- 1. The value of the integral $\int_0^{\pi/4} \frac{\sin(2x)}{[1+\cos(2x)]^3} dx$ is
 - (a) $\frac{3}{16}$
 - (b) $\frac{1}{8}$
 - (c) $\frac{1}{16}$
 - (d) $\frac{1}{2}$
 - (e) 1
- 2. If $y = \int_{1-3x}^{1} \frac{u^3}{1+u^2} du$, then $\frac{dy}{dx} = \frac{1}{1+u^2} du$
 - (a) $\frac{3(1-3x)^3}{1+(1-3x)^2}$
 - (b) $\frac{-3(1-3x)^3}{1+(1-3x)^2}$
 - (c) $\frac{(1-3x)^3}{1+(1-3x)^2}$
 - (d) $\frac{27x^3}{1+9x^2}$
 - (e) $\frac{81x^3}{1+9x^2}$

- 3. The area of the region bounded by the graphs of $y = x^2 2$ and y = x is
 - (a) $\frac{9}{2}$
 - (b) $\frac{3}{2}$
 - (c) $\frac{7}{2}$
 - (d) $\frac{5}{2}$
 - (e) $\frac{11}{2}$
- 4. The sum of the series $1 \ln 3 + \frac{(\ln 3)^2}{2!} \frac{(\ln 3)^3}{3!} + \cdots$
 - (a) is equal to $\frac{1}{3}$
 - (b) is equal to 3
 - (c) does not exist
 - (d) is equal to $e^{1/3}$
 - (e) is equal to e^3

- 5. The volume of the solid generated by rotating the region enclosed by the curves y=x and $y=\sqrt{x}$ about the y-axis is
 - (a) $\pi \int_0^1 (y^2 y^4) dy$
 - (b) $\pi \int_0^1 (y y^2) dy$
 - (c) $\pi \int_0^1 (x^2 x) dx$
 - (d) $\pi \int_{-1}^{1} (y+y^2)dy$
 - (e) $\pi \int_{-1}^{0} (x x^2) dx$
- 6. The sequence $\{(2-e)^n\}_{n=1}^{+\infty}$
 - (a) converges to 0
 - (b) converges to -e
 - (c) converges to $\frac{2}{e}$
 - (d) converges to 2
 - (e) diverges

- 7. If the *n*-th partial sum of a series $\sum_{n=1}^{+\infty} a_n$ is $s_n = 2 \frac{(-1)^n}{n^2}$, then the series $\sum_{n=1}^{+\infty} a_n$
 - (a) converges and its sum is 2
 - (b) converges and its sum is 1
 - (c) diverges
 - (d) converges and its sum is $\frac{3}{2}$
 - (e) converges and its sum is $\frac{1}{2}$
- 8. The series $\sum_{n=1}^{+\infty} \frac{(-3)^{n+1}}{2^{3n}}$
 - (a) converges and its sum is $\frac{9}{11}$
 - (b) converges and its sum is $\frac{9}{5}$
 - (c) converges and its sum is $\frac{-24}{11}$
 - (d) converges and its sum is $\frac{-3}{11}$
 - (e) diverges

- 9. The series $1 + \frac{1}{2^2\sqrt{2}} + \frac{1}{3^2\sqrt{3}} + \frac{1}{4^2\sqrt{4}} + \cdots$ is
 - (a) a convergent p-series with $p = \frac{5}{2}$
 - (b) a divergent series
 - (c) a convergent p-series with p=2
 - (d) a divergent series by the integral test
 - (e) a divergent *p*-series with $p = \frac{1}{2}$
- 10. Suppose that f(1) = 1, f(4) = 7, f'(1) = -1, f'(4) = 3, and f'' is continuous. Then the value of $\int_1^4 x f''(x) dx$ is equal to [Hint: Use integration by parts]
 - (a) 7
 - (b) 2
 - (c) 5
 - (d) 12
 - (e) 0

- 11. The average value of the function $f(x) = \frac{x}{(x+3)^3}$ over the interval [-1,1] is
 - (a) $\frac{-1}{64}$
 - (b) $\frac{3}{32}$
 - (c) $\frac{-5}{32}$
 - (d) $\frac{5}{64}$
 - (e) 0
- 12. The series $\sum_{n=2}^{+\infty} \frac{1}{n \ln n}$
 - (a) diverges by the integral test
 - (b) converges by the integral test
 - (c) converges by the comparison test with $b_n = \frac{1}{n}$
 - (d) diverges by the comparison test with $b_n = \frac{1}{n^2}$
 - (e) diverges by the ratio test

- 13. The error in approximating the sum of the series $\sum_{n=1}^{+\infty} \frac{(-1)^n n}{5^n}$ by the sum of the first four terms is less than or equal to
 - (a) $\frac{1}{5^4}$
 - (b) $\frac{1}{4 \cdot 5^4}$
 - (c) $\frac{6}{5^6}$
 - (d) $\frac{1}{5^5}$
 - (e) $\frac{4}{5^5}$
- 14. The length of the curve $y = \ln(\sec x)$, $0 \le x \le \frac{\pi}{4}$, is
 - (a) $\ln(1+\sqrt{2})$
 - (b) $\ln(\sqrt{2})$
 - (c) $1 + \sqrt{2}$
 - (d) $\ln(\sqrt{2} + \sqrt{3})$
 - (e) $2 + \sqrt{2}$

15. The improper integral $\int_0^2 \frac{x^3}{\sqrt{4-x^2}} dx$

- (a) has the value $\frac{16}{3}$
- (b) has the value $\frac{22}{3}$
- (c) has the value $\frac{11}{3}$
- (d) has the value $\frac{19}{3}$
- (e) is divergent

16. The integral $\int \frac{e^{-x}}{e^{-2x} + 3e^{-x} + 2} dx$ equals

(a)
$$\ln \left(\frac{2 + e^{-x}}{1 + e^{-x}} \right) + C$$

(b)
$$\ln \left(\frac{2 + e^{-x}}{1 + e^x} \right) + C$$

(c)
$$\ln \left(\frac{2 - e^{-x}}{1 - e^{-x}} \right) + C$$

(d)
$$\ln(2 + e^{-x}) + \ln(1 + e^{-x}) + C$$

(e)
$$\ln(2 - e^{-x}) + \ln(1 - e^{-x}) + C$$

- 17. The value of the integral $\int_1^{16} \frac{1}{\sqrt{x} + \sqrt[4]{x}} dx$ is equal to
 - (a) $2 + 4 \ln(1.5)$
 - (b) $3 \ln 16$
 - (c) $2-4\ln 3$
 - (d) $4 + \ln(1.5)$
 - (e) ln(81)
- 18. The series $\sum_{n=1}^{+\infty} n \sin\left(\frac{1}{n}\right)$
 - (a) diverges
 - (b) converges and its sum is 1
 - (c) converges and its sum is 0
 - (d) converges
 - (e) converges and its sum is $\frac{1}{3}$

- 19. The series $\sum_{n=1}^{+\infty} \frac{n^2 + 1}{n^5 + n^4 + 1}$ is
 - (a) convergent
 - (b) divergent
 - (c) convergent and its sum is 1
 - (d) divergent by the test of divergence
 - (e) convergent by the ratio test
- 20. The series $\sum_{n=1}^{+\infty} \frac{(-1)^n 3n}{4n-1}$ is
 - (a) divergent
 - (b) convergent
 - (c) absolutely convergent
 - (d) conditionally convergent
 - (e) neither convergent nor divergent

- 21. The integral for the area of the surface obtained by rotating the curve $y = \tan x$ from (0,0) to $\left(\frac{\pi}{4},1\right)$ about the y-axis is
 - (a) $2\pi \int_0^{\pi/4} x\sqrt{1 + \sec^4 x} \, dx$
 - (b) $2\pi \int_0^{\pi/4} x\sqrt{1+\tan^4 x} \ dx$
 - (c) $2\pi \int_0^{\pi/4} \tan x \sqrt{1 + \sec^4 x} \, dx$
 - (d) $2\pi \int_0^1 y \sqrt{1 + \frac{1}{1 + y^2}} dy$
 - (e) $2\pi \int_0^{\pi/4} \tan x \sqrt{1 \tan^2 x} \ dx$
- 22. The area of the region between the x-axis and the curve $y = \frac{x}{e^x}$ for $x \ge 0$ is
 - (a) 1
 - (b) 2
 - (c) $\frac{1}{2}$
 - (d) $\frac{3}{2}$
 - (e) 3

23.
$$\int_{1/2}^{3/2} \frac{dx}{5 - 4x + 4x^2} \, dx =$$

- (a) $\frac{\pi}{16}$
- (b) $\frac{3\pi}{16}$
- (c) $\frac{3\pi}{4}$
- (d) $\frac{5\pi}{8}$
- (e) $\frac{3\pi}{8}$

24. The series
$$\sum_{n=1}^{+\infty} \left(\frac{1+\ln n}{n^2+3}\right)^n$$
 is

- (a) convergent by the root test
- (b) divergent by the root test
- (c) a convergent geometric series
- (d) a series with which the root test is inconclusive
- (e) divergent by the test of divergence

25. The interval of convergence and the radius of convergence R of the power series $\sum_{n=0}^{+\infty} \frac{(-3)^{n+1}(2x+1)^n}{\sqrt{n+1}}$ are

(a)
$$\left(\frac{-2}{3}, \frac{-1}{3}\right]$$
; $R = \frac{1}{6}$

(b)
$$\left(\frac{-2}{3}, \frac{-1}{3}\right)$$
; $R = \frac{2}{9}$

(c)
$$\left[\frac{-2}{3}, \frac{1}{3}\right]$$
; $R = \frac{1}{6}$

(d)
$$\left(\frac{-2}{3}, \frac{-1}{3}\right]$$
; $R = \frac{1}{9}$

(e)
$$\left(\frac{-2}{3}, \frac{1}{3}\right]$$
; $R = \frac{1}{6}$

26. The value of the integral $\int_0^{1/3} \frac{x^2}{1+x^7} dx$ is equal to

(a)
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{(7n+3) \cdot 3^{7n+3}}$$

(b)
$$\sum_{n=0}^{+\infty} \frac{(-1)^n \cdot 3^{7n+3}}{7n+3}$$

(c)
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{(7n+1) \cdot 3^{7n+1}}$$

(d)
$$\sum_{n=0}^{+\infty} \frac{1}{(7n+1) \cdot 3^{7n+3}}$$

(e)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n (7n+3)}{3^{7n+1}}$$

- 27. If the region bounded by the curves $y = \sqrt{x-1}$, y = 0, and x = 5 is rotated about the line y = 3, then the volume of the generated solid is
 - (a) 24π
 - (b) 10π
 - (c) 6π
 - (d) 36π
 - (e) 4π
- 28. The Maclaurin series of $f(x) = x \cos(x^3)$ is
 - (a) $\sum_{n=0}^{+\infty} (-1)^n \frac{x^{6n+1}}{(2n)!}$
 - (b) $\sum_{n=0}^{+\infty} \frac{x^{6n}}{(2n)!}$
 - (c) $\sum_{n=0}^{+\infty} (-1)^n \frac{x^{6n+1}}{(6n+1)!}$
 - (d) $\sum_{n=0}^{+\infty} (-1)^n \frac{x^{3n+1}}{(2n)!}$
 - (e) $\sum_{n=0}^{+\infty} (-1)^n \frac{x^{5n+1}}{(2n)!}$