

- 1. Using the method of cylindrical shells, set up, but do not evaluate, an integral for the volume of the solid obtained by rotating
 - (a) [7 points] the region bounded by the curves $y = \sqrt{x}$, y = x 2 and y = 0 about the x-axis. [Sketch the region and a typical rectangle].

(b) [7 points] the region bounded by the circle $x^2 + y^2 = 1$ about the line x = -1. [Sketch the region and a typical rectangle].

2. [5 points] Find the average value of the function $f(t) = \tan t \sec t$ over the interval $\left[0, \frac{\pi}{4}\right]$.

3. Determine whether the integral is convergent or divergent. If it is convergent, find its value.

(a) **[6 points]**
$$\int_0^9 \frac{1}{x\sqrt{x}} \, dx$$
.

(b) [8 points] $\int_0^{+\infty} x e^{-10x} dx$.

4. [6 points] Determine whether the sequence $\left\{\frac{(-1)^n\sqrt{n}}{n+7}\right\}_{n=1}^{+\infty}$ is convergent or divergent. If it is convergent, find its limit.

5. [7 points] Use geometric series to write the number

$$1.2\overline{13} = 1.2131313...$$

as a ratio of two integers.

6. Evaluate the following integrals:

(a) [9 **points**]
$$\int x(\ln x)^2 dx$$
.

(b) [10 points] $\int \frac{x^3}{\sqrt{4-x^2}} dx$.

(c) [12 points]
$$\int \frac{x^3 + 1}{x^3 + x} dx$$
.

(d) [10 points] $\int \frac{\sec x}{2 + \tan x} dx$. Hint: Use the substitution $t = \tan \left(\frac{x}{2}\right)$.

7. Determine whether the series is convergent or divergent. If it is convergent, find its sum.

(a) [6 points]
$$\sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^{\frac{1}{n^2}}$$
.

(b) [7 points] $\sum_{n=1}^{+\infty} [\tan^{-1}(2n-1) - \tan^{-1}(2n+1)]$.