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paper and in the upper left corner of the answer sheet.

5. When bubbling your ID number and Section number, be sure that the
bubbles match with the numbers that you write.

6. The Test Code Number is already bubbled in your answer sheet. Make
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1. Which one of the following is TRUE?

+∞∑

n=1

1

ne−2 is convergent(a)

+∞∑

n=1

1

n0.999 is convergent(b)

+∞∑

n=1

1

nπ/4 is divergent(c)

+∞∑

n=1

1

n
√

2
is divergent(d)

+∞∑

n=1

1

nπ−2 is divergent(e)

2.
∫ (

1− 1

x

)2
dx =

x− 2 ln |x| − 2

x3 + C(a)

x− 1

x
− 2 ln |x|+ C(b)

1

3

(
1− 1

x

)3
+ C(c)

1− 1

x
+ C(d)

x +
1

x
− 2 ln |x|+ C(e)
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3.
∫ π/2

0

cos t

1 + sin2 t
dt =

1(a)

ln 2(b)

π

4
(c)

0(d)

π

3
(e)

4. The first four terms of the Taylor series of f(x) = 4 + ln x
about a = 1 are given by

4 + x− 1

2
x2 +

1

3
x3(a)

4 + (x + 1)− (x + 1)2 + 2(x + 1)3(b)

4 + (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3(c)

4 + 5(x− 1)− 3

2
(x− 1)2 + (x− 1)3(d)

4 + (x− 1)− (x− 1)2 + 2(x− 1)3(e)
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5. If f is a continuous function and F (x) =
∫ x3

1
f( 3
√

t) dt,

then F ′(x) =

3x2 f( 3
√

x)(a)

1

3
x−2/3 f( 3

√
x)(b)

1

3x2 f(x)(c)

3x2 f(x)(d)

f(x)− f(1)(e)

6.
∫

tan3(2x) sec5(2x) dx =

tan7(2x)

14
− tan5(2x)

10
+ C(a)

sec7(2x)

7
− sec5(2x)

5
+ C(b)

sec7(2x)

14
− sec5(2x)

10
+ C(c)

tan4(2x)

4
− sec6(2x)

6
+ C(d)

sec6(2x)− sec4(2x) + C(e)
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7.
∫ e7

e

dx

x
√

2 + 2 ln x
dx =

10(a)

2(b)

6(c)

4(d)

8(e)

8.
∫

x ln x dx =

1

2
x2 ln x− 1

2
x2 + C(a)

1

2
x2 ln x− 1

4
x2 + C(b)

x ln x +
1

2
x2 + C(c)

1

2
x2 ln x +

1

2
x(ln x)2 + C(d)

1

2
(ln x)2 + C(e)
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9. The area of the region bounded by the parabolas
y = (x + 1)2 and y2 = x + 1 is equal to

2

3
(a)

4

3
(b)

1

3
(c)

1(d)

5

3
(e)

10. The form of the partial fraction decomposition of
x3 + 1

x2(x2 + 4)2

is

A

x
+

B

x2 +
C

(x + 2)2 +
D

(x− 2)2(a)

A

x2 +
B

x2 + 4
+

Cx + D

(x2 + 4)2(b)

A

x
+

B

x2 +
Cx + D

x2 + 4
+

Ex + F

(x2 + 4)2(c)

A

x
+

B

x2 +
C

x2 + 4
+

D

(x2 + 4)2(d)

Ax + B

x2 +
Cx + D

(x2 + 4)2(e)
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11. The series
+∞∑

n=1

2n + (−1)n−1

3n

diverges(a)

converges and its sum is
3

4
(b)

converges and its sum is 2(c)

converges and its sum is
2

3
(d)

converges and its sum is
9

4
(e)

12. If the region enclosed by the curves y = sin(x2), y = 0,
x = 0, and x =

√
π is rotated about the y-axis, then the

volume of the generated solid is

2π + 1(a)

π

3
(b)

4π(c)

π − 2(d)

2π(e)
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13.
∫ x4 + x2 − 1

x3 + x
dx =

1

2
x2 − ln |x|+ 1

2
ln |x3 + x|+ C(a)

1

2
x2 − ln |x|+ 1

2
ln |x2 + 1|+ C(b)

1

2
x2 − ln |x|+ C(c)

ln |x4 + x2 − 1| − 1

2
ln |x3 + x|+ C(d)

1

2
x2 + ln |x| − 1

x
+ C(e)

14. Let R be the region in the first quadrant that is bounded
by the curves y = 3

√
x and y = x3. The volume of the solid

obtained by rotating R about the line y = 1 is given by

π
∫ 1

0
[(1− x3)2 − (1− 3

√
x)2] dx(a)

π
∫ 1

0
(y2/3 − y2) dy(b)

2π
∫ 1

0
(1− x)( 3

√
x− x3) dx(c)

π
∫ 1

0
(x3 − 3

√
x)2 dx(d)

π
∫ 1

0
[( 3
√

y − 1)2 − (y3 − 1)2] dy(e)
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15. The sequence





(−1)nn2

n2 + n + 1





+∞

n=1

converges to 1(a)

diverges(b)

converges to − 1(c)

converges to − 2(d)

converges to 0(e)

16. The improper integral
∫ 2

0

1
5
√

x− 1
dx

converges and its value is
1

4
(a)

converges and its value is
5

4
(b)

converges and its value is
5

2
(c)

converges and its value is 0(d)

diverges(e)
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17. The length of the curve y = ln(cos x), 0 ≤ x ≤ π

4
, is

2 +
√

2(a)

ln(1 +
√

2)(b)

1 +
√

2(c)

ln(
√

2)(d)

ln(
√

2 +
√

3)(e)

18.
∫ x2
√

16− x2
dx =

8 sin−1
(
x

4

)
− 1

2
x
√

16− x2 + C(a)

8 sin−1
(
x

4

)
− x + C(b)

√
16− x2 + C(c)

8 sin−1
(
x

4

)
−
√

16− x2 + C(d)

4 sin−1
(
x

4

)
+ 2x

√
16− x2 + C(e)
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19. The series
+∞∑

n=1
(−1)n22n · (n + 1)2

n!
is

convergent by the integral test(a)

a series with which the ratio test is inconclusive(b)

divergent by the ratio test(c)

convergent by the ratio test(d)

divergent by the test for divergence(e)

20. The smallest number of terms of the series
+∞∑

n=1

(−1)n+1
√

n
that

we need to add so that |error| < 0.1 is

80(a)

90(b)

60(c)

70(d)

100(e)
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21. The value of the integral
∫ 1

−1

4− x|x|
2 + x

dx is equal to

5 + ln 2(a)

−1 + 8 ln 2(b)

−4 + ln 2(c)

4 + 8 ln 2(d)

−2(e)

22. The sum of the series
∞∑

n=0
(−1)n π2n

24n+1(2n)!

is equal to
1

2
√

2
(a)

is equal to
1√
2

(b)

is equal to − 1(c)

is equal to
√

2(d)

does not exist(e)
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23. The interval of convergence I and the radius of convergence

R of the power series
+∞∑

n=1
(−1)n xn

4n · n3 are

I = [−3, 3) , R = 3(a)

I = (−4, 4] , R = 4(b)

I = (3, 4) , R =
1

2
(c)

I = [−4, 4] , R = 4(d)

I = (−4, 4) , R = 4(e)

24. If the power series
+∞∑

n=0
cn(x+2)n has a radius of convergence

R = 3, then which one of the following is TRUE?

+∞∑

n=0

cn

2n
is divergent(a)

+∞∑

n=0
(−1)n cn5

n is convergent(b)

+∞∑

n=0
cn2

n is divergent(c)

+∞∑

n=0
cn4

n is convergent(d)

+∞∑

n=0
cn is convergent(e)
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25. If the curve x =
1

3

√
4− 9y2 , 0 ≤ y ≤ 1

3
, is rotated

about the y-axis, then the area of the resulting surface is
equal to

4π

9
sin−1

(
2

3

)
(a)

2π

3
sin−1

(
1

3

)
(b)

8π

3
(c)

π

9
(d)

4π

9
(e)

26. The series
+∞∑

n=1

(−1)n+1

4
√

n
is

divergent(a)

convergent by the comparison test(b)

convergent by the ratio test(c)

conditionally convergent(d)

absolutely convergent(e)
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27. The Maclaurin series for f(x) = e−x2/3 is given by

+∞∑

n=0

x2n

3n · n!
(a)

+∞∑

n=0
(−1)n x2n

3 · n!
(b)

+∞∑

n=1
(−1)n xn

3n · n!
(c)

+∞∑

n=0
(−1)n x2n

3n · n!
(d)

+∞∑

n=1
(−1)n+1 x2n

9n · n!
(e)

28. The power series representation of f(x) =
x2

4 + x3 is

+∞∑

n=0
(−1)n x2n+3

4n+1 , |x| < 3
√

4(a)

+∞∑

n=0

x3n+2

4n
, |x| < 3

√
4(b)

+∞∑

n=0
(−1)n

(
x

4

)3n+2
, |x| < 4(c)

+∞∑

n=0
(−1)n x3n+2

4n+1 , |x| < 3
√

4(d)

+∞∑

n=0

xn+3

4n+1 , |x| < 4(e)
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Q MM V1 V2 V3 V4

1 a c d a a
2 a b d b c
3 a c c e e
4 a c d b b
5 a d e d e
6 a c a d c
7 a b a b c
8 a b d e a
9 a c a e c
10 a c a c c
11 a e d d a
12 a e b a e
13 a b c b d
14 a a d e e
15 a b e c d
16 a d d a a
17 a b e a b
18 a a c d e
19 a d e a e
20 a e c c b
21 a b a c b
22 a a c c d
23 a d d b e
24 a e a c e
25 a e c c d
26 a d a a a
27 a d b d e
28 a d c d d




