## King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

CODE 001

Math 101 Exam 2 Term 082

CODE 001

Monday 18/5/2009 Net Time Allowed: 120 minutes

| Name: |      |  |
|-------|------|--|
|       |      |  |
| ID:   | Sec: |  |

Check that this exam has 20 questions.

## **Important Instructions:**

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. An equation of the tangent line to the curve  $y = \frac{x}{1 \ln(x 1)}$  at x = 2 is
  - (a) y = 3x 6
  - $(b) \quad y = 3x + 7$
  - (c) y = 3x 4
  - $(d) \quad y = \frac{1}{3}x + 2$
  - (e) y = -3x + 4

- 2. The <u>y-intercept</u> of the tangent line to the graph of  $y = \sin^{-1}\left(\frac{x}{2}\right)$  at x = 1 is
  - (a)  $\frac{5\pi}{6} \frac{\sqrt{3}}{3}$
  - (b)  $\frac{2\pi}{3} \sqrt{3}$
  - (c)  $\frac{\pi}{3} \sqrt{3}$
  - (d)  $\frac{\pi}{6} \frac{\sqrt{3}}{3}$
  - (e)  $\frac{\pi}{6} \frac{1}{3}$

- 3. If  $h(x) = \frac{1 + xf(x)}{g(x)}$ , g(2) = 1, g'(2) = 3, f'(2) = 5, and h'(2) = 6, then f(2) is equal to
  - (a) -1
  - (b)  $\frac{1}{5}$
  - (c) 5
  - (d) -5
  - (e)  $\frac{2}{5}$

- 4. If  $f(x) = (1 + x^{-1})^{-1}$ , then f'(x) =
  - (a) 1
  - $(b) \quad \frac{1}{(x+1)^2}$
  - (c)  $-\left(\frac{x}{x-1}\right)^2$
  - (d)  $\frac{x-1}{x}$
  - (e)  $\frac{-1}{(x+1)^2}$

- 5. If  $y \sin x = x^3 + \tan y$ , then  $\frac{dy}{dx} =$ 
  - (a)  $\frac{y\cos x 3x^2}{\sec^2 y \sin x}$
  - (b)  $\frac{y\sin x 3x^2}{\sec^2 y \sin x}$
  - (c)  $\frac{3x^2}{2y\sec y^2 \sin x}$
  - (d)  $\frac{3x^2 y\cos x}{\sec y \sin x}$
  - (e)  $\frac{3x^2}{\cos x}$

- 6. If  $y = \sqrt[3]{x^4} \frac{1}{\sqrt[4]{x^3}}$ , then  $\frac{dy}{dx}\Big|_{x=1} = \frac{1}{x^4}$ 
  - (a) 0
  - (b)  $\frac{7}{12}$
  - (c) 1
  - (d)  $-\frac{3}{4}$
  - (e)  $\frac{25}{12}$

- 7. Let  $f(x) = \cot(2x)$ . Using the definition of the derivative, we get  $f'\left(\frac{\pi}{4}\right) =$ 
  - (a)  $\lim_{x \to \frac{\pi}{4}} \frac{4 \cot(2x)}{4x \pi}$
  - (b)  $\lim_{h \to 0} \frac{\cot\left(\frac{\pi}{2} + h\right)}{h \frac{\pi}{4}}$
  - (c)  $\lim_{x \to \frac{\pi}{4}} \frac{\cot(2x) + 1}{4x \pi}$
  - (d)  $\lim_{h \to 0} \frac{\cot\left(\frac{\pi}{4} + 2h\right) 2}{h}$
  - (e)  $\lim_{x \to \frac{\pi}{4}} \frac{\cot x 1}{x \frac{\pi}{4}}$

- 8. If  $y = xe^{cx}$ , where c is a constant, then  $y^{(4)} =$ 
  - (a)  $c^3xe^{cx} + 2c^2e^{cx}$
  - (b)  $x^4 e^{4cx}$
  - $(c) \quad c^4 x e^{cx} + 4c^3 e^{cx}$
  - $(d) \quad 4c^3xe^{cx} + c^3e^{cx}$
  - (e)  $c^4 x e^{cx} + 3c^3 e^{cx}$

- 9. The value of the limit  $\lim_{x\to 0} \frac{\sin x \tan(3x)}{x^3 + 2x^2}$ 
  - (a) is equal to  $\frac{3}{2}$
  - (b) does not exist
  - (c) is equal to 3
  - (d) is equal to 0
  - (e) is equal to 1

- 10. If  $f(x) = \frac{|x|}{\sqrt{2-x^2}}$ , then f'(-1)
  - (a) does not exist
  - (b) is equal to -1
  - (c) is equal to 2
  - (d) is equal to -2
  - (e) is equal to 1

11. If 
$$f(x) = \log_{10} \sqrt[3]{\frac{x^2}{(x-1)^4}}$$
, then  $f'(2) =$ 

- (a)  $\frac{-\ln 10}{3}$
- $(b) \quad \frac{-1}{3\ln 10}$
- (c)  $-2 \ln 10$
- $(d) \quad \frac{-1}{\ln 10}$
- (e)  $\frac{-3}{\ln 10}$

12. If 
$$f(x) = \sqrt{x + \sqrt{3x + \sqrt{x}}}$$
, then  $f'(1) =$ 

- (a)  $\frac{1}{\sqrt{3}}$
- (b)  $\frac{7}{8\sqrt{3}}$
- (c) 3
- $(d) \quad \frac{5}{2\sqrt{3}}$
- (e)  $\frac{15}{16\sqrt{3}}$

13. The equation of motion of a particle moving in a straight line is given by

$$s(t) = t^3 - 12t + 3, \quad t \ge 0.$$

The particle is **speeding up** when

- (a) 0 < t < 6
- (b) t > 1
- (c) 1 < t < 2
- (d) 0 < t < 2
- (e) t > 2

- 14. The function  $f(x) = x^3(x^2 2x)^5$  has horizontal tangent lines at
  - (a) Six points
  - (b) Three points
  - (c) Four points
  - (d) Five points
  - (e) Two points

- 15. The slope of the tangent line to the curve  $2(x^2 + y^2)^2 = 25(x^2 y^2)$  at the point (3,1) is
  - (a)  $\frac{9}{13}$
  - (b)  $\frac{-9}{13}$
  - (c) -3
  - (d)  $\frac{6}{13}$
  - $(e) \quad 0$

- 16. If the line 3x + y = b is tangent to the parabola  $y = ax^2$  when x = -2, then 4a + b =
  - (a) 1
  - (b) -2
  - $(c) \quad 0$
  - (d) 3
  - (e) 5

17. If  $y = x^{99}(x+8)$ , then  $\frac{d^{100}y}{dx^{100}} =$ 

- (a) 99!
- (b)  $99! + 8 \cdot (98!)$
- $(c) \quad 0$
- (d) 100
- (e) 100!

18. If  $\frac{d}{dx}[f(2x)] = x^2$ , then f'(6) =

- (a)  $\frac{9}{2}$
- (b)  $\frac{1}{2}$
- (c) 6
- (d) 3
- (e) 9

19. If 
$$y = x - 2 \tan^{-1} \left( \frac{\sin x}{1 + \cos x} \right)$$
, then  $\frac{dy}{dx} =$ 

- $(a) \quad \frac{1}{(1+\cos x)^2}$
- (b)  $\frac{2}{1 + \cos x}$
- (c) 0
- (d)  $\frac{\cos x}{1 + \cos x}$
- (e) 1

20. If 
$$y = \left[\sin\left(\frac{1}{x}\right)\right]^x$$
, then  $\frac{xy'}{y} =$ 

(a) 
$$-\csc\left(\frac{1}{x}\right) + x\ln\left(\sin\left(\frac{1}{x}\right)\right)$$

(b) 
$$\frac{1}{x}\cot\left(\frac{1}{x}\right) + \ln\left(\sin\left(\frac{1}{x}\right)\right)$$

(c) 
$$x^2 \csc\left(\frac{1}{x}\right) + x \ln\left(\sin\left(\frac{1}{x}\right)\right)$$

(d) 
$$\ln\left(\sin\left(\frac{1}{x}\right)\right) - \cot\left(\frac{1}{x}\right)$$

(e) 
$$x \ln \left( \sin \left( \frac{1}{x} \right) \right) - \cot \left( \frac{1}{x} \right)$$

| Q  | MM | V1 | V2 | V3 | V4 |
|----|----|----|----|----|----|
| 1  | a  | С  | b  | d  | е  |
| 2  | a  | d  | С  | b  | С  |
| 3  | a  | b  | b  | b  | a  |
| 4  | a  | b  | е  | d  | e  |
| 5  | a  | a  | е  | С  | a  |
| 6  | a  | е  | d  | d  | d  |
| 7  | a  | a  | С  | С  | a  |
| 8  | a  | С  | С  | b  | d  |
| 9  | a  | a  | d  | d  | a  |
| 10 | a  | d  | е  | a  | е  |
| 11 | a  | d  | С  | С  | e  |
| 12 | a  | е  | c  | d  | a  |
| 13 | a  | е  | е  | b  | е  |
| 14 | a  | b  | a  | d  | e  |
| 15 | a  | b  | е  | С  | c  |
| 16 | a  | С  | b  | a  | b  |
| 17 | a  | е  | d  | d  | С  |
| 18 | a  | a  | d  | b  | a  |
| 19 | a  | С  | С  | е  | a  |
| 20 | a  | e  | e  | e  | e  |