2πx

√
1 + (sec x tan x)2 dx(d)

∫ π/4

0
2πx

√
1 + (sec x tan x)2 dx(e)
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25. A power series representation for f(x) =
3x3

(x− 3)2 is given

by

∞∑

n=1

xn+3

3n
(a)

∞∑

n=1

n

3n+2x
n(b)

∞∑

n=1
n

(
x

3

)n

(c)

∞∑

n=1

n + 2

3n
xn(d)

∞∑

n=1

n

3n
xn+2(e)


