$$1. \qquad \int_{1}^{4} \left(\frac{3\sqrt{x} - 5}{\sqrt{x}} \right) dx =$$

- (a) -1
- (b) $\frac{1}{2}$
- (c) $-\frac{3}{2}$
- (d) $\frac{5}{2}$
- (e) $-\frac{1}{2}$

2. If
$$f(x) = \begin{cases} 3^x & 0 \le x \le 1 \\ 3x^2 + 1 & 1 < x \le 2 \end{cases}$$
, then $\int_0^2 f(x) dx = \int_0^2 f(x) d$

- (a) $8 + \frac{2}{\ln 3}$
- (b) $8 + \frac{3}{\ln 3}$
- (c) $10 + \frac{1}{\ln 3}$
- (d) $8 \frac{2}{\ln 3}$
- (e) $6 + \frac{4}{\ln 3}$

- The Riemann sum for $f(x) = \frac{15}{x}$, $1 \le x \le 3$ with four subintervals, 3. taking the sample points to be right endpoints, is equal to
 - (a) $\frac{57}{4}$

 - (b) $\frac{29}{4}$ (c) $\frac{63}{4}$ (d) $\frac{59}{8}$ (e) $\frac{63}{8}$

$$4. \int \frac{\cos \theta + \cos \theta \cot^2 \theta}{\csc^2 \theta} d\theta =$$

- (a) $\sin \theta + c$
- (b) $\tan \theta + c$
- (c) $\cot \theta + c$
- (d) $\cos \theta + c$
- (e) $\csc \theta + c$

- 5. The limit $\lim_{n\to\infty} \sum_{i=1}^n \frac{\pi}{4n} \tan\left(\frac{\pi i}{4n} + \frac{\pi}{3}\right)$ can be interpreted as the area under the graph of the function
 - (a) $y = \tan\left(x + \frac{\pi}{3}\right), \quad 0 \le x \le \frac{\pi}{4}$
 - (b) $y = \tan \frac{1}{4} \left(x + \frac{\pi}{3} \right), \quad 0 \le x \le \frac{\pi}{4}$
 - (c) $y = \tan\left(\frac{x}{4} + \frac{\pi}{3}\right), \quad 0 \le x \le \frac{\pi}{4}$
 - (d) $y = \frac{\pi}{3} + \tan x$, $0 \le x \le \frac{\pi}{4}$
 - (e) $y = \tan\left(x + \frac{\pi}{3}\right), \quad \frac{\pi}{4} \le x \le \frac{\pi}{3}$

- 6. An expression for the area under the graph of $f(x) = 4x x^2$, $2 \le x \le 4$, as a limit and using right endpoints is
 - (a) $\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{8}{n} \frac{8}{n^3} i^2 \right)$
 - (b) $\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{8}{n} \frac{4}{n}i \frac{8}{n^3}i^2 \right)$
 - (c) $\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{12}{n} \frac{16}{n^3} i^2 \right)$
 - (d) $\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{4}{n} \frac{8}{n^3} \frac{16}{n^3} i^2 \right)$
 - (e) $\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{8}{n} + \frac{16}{n^3} i^2 \right)$

7.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{i}{n} + 2 \right)^2 \frac{1}{n} =$$

- (a) $\frac{19}{3}$
- (b) $\frac{29}{6}$ (c) $\frac{31}{3}$
- (d) $\frac{19}{6}$
- (e) $\frac{38}{3}$

The slope of the tangent line to the graph of the function 8.

$$f(x) = \int_{\tan x}^{1} \frac{1}{\sqrt{1+t^2}} dt$$
 at $x = \frac{\pi}{3}$ is equal to

- (a) -2
- (b) $\frac{1}{2}$
- (c) $-\sqrt{3}$
- (d) $-\frac{1}{2}$
- (e) 2

- 9. Which one of the following integrals **exists** according to the Fundamental Theorem of Calculus?
 - (a) $\int_0^{\pi/4} \cot\left(x + \frac{\pi}{2}\right) dx$
 - (b) $\int_0^1 \ln x \ dx$
 - (c) $\int_{\pi/4}^{\pi} \sec x \ dx$
 - (d) $\int_{-5}^{5} \frac{2}{x^7} dx$
 - (e) $\int_0^2 \frac{e^{x-1}}{(x-1)^2} dx$

- 10. If a particle moves along a line so that its velocity at time t is v(t) = 3t 3 (measured in meters per second), then the distance (in meters), traveled by the particle during the time period $\frac{1}{2} \le t < 2$ is equal to
 - (a) $\frac{15}{8}$
 - (b) $\frac{9}{8}$
 - (c) $\frac{11}{4}$
 - $(d) \quad \frac{13}{4}$
 - (e) $\frac{17}{8}$

11.
$$\int \frac{5}{\sqrt{x}(3\sqrt{x}+4)^{3/5}} \, dx =$$

- (a) $\frac{25}{3}(3\sqrt{x}+4)^{2/5}+c$
- (b) $\frac{25}{6}x^{2/5} + \frac{25}{8}x^{1/2} + c$
- (c) $\frac{1}{75}(3\sqrt{x}+4)^{2/5}+c$
- (d) $\frac{25}{6}x^{2/5} + \frac{25}{16}x^{1/2} + c$
- (e) $25(3\sqrt{x}+4)^{2/5}+c$

- 12. Which one of the following statements is **FALSE** about the function $f(x) = \int_1^x \frac{1}{t} dt$, x > 0?
 - (a) $f(x_1 + x_2) = f(x_1) + f(x_2)$ for all $x_1, x_2 > 0$
 - (b) f is increasing for all x > 0
 - (c) $\lim_{x \to 0^+} f(x) = -\infty$
 - (d) $e^{f(e)} = e$
 - (e) The graph of f is concave downward for all x > 0.

- 13. The area enclosed by the line 2x + y = 1 and the parabola $y = 4 x^2$ is given by the definite integral
 - (a) $\int_{-1}^{3} (3 + 2x x^2) dx$
 - (b) $\int_{-5}^{3} \left(\frac{1}{2} (1-y) \sqrt{4-y} \right) dy$
 - (c) $\int_{-1}^{3} (x^2 2x 3) dx$
 - (d) $\int_{-5}^{4} \left(\frac{1}{2} (1-y) \sqrt{4-y} \right) dy$
 - (e) $\int_{-3}^{1} (3 2x + x^2) dx$

14. The volume of the solid obtained by rotating the region bounded by the graphs of $y^2 = x$ and y = x - 2, about the y-axis is given by the definite integral

(a)
$$\pi \int_{-1}^{2} (4 + 4y + y^2 - y^4) dy$$

(b)
$$\pi \int_{1}^{4} (x^2 - 3x + 4) dx$$

(c)
$$\pi \int_{-1}^{2} (4 - 4y - y^2 - y^4) dy$$

(d)
$$\pi \int_{1}^{4} (x^2 + 3x - 4) dx$$

(e)
$$\pi \int_{-2}^{1} (4 - 4y + y^2 - y^4) dy$$

- 15. The volume of the solid obtained by rotating the region bounded by the graphs of $y=-\frac{1}{x},\ y=\frac{1}{x},\ x=1,\ \text{ and }\ x=2,\ \text{ about }\ y=1,\ \text{ is equal to}$
 - (a) $4\pi \ln 2$
 - (b) $4\pi \ln 2 + 1$
 - (c) $\pi \ln 2$
 - (d) $\pi \ln 2 + 4$
 - (e) $8\pi \ln 2$

- 16. The value of $\int_{1}^{2} x \left(e^{x^{2}-1} \frac{1}{2x}\right) dx$ is equal to
 - (a) $\frac{1}{2}e^3 1$
 - (b) $3e^3 1$
 - (c) $\frac{1}{2}e^3 e 1$
 - (d) $\frac{1}{2}e^3 e^2 + e 1$
 - (e) $\frac{1}{2}e^3 \ln 2$

17. Which one of the following inequalities is **TRUE**?

(a)
$$\int_{\pi/16}^{\pi/8} \cos^2 x \, dx \ge \int_{\pi/16}^{\pi/8} \cos^3 x \, dx$$

(b)
$$\int_{\pi/16}^{\pi/8} \sin^3 x \ dx \ge \int_{\pi/16}^{\pi/8} \sin^2 x \ dx$$

(c)
$$\int_{\pi/16}^{\pi/8} \tan x \, dx \ge \int_{\pi/16}^{\pi/8} \cot x \, dx$$

(d)
$$\int_{\pi/16}^{\pi/8} \sin x \, dx \ge \int_{\pi/16}^{\pi/8} \cos x \, dx$$

(e)
$$\int_{\pi/16}^{\pi/8} (\sin x - 1) \ dx \ge 0$$

18. The value of $\int_{-2}^{2} (x^3 + 1)\sqrt{4 - x^2} dx$ is equal to

[Hint: One term of the integral may be interpreted as an area].

- (a) 2π
- (b) 4π
- (c) $3\pi 2$
- (d) $\pi + 2$
- (e) $\frac{1}{2}\pi 4$

- 19. The area enclosed by the graphs of $y = \sin x$, $y = \sin 2x$, x = 0 $x = \frac{\pi}{2}$ is equal to
 - (a) $\frac{1}{2}$
 - (b) 1

 - (c) $\frac{3}{2}$ (d) $\frac{3}{4}$ (e) $\frac{3}{8}$

- Let S be a solid whose base is enclosed by the graphs of $y = x^2$ and 20. y = 1 and whose cross-sections perpendicular to the y-axis are squares. Then the volume of S is
 - (a) 2
 - (b) 4
 - (c) $\frac{3}{2}$
 - (d) $2\sqrt{2}$
 - (e) 8