1. (a) [3 points] Write the following statement as a limit:

"f(x) increases without bound as x approaches a from the left".

(b) [4 points] TRUE or FALSE: "If f has a domain $[0, +\infty)$ and has no horizontal asymptote, then $\lim_{x \to +\infty} f(x) = +\infty$ or $\lim_{x \to +\infty} f(x) = -\infty$ ".

[If TRUE, state the reason. If FALSE, illustrate graphically].

(c) [7 points] Sketch the graph of a function f that satisfies the following conditions:

ii.
$$\lim_{x \to 1^{-}} f(x) = 4$$

ii.
$$\lim_{x \to -1^{-}} f(x) = 4$$
iii.
$$\lim_{x \to -1^{+}} f(x) = -\infty$$

iv. f(3) is undefined

v.
$$\lim_{x \to 3} f(x) = 2$$

v.
$$\lim_{x\to 3} f(x) = 2$$

vi. $\lim_{x\to +\infty} f(x) = +\infty$

vii.
$$\lim_{x \to -\infty} f(x) = 0$$

2. Find the limit if it exists.

(a) **[6 points]**
$$\lim_{x \to -4} \frac{x^3 - 16x}{x + 4}$$

(b) [6 points]
$$\lim_{x\to 12} \frac{|12-x|}{x-12}$$

(c) [6 points]
$$\lim_{x\to 3} g(x)$$
, where $2x - 1 \le g(x) \le x^2 - 5x + 11$

(d) **[6 points]**
$$\lim_{x\to 6^+} \tan^{-1}(\ln(x-6))$$

3. [8 points] Using the ϵ, δ definition of limit, prove that $\lim_{x \to 1} \left(-1 + \frac{3}{2} x \right) = \frac{1}{2}$

4. [8 points] Let $f(x) = \begin{cases} \sqrt{x+2} & \text{if } -2 \le x \le 2 \\ x^3 - 2x & \text{if } x > 2. \end{cases}$ Is f continuous at x = 2. If not, what kind of discontinuity does f have at x = 2. Justify your answers.

5. [6 points] Where is the function $f(x) = \frac{1}{3 - \sqrt{x}}$ continuous?

6. [8 points] Show that the equation $e^{-x} = 2 - x$ has a root in the interval (1, 2).

7. (a) [8 **points**] Find $\lim_{x \to +\infty} (\sqrt{x^2 + 1} - x)$.

(b) [8 points] Find the horizontal asymptotes of $f(x) = e^{x-x^2}$.

8. [8 points] Find an equation of the tangent line to the curve $y = \frac{1}{x^2 - x}$ at the point $\left(2, \frac{1}{2}\right)$. [You must use limits]

- 9. The displacement (in meters) of a particle moving in a straight line is given by the equation $s(t) = 3t^2 4t + 1$, where t is measured in seconds.
 - (a) [2 points] Find the average velocity over the time interval [0, 3].

(b) [6 points] Use limits to find the instantaneous velocity when t=2.