King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Calculus II FINAL EXAM Semester II, Term 082 Monday, June 22, 2009

EXAM COVER

Number of versions: 4 Number of questions: 28

Number of Answers: 5 per question

King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Calculus II
FINAL EXAM
Semester II, Term 082
Monday, June 22, 2009
Net Time Allowed: 180 minutes

MASTER VERSION

1. The average value of the function $f(x) = \cos^4 x \sin x$ over $[0, \pi]$ is

- (a) $\frac{2}{5\pi}$
- (b) $\frac{2}{\pi}$
- (c) $\frac{2}{5}$
- (d) $\frac{5\pi}{2}$
- (e) $\frac{2}{3}$

- $2. \qquad \int \tan^4 x \ dx =$
 - (a) $\frac{1}{3}\tan^3 x \tan x + x + c$
 - (b) $\frac{1}{3}\tan^3 x + \tan x \sec x + c$
 - (c) $\ln|\sec x + \tan x| + \tan^3 x + c$
 - (d) $\ln|\csc x \sec x| + \tan x + c$
 - (e) $\sec^3 x + 3\sec^2 x + c$

- 3. The series $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n}}$ is
 - (a) divergent
 - (b) convergent to 0.1
 - (c) convergent to 100
 - (d) convergent to 0.01
 - (e) convergent to 0.001

- 4. For what values of p, is the series $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{p-4}}$ convergent?
 - (a) p > 4
 - (b) p > 1
 - (c) $p \ge 4$
 - (d) p < 4
 - (e) $p \le 4$

5.
$$\int \frac{1}{x^2 \sqrt{25 - x^2}} \, dx =$$

(a)
$$\frac{-1}{25} \frac{\sqrt{25 - x^2}}{x} + c$$

(b)
$$\frac{1}{125} \frac{\sqrt{25 - x^2}}{x} + c$$

(c)
$$\frac{-1}{5} \frac{\sqrt{25 - x^2}}{x} + c$$

(d)
$$\frac{1}{5} \frac{\sqrt{25 - x^2}}{x} + c$$

(e)
$$\frac{\sqrt{25-x^2}}{x} + c$$

6. The radius of convergence of the power series $\sum_{n=0}^{+\infty} \frac{(x-1)^n}{3^n}$ is

(a)
$$R = 3$$

(b)
$$R = 1$$

(c)
$$R = \frac{1}{3}$$

(d)
$$R = \infty$$

(e)
$$R = 0$$

7.
$$\int \frac{x^2 - x + 6}{x^3 + x} \, dx =$$

(a)
$$6 \ln |x| - \frac{5}{2} \ln(x^2 + 1) - \tan^{-1}(x) + c$$

(b)
$$6 \ln |x| - \frac{5}{2} \ln(x^2 + 1) + \tan^{-1}(x) + c$$

(c)
$$6 \ln |x| - \frac{5}{2} \ln(x^2 + 1) - \sin^{-1}(x) + c$$

(d)
$$\ln|x| - \frac{1}{2}\ln(x^2 + 1) - \tan^{-1}(x) + c$$

(e)
$$-\frac{5}{2}\ln(x^2+1) - \tan^{-1}(x) + c$$

$$8. \qquad \int_1^3 \frac{\sqrt{x}}{x^2 + x} dx =$$

- (a) $\frac{\pi}{6}$
- (b) $\frac{\pi}{3}$
- (c) 2π
- (d) 5π
- (e) $\frac{5\pi}{4}$

- 9. The area of the region enclosed by the graphs of y = x 1 and $x = (y 1)^2$ is equal to
 - (a) $\frac{9}{2}$
 - (b) 9
 - (c) 3
 - (d) $\frac{8}{3}$
 - (e) 8

- 10. The improper integral $\int_0^{\pi/2} \frac{\cos x}{1 \sin x} dx$
 - (a) diverges
 - (b) converges and has the value 0
 - (c) converges and has the value $\frac{\pi}{4}$
 - (d) converges and has the value π
 - (e) converges and has the value $\frac{\pi}{2}$

- 11. The area of the surface obtained by rotating the curve $y = x^3$, $0 \le x \le 1$ about the x-axis is
 - (a) $\frac{\pi}{27}(10\sqrt{10}-1)$
 - (b) $\frac{\pi}{27}(145\sqrt{145}-1)$
 - (c) $\frac{\pi}{18}(10\sqrt{10}-1)$
 - (d) $\frac{\pi}{18}(145\sqrt{145}-1)$
 - (e) $\frac{\pi}{27}$

- 12. The sum of the series $\sum_{n=1}^{\infty} \left[\frac{3}{n(n+1)} + \frac{1}{2^n} \right]$ is equal to
 - (a) 4
 - (b) 3
 - (c) 2
 - (d) 1
 - (e) 5

- 13. The volume of the solid obtained by rotating the region enclosed by the curves $y = \cosh x$, $y = \sinh x$, x = 0 and x = 5, about the x-axis, is (Hint: $\cosh x \sinh x > 0$)
 - (a) 5π
 - (b) $\frac{\pi}{5}$
 - (c) $\frac{5\pi}{2}$
 - (d) π
 - (e) $\frac{\pi}{5} 1$

- 14. Which one of the following statements is TRUE about the alternating series $\sum_{n=1}^{+\infty} (-1)^{n-1} a_n$, where $a_n = \frac{2n}{3n+1}$?
 - (a) The series is divergent
 - (b) The series is absolutely convergent
 - (c) The series is conditionally convergent
 - (d) $a_{n+1} \le a_n$ for all n
 - (e) $\sum_{n=1}^{+\infty} (-1)^{n-1} a_n = \frac{2}{3}$

- 15. How many terms of the series $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^3}$ do we need to add in order to ensure that the sum is accurate to within 0.001? (minimum number of terms)
 - (a) 9
 - (b) 10
 - (c) 100
 - (d) 99
 - (e) 1000

- 16. By applying the Ratio Test to the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{1+n^2}$, we conclude that the
 - (a) test fails
 - (b) series is convergent
 - (c) series is absolutely convergent
 - (d) series is conditionally convergent
 - (e) series is divergent

- 17. The interval of convergence of the power series $\sum_{n=1}^{+\infty} \frac{(2x-3)^n}{n4^{2n}}$ is
 - (a) $\left[-\frac{13}{2}, \frac{19}{2}\right)$
 - (b) $\left(-\frac{13}{2}, \frac{19}{2}\right)$
 - (c) $\left(-\frac{13}{2}, \frac{19}{2}\right]$
 - (d) $\left[-\frac{13}{2}, \frac{19}{2} \right]$
 - (e) $\left[\frac{13}{2}, \frac{19}{2}\right)$

- 18. By applying the Root Test to the series $\sum_{n=1}^{\infty} \frac{(-1)^n n^n}{3^{1+3n}}$, we conclude that the
 - (a) series is divergent
 - (b) test fails
 - (c) series is convergent
 - (d) series is absolutely convergent
 - (e) series is conditionally convergent

- 19. The Taylor series of $f(x) = \frac{1}{x}$ about x = 2 is
 - (a) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} (x-2)^n$
 - (b) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} (x-2)^n$
 - (c) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} (x-2)^{n+1}$
 - (d) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} (x+2)^n$
 - (e) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} (x+2)^n$

- 20. The coefficient of x^4 in the Maclaurin series of $\cos^2 x$ is
 - (a) $\frac{1}{3}$
 - (b) $\frac{2}{3}$
 - (c) 2
 - (d) $\frac{1}{2}$
 - (e) $\frac{1}{4}$

- 21. Let us consider the series $\sum_{n=1}^{\infty} \frac{1}{n(1+\ln^2 n)}$. Then the integral test
 - (a) implies that the series converges
 - (b) is not applicable because of the continuity condition
 - (c) implies that the series diverges
 - (d) is not applicable because of the decreasing condition
 - (e) is not applicable because of the positivity condition

- 22. Let us consider the sequence $\{\tan^{-1}(-3n)\}$. Then the sequence
 - (a) converges and its limit is $-\frac{\pi}{2}$
 - (b) converges and its limit is 0
 - (c) converges and its limit is $\frac{\pi}{2}$
 - (d) diverges
 - (e) converges and its limit is -1

- 23. The sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{4^{2n+1}(2n+1)!}$ is
 - (a) $\frac{1}{\sqrt{2}}$
 - (b) $\sqrt{2}$
 - (c) $\frac{1}{2}$
 - (d) $\frac{\sqrt{3}}{2}$
 - (e) $\sqrt{3}$

- 24. $\lim_{h \to 0} \frac{1}{h} \int_{2}^{2+h} \sqrt{1+t^3} dt$
 - (a) is equal to 3
 - (b) is equal to 4
 - (c) is equal to -3
 - (d) is equal to 0
 - (e) does not exist

- 25. The volume of the solid obtained by rotating the region enclosed by $y=\frac{1}{x^2+2x+2},\ x=1,\ x=2,$ about the line x=-1 is
 - (a) $\pi \ln 2$
 - (b) $2\pi \ln 2$
 - (c) $\pi \ln 2 2\pi (\tan^{-1} 3 \tan^{-1} 2)$
 - (d) $2\pi(\tan^{-1}3 \tan^{-1}2)$
 - (e) $\pi(\tan^{-1} 2 \tan^{-1} 3)$

- 26. $\int_0^{\pi^2/4} \cos \sqrt{x} \, dx =$
 - (a) $\pi 2$
 - (b) $\frac{\pi}{2} 1$
 - (c) $\frac{\pi}{2} \frac{1}{2}$
 - (d) $\frac{\pi^2}{4} 1$
 - (e) $\frac{\pi}{4} 1$

- 27. The arc length of the curve $y = x^2 \frac{1}{8} \ln x$, $1 \le x \le 3$ is equal to
 - (a) $8 + \frac{1}{8} \ln 3$
 - (b) $3 + \frac{1}{3} \ln 8$
 - (c) $8 + \ln 3$
 - (d) $3 + \ln 8$
 - (e) $-8 + \frac{1}{8} \ln 3$

- 28. The power series representation for the function $f(x) = \frac{x}{(x-2)^2}$ is (Hint: You may use differentiation)
 - (a) $\sum_{n=0}^{\infty} \frac{n+1}{2^{n+2}} x^{n+1}$
 - (b) $\sum_{n=0}^{\infty} \frac{n+1}{2^{n+2}} x^n$
 - (c) $\sum_{n=0}^{\infty} \frac{n+1}{2^{n+1}} x^{n+1}$
 - (d) $\sum_{n=0}^{\infty} \frac{n}{2^n} x^n$
 - (e) $\sum_{n=0}^{\infty} \frac{n+1}{2} x^{n+1}$