Math 101 Final Exam Term 102 Thursday, June 9, 2011

EXAM COVER

Number of versions: 4 Number of questions: 28 Number of Answers: 5 per question

Math 101
Final Exam
Term 102
Thursday, June 9, 2011
Net Time Allowed: 180 minutes

MASTER VERSION

- 1. If $x^2 + 1 \le f(x) 2x \le 3x^4 1$ for all $x \in (-\infty, \infty)$, then $\lim_{x \to 1} f(x) =$
 - (a) 4
 - (b) -3
 - (c) 1
 - (d) 0
 - (e) Does not exist

- 2. The function $g(x) = \frac{\sqrt{x^2 4}}{x^2 3x}$ is **continuous** on
 - (a) $(-\infty, -2] \cup [2, 3) \cup (3, \infty)$
 - (b) $(-\infty, \infty)$
 - (c) $(-\infty,0) \cup (0,3) \cup (3,\infty)$
 - (d) $(-\infty, -2] \cup [2, \infty)$
 - (e) $[-2,0) \cup (0,2]$

- 3. $\lim_{x \to 0^{-}} \tan^{-1}(e^{1/x}) =$
 - (a) 0
 - (b) $\frac{\pi}{4}$
 - (c) $\frac{\pi}{2}$
 - (d) $-\frac{\pi}{2}$
 - (e) ∞

- 4. The equation of the **tangent line** to the curve $y = x^4 2x$ at x = 1 is
 - (a) y = 2x 3
 - (b) y = 3x 4
 - (c) y = x 2
 - (d) y = -4x + 3
 - (e) y = -2x + 1

5. If
$$f(x) = \begin{cases} \cos x & \text{if } x \le 0 \\ x^2 & \text{if } x > 0, \end{cases}$$
 then $f'(0) =$

- (a) Does not exist
- (b) 0
- (c) 2
- (d) -1
- (e) 3

6. If
$$f(x) = \frac{1}{2 + e^x}$$
, then $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} =$

- (a) $\frac{-e^x}{(2+e^x)^2}$
- (b) $\frac{1}{3}$
- (c) $\frac{-2}{(2+e^x)^2}$
- (d) $2 + e^x$
- (e) e^{-x}

7. Let $y = Ax^2 + Bx + C$. If

$$y'' + y' - 2y = x^2$$

then A + B + C =

- (a) $-\frac{7}{4}$
- (b) -1
- (c) $\frac{3}{2}$
- (d) $\frac{5}{7}$
- $(e) \quad 0$

8. The differential of $y = e^{\cot(\pi x)}$ is

(a)
$$dy = (-\pi \csc^2(\pi x)e^{\cot(\pi x)})dx$$

(b)
$$dy = (\sec^2(\pi x)e^{\cot(\pi x)})dx$$

(c)
$$dy = (-\pi \sec(\pi x) \tan(\pi x)e^{\cot(\pi x)})dx$$

(d)
$$dy = e^{\cot(\pi x)} dx$$

(e)
$$dy = \cot(\pi x) dx$$

9. The graph of
$$f(x) = \frac{x^2 - 5x + 6}{x^2 - 6x + 8}$$
 has

- (a) one horizontal asymptote and one vertical asymptote
- (b) one horizontal asymptote and two vertical asymptotes
- (c) one slant asymptote and one vertical asymptote
- (d) two horizontal asymptotes & two vertical asymptotes
- (e) one slant asymptote and one horizontal asymptote

- 10. The polynomial $f(x) = 1 + 2x + 6x^2 x^4$ is [CD: concave downward, CU: concave upward]
 - (a) CD on $(-\infty, -1)$ and $(1, \infty)$; CU on (-1, 1)
 - (b) CD on $(-\infty, 1)$; CU on $(1, \infty)$
 - (c) CD on $(-\infty, 2)$ and $(5, \infty)$; CU on $(2, \infty)$
 - (d) CD on $(-\infty, \infty)$
 - (e) CD on (-3,3); CU on $(-\infty,-3)$ and $(3,\infty)$

- 11. The **sum** of the critical numbers of $f(x) = (x-1)^{3/5} \cdot (4-x)$ is
 - (a) $\frac{25}{8}$
 - (b) $\frac{17}{8}$
 - (c) $-\frac{9}{8}$
 - (d) 0
 - (e) $\frac{3}{7}$

- 12. If M and m are respectively the absolute maximum and absolute minimum values of $f(x)=\cos x+\sin x$ on $[0,\pi]$, then $\sqrt{2}\,M+m=$
 - (a) 1
 - (b) $2\sqrt{2}$
 - (c) 3
 - (d) 0
 - (e) -1

13. If $2x^2 + 3y^2 = 18$, then $y^3y'' =$

- (a) -4
- (b) $\frac{8}{9}$
- (c) $-\frac{1}{6}$
- (d) 3
- (e) -6

 $14. \quad \lim_{x \to 0} \frac{x - \tan x}{x - \sin x} =$

- (a) -2
- (b) 2
- (c) 1
- (d) -1
- (e) 0

- Using differentials (or a linear approximation), the value of $(64.018)^{2/3}$ is approximately equal to
 - (a) 16.003
 - (b) 16.01
 - (c) 4.003
 - (d) 16.018
 - (e) 12.002

- 16. Using Newton's Method to approximate one root of the equation $(x-2)^4 = \ln x$, we find that if $x_1 = 1$, then $x_2 =$
 - (a) $\frac{6}{5}$
 - (b) $\frac{4}{3}$
 - (c) $\frac{1}{2}$
 - (d) $\frac{2}{3}$
 - (e) $\frac{3}{5}$

17. If $f'(t) = 2t - 3\sin t$ and f(0) = 5, then $f(\pi) =$

- (a) $\pi^2 1$
- (b) $\pi^2 + 5$
- (c) $\pi 3$
- (d) $\pi^2 + 2$
- (e) 2π

18. Let a be a positive real number such that $a \neq e$. The **slope** of the tangent line to the curve $x^y = y^x$ at the point (a, a) is equal to

- (a) 1
- (b) $a \ln a$
- (c) $\ln a 1$
- (d) -a
- (e) a^2

19. The function $f(x) = \ln(x^2 - 3x + 2)$ has

- (a) neither local minimum nor local maximum
- (b) one local maximum and no local minimum
- (c) one local maximum and two local minima
- (d) one local minimum and two local maxima
- (e) one local minimum and one local maximum

20. If $\sinh x + \cosh x = 5$, then $\tanh x =$

- (a) $\frac{12}{13}$
- (b) $\frac{1}{5}$
- (c) $\frac{21}{25}$
- (d) $\frac{3}{4}$
- (e) $\frac{13}{16}$

21.
$$\frac{d}{dt}[\ln(\cosh t) - \frac{1}{2}\tanh^2 t] =$$

- (a) $\tanh^3 t$
- (b) $\tanh t \operatorname{sech}^2 t$
- $(c) \quad 0$
- (d) $\coth t + \tanh t \operatorname{sech} t$
- (e) $\tanh t \tanh^2 t$

22. The function
$$f(x) = \frac{\sqrt{1-x^2}}{x}$$
 is

- (a) decreasing on (-1,0) and on (0,1)
- (b) increasing on (-1,0) and on (0,1)
- (c) increasing on (-1,0) and decreasing on (0,1)
- (d) increasing on (0,1) and dcreasing on (-1,0)
- (e) decreasing on $(-\infty, \infty)$

23. $\lim_{x \to 0^+} (1 - 4\sin(3x))^{5\cot(9x)} =$

- (a) $e^{-20/3}$
- (b) $e^{-5/4}$
- (c) e^{-20}
- (d) $e^{-15/4}$
- (e) 1

24. The equation of **the normal line** to the curve

$$y = x^4 - 10x + 11$$

that is parallel to the line x - 6y = 3 is

(a)
$$y = \frac{1}{6}x + \frac{11}{6}$$

(b)
$$y = \frac{1}{6}x - \frac{5}{3}$$

(c)
$$y = -6x - \frac{11}{6}$$

(d)
$$y = -6x + 3$$

(e)
$$y = -\frac{1}{6}x + \frac{1}{3}$$

- 25. Two sides of a triangle are 5 m and 8 m in length and the angle between them is increasing at a rate of 0.3 rad/s. The rate at which **the area of the triangle** is increasing when the angle between the sides of fixed length is $\frac{\pi}{3}$ is
 - (a) $3 \text{ m}^2/\text{s}$
 - (b) $10 \text{ m}^2/\text{s}$
 - (c) $2.5 \text{ m}^2/\text{s}$
 - (d) $6.5 \text{ m}^2/\text{s}$
 - (e) $5 \text{ m}^2/\text{s}$

- 26. The sum of two positive numbers is 5. If the product P of the square of the first number and the cube of the second number is **maximized**, then P =
 - (a) 108
 - (b) 25
 - (c) 16
 - (d) 64
 - (e) 72

27. If $f(t) = 5 + 6\sin(3t)$, then $f^{(21)}\left(\frac{\pi}{3}\right) =$

- (a) $-6 \cdot 3^{21}$
- (b) 3^{21}
- $(c) \quad 0$
- (d) $6 \cdot 3^{21}$
- (e) (21)!

28. Applying the Mean Value Theorem to $f(x) = \tan^{-1} x$ on the interval [1, 2], we conclude that

(a)
$$\frac{\pi}{4} + \frac{1}{5} < \tan^{-1} 2 < \frac{\pi}{4} + \frac{1}{2}$$

(b)
$$\frac{\pi}{2} < \tan^{-1} 2 < \pi$$

(c)
$$\frac{\pi}{4} + \frac{1}{2} < \tan^{-1} 2 < \frac{\pi}{2}$$

(d)
$$\frac{1}{5} < \tan^{-1} 2 < \frac{1}{2}$$

(e)
$$\frac{\pi}{8} < \tan^{-1} 2 < \frac{\pi}{4} + \frac{1}{5}$$

CODE 001

Math 101 Final Exam Term 102

CODE 001

Thursday, June 9, 2011 Net Time Allowed: 180 minutes

Name:		
ID:	Sec:	

Check that this exam has 28 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. The function $f(x) = \frac{\sqrt{1-x^2}}{x}$ is
 - (a) increasing on (0,1) and dcreasing on (-1,0)
 - (b) increasing on (-1,0) and on (0,1)
 - (c) increasing on (-1,0) and decreasing on (0,1)
 - (d) decreasing on (-1,0) and on (0,1)
 - (e) decreasing on $(-\infty, \infty)$

- 2. If $x^2 + 1 \le f(x) 2x \le 3x^4 1$ for all $x \in (-\infty, \infty)$, then $\lim_{x \to 1} f(x) =$
 - (a) 4
 - (b) Does not exist
 - (c) 1
 - (d) -3
 - (e) 0

- 3. Using Newton's Method to approximate one root of the equation $(x-2)^4 = \ln x$, we find that if $x_1 = 1$, then $x_2 =$
 - (a) $\frac{1}{2}$
 - (b) $\frac{3}{5}$
 - (c) $\frac{2}{3}$
 - (d) $\frac{6}{5}$
 - (e) $\frac{4}{3}$

- 4. If $2x^2 + 3y^2 = 18$, then $y^3y'' =$
 - (a) $\frac{8}{9}$
 - (b) -4
 - (c) $-\frac{1}{6}$
 - (d) 3
 - (e) -6

- 5. Using differentials (or a linear approximation), the value of $(64.018)^{2/3}$ is approximately equal to
 - (a) 16.01
 - (b) 4.003
 - (c) 16.018
 - (d) 16.003
 - (e) 12.002

- 6. If $\sinh x + \cosh x = 5$, then $\tanh x =$
 - (a) $\frac{12}{13}$
 - (b) $\frac{13}{16}$
 - (c) $\frac{1}{5}$
 - (d) $\frac{3}{4}$
 - (e) $\frac{21}{25}$

7. If
$$f(x) = \begin{cases} \cos x & \text{if } x \le 0 \\ x^2 & \text{if } x > 0, \end{cases}$$
 then $f'(0) =$

- (a) 2
- (b) Does not exist
- (c) -1
- (d) 0
- (e) 3

- 8. The equation of the **tangent line** to the curve $y = x^4 2x$ at x = 1 is
 - (a) y = x 2
 - (b) y = 2x 3
 - (c) y = -2x + 1
 - $(d) \quad y = 3x 4$
 - (e) y = -4x + 3

- 9. The function $g(x) = \frac{\sqrt{x^2 4}}{x^2 3x}$ is **continuous** on
 - (a) $(-\infty, \infty)$
 - (b) $(-\infty, -2] \cup [2, 3) \cup (3, \infty)$
 - (c) $(-\infty, -2] \cup [2, \infty)$
 - (d) $[-2,0) \cup (0,2]$
 - (e) $(-\infty, 0) \cup (0, 3) \cup (3, \infty)$

- 10. $\lim_{x \to 0^{-}} \tan^{-1}(e^{1/x}) =$
 - (a) $-\frac{\pi}{2}$
 - $(b) \quad 0$
 - (c) $\frac{\pi}{4}$
 - (d) $\frac{\pi}{2}$
 - (e) ∞

$$11. \quad \lim_{x \to 0} \frac{x - \tan x}{x - \sin x} =$$

- (a) -2
- (b) 0
- (c) 2
- (d) 1
- (e) -1

12.
$$\lim_{x \to 0^+} (1 - 4\sin(3x))^{5\cot(9x)} =$$

- (a) e^{-20}
- (b) $e^{-20/3}$
- (c) $e^{-15/4}$
- (d) $e^{-5/4}$
- (e) 1

13.
$$\frac{d}{dt}[\ln(\cosh t) - \frac{1}{2}\tanh^2 t] =$$

- (a) $\tanh t \tanh^2 t$
- (b) 0
- (c) $\tanh t \operatorname{sech}^2 t$
- (d) $\tanh^3 t$
- (e) $\coth t + \tanh t \operatorname{sech} t$

- 14. Two sides of a triangle are 5 m and 8 m in length and the angle between them is increasing at a rate of 0.3 rad/s. The rate at which **the area of the triangle** is increasing when the angle between the sides of fixed length is $\frac{\pi}{3}$ is
 - (a) $10 \text{ m}^2/\text{s}$
 - (b) $3 \text{ m}^2/\text{s}$
 - (c) $2.5 \text{ m}^2/\text{s}$
 - (d) $5 \text{ m}^2/\text{s}$
 - (e) $6.5 \text{ m}^2/\text{s}$

- 15. The polynomial $f(x) = 1 + 2x + 6x^2 x^4$ is [CD: concave downward, CU: concave upward]
 - (a) CD on $(-\infty, -1)$ and $(1, \infty)$; CU on (-1, 1)
 - (b) CD on $(-\infty, 1)$; CU on $(1, \infty)$
 - (c) CD on $(-\infty, \infty)$
 - (d) CD on $(-\infty, 2)$ and $(5, \infty)$; CU on $(2, \infty)$
 - (e) CD on (-3,3); CU on $(-\infty,-3)$ and $(3,\infty)$

- 16. The function $f(x) = \ln(x^2 3x + 2)$ has
 - (a) neither local minimum nor local maximum
 - (b) one local maximum and two local minima
 - (c) one local maximum and no local minimum
 - (d) one local minimum and two local maxima
 - (e) one local minimum and one local maximum

- 17. The sum of two positive numbers is 5. If the product P of the square of the first number and the cube of the second number is **maximized**, then P =
 - (a) 72
 - (b) 64
 - (c) 108
 - (d) 16
 - (e) 25

- 18. If M and m are respectively the absolute maximum and absolute minimum values of $f(x) = \cos x + \sin x$ on $[0, \pi]$, then $\sqrt{2}M + m =$
 - $(a) \quad 0$
 - (b) $2\sqrt{2}$
 - (c) -1
 - (d) 1
 - (e) 3

- 19. Applying the Mean Value Theorem to $f(x) = \tan^{-1} x$ on the interval [1, 2], we conclude that
 - (a) $\frac{\pi}{2} < \tan^{-1} 2 < \pi$
 - (b) $\frac{\pi}{8} < \tan^{-1} 2 < \frac{\pi}{4} + \frac{1}{5}$
 - (c) $\frac{\pi}{4} + \frac{1}{5} < \tan^{-1} 2 < \frac{\pi}{4} + \frac{1}{2}$
 - (d) $\frac{1}{5} < \tan^{-1} 2 < \frac{1}{2}$
 - (e) $\frac{\pi}{4} + \frac{1}{2} < \tan^{-1} 2 < \frac{\pi}{2}$

- 20. If $f'(t) = 2t 3\sin t$ and f(0) = 5, then $f(\pi) =$
 - (a) $\pi 3$
 - (b) $\pi^2 1$
 - (c) $\pi^2 + 2$
 - (d) $\pi^2 + 5$
 - (e) 2π

21. The equation of **the normal line** to the curve

$$y = x^4 - 10x + 11$$

that is parallel to the line x - 6y = 3 is

- (a) $y = -6x \frac{11}{6}$
- (b) $y = -\frac{1}{6}x + \frac{1}{3}$
- (c) $y = \frac{1}{6}x + \frac{11}{6}$
- (d) $y = \frac{1}{6}x \frac{5}{3}$
- (e) y = -6x + 3

- 22. The **sum** of the critical numbers of $f(x) = (x-1)^{3/5} \cdot (4-x)$ is
 - (a) $\frac{3}{7}$
 - (b) $\frac{25}{8}$
 - (c) $\frac{17}{8}$
 - (d) 0
 - (e) $-\frac{9}{8}$

23. If
$$f(t) = 5 + 6\sin(3t)$$
, then $f^{(21)}\left(\frac{\pi}{3}\right) =$

- (a) $-6 \cdot 3^{21}$
- (b) $6 \cdot 3^{21}$
- (c) 0
- (d) 3^{21}
- (e) (21)!

24. If
$$f(x) = \frac{1}{2 + e^x}$$
, then $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} =$

- (a) $\frac{-2}{(2+e^x)^2}$
- (b) $2 + e^x$
- (c) e^{-x}
- (d) $\frac{1}{3}$
- (e) $\frac{-e^x}{(2+e^x)^2}$

25. The graph of
$$f(x) = \frac{x^2 - 5x + 6}{x^2 - 6x + 8}$$
 has

- (a) one horizontal asymptote and one vertical asymptote
- (b) one horizontal asymptote and two vertical asymptotes
- (c) two horizontal asymptotes & two vertical asymptotes
- (d) one slant asymptote and one vertical asymptote
- (e) one slant asymptote and one horizontal asymptote

26. Let
$$y = Ax^2 + Bx + C$$
. If $y'' + y' - 2y = x^2$

then A + B + C =

- (a) $-\frac{7}{4}$
- (b) $\frac{3}{2}$
- (c) -1
- $(d) \quad \frac{5}{7}$
- (e) 0

- 27. The differential of $y = e^{\cot(\pi x)}$ is
 - (a) $dy = (\sec^2(\pi x)e^{\cot(\pi x)})dx$
 - (b) $dy = (-\pi \csc^2(\pi x)e^{\cot(\pi x)})dx$
 - (c) $dy = \cot(\pi x)dx$
 - (d) $dy = (-\pi \sec(\pi x) \tan(\pi x) e^{\cot(\pi x)}) dx$
 - (e) $dy = e^{\cot(\pi x)} dx$

- 28. Let a be a positive real number such that $a \neq e$. The **slope** of the tangent line to the curve $x^y = y^x$ at the point (a, a) is equal to
 - (a) $a \ln a$
 - (b) -a
 - (c) $\ln a 1$
 - (d) a^2
 - (e) 1

Name		
ID	 Sec	

1	a	b	c	d	е	f
2	a	b	С	d	е	f
3	a	b	c	d	е	f
4	a	b	c	d	е	f
5	a	b	c	d	е	f
6	a	b	c	d	е	f
7	a	b	С	d	е	f
8	a	b	c	d	е	f
9	a	b	С	d	е	f
10	a	b	С	d	е	f
11	a	b	С	d	е	f
12	a	b	c	d	е	f
13	a	b	С	d	е	f
14	a	b	c	d	е	f
15	a	b	С	d	е	f
16	a	b	С	d	е	f
17	a	b	С	d	е	f
18	a	b	С	d	е	f
19	a	b	С	d	е	f
20	a	b	С	d	е	f
21	a	b	c	d	е	f
22	a	b	С	d	е	f
23	a	b	С	d	е	f
24	a	b	С	d	е	f
25	a	b	c	d	е	f
26	a	b	С	d	е	f
27	a	b	c	d	е	f
28	a	b	c	d	е	f
29	a	b	c	d	е	f
30	a	b	c	d	е	f
31	a	b	c	d	е	f
32	a	b	c	d	е	f
33	a	b	С	d	е	f
34	a	b	c	d	е	f
35	a	b	С	d	е	f
	•					

36	a	b	c	d	е	f
37	a	b	c	d	е	f
38	a	b	c	d	е	f
39	a	b	С	d	е	f
40	a	b	С	d	е	f
41	a	b	С	d	е	f
42	a	b	c	d	е	f
43	a	b	С	d	е	f
44	a	b	c	d	е	f
45	a	b	c	d	е	f
46	a	b	С	d	е	f
47	a	b	c	d	е	f
48	a	b	С	d	е	f
49	a	b	С	d	е	f
50	a	b	С	d	е	f
51	a	b	С	d	е	f
52	a	b	С	d	е	f
53	a	b	С	d	е	f
54	a	b	С	d	е	f
55	a	b	С	d	е	f
56	a	b	С	d	е	f
57	a	b	С	d	е	f
58	a	b	С	d	е	f
59	a	b	С	d	е	f
60	a	b	С	d	е	f
61	a	b	С	d	е	f
62	a	b	c	d	е	f
63	a	b	c	d	е	f
64	a	b	c	d	е	f
65	a	b	c	d	е	f
66	a	b	c	d	е	f
67	a	b	c	d	е	f
68	a	b	c	d	е	f
69	a	b	c	d	е	f
70	a	b	c	d	е	f

CODE 002

Math 101 Final Exam Term 102

CODE 002

Thursday, June 9, 2011 Net Time Allowed: 180 minutes

Name:		
ID:	Sec:	

Check that this exam has 28 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- $1. \qquad \lim_{x \to 0} \frac{x \tan x}{x \sin x} =$
 - (a) 2
 - (b) 1
 - (c) 0
 - (d) -2
 - (e) -1

- 2. $\frac{d}{dt}[\ln(\cosh t) \frac{1}{2}\tanh^2 t] =$
 - (a) $\coth t + \tanh t \operatorname{sech} t$
 - (b) $\tanh^3 t$
 - (c) 0
 - (d) $\tanh t \tanh^2 t$
 - (e) $\tanh t \operatorname{sech}^2 t$

- 3. Two sides of a triangle are 5 m and 8 m in length and the angle between them is increasing at a rate of 0.3 rad/s. The rate at which **the area of the triangle** is increasing when the angle between the sides of fixed length is $\frac{\pi}{3}$ is
 - (a) $10 \text{ m}^2/\text{s}$
 - (b) $6.5 \text{ m}^2/\text{s}$
 - (c) $5 \text{ m}^2/\text{s}$
 - (d) $3 \text{ m}^2/\text{s}$
 - (e) $2.5 \text{ m}^2/\text{s}$

- 4. The **sum** of the critical numbers of $f(x) = (x-1)^{3/5} \cdot (4-x)$ is
 - (a) $-\frac{9}{8}$
 - (b) $\frac{25}{8}$
 - (c) $\frac{3}{7}$
 - (d) 0
 - (e) $\frac{17}{8}$

- 5. $\lim_{x \to 0^{-}} \tan^{-1}(e^{1/x}) =$
 - (a) 0
 - (b) ∞
 - (c) $\frac{\pi}{2}$
 - (d) $\frac{\pi}{4}$
 - (e) $-\frac{\pi}{2}$

- 6. The sum of two positive numbers is 5. If the product P of the square of the first number and the cube of the second number is **maximized**, then P =
 - (a) 108
 - (b) 64
 - (c) 25
 - (d) 16
 - (e) 72

- 7. The differential of $y = e^{\cot(\pi x)}$ is
 - (a) $dy = (\sec^2(\pi x)e^{\cot(\pi x)})dx$
 - (b) $dy = (-\pi \csc^2(\pi x)e^{\cot(\pi x)})dx$
 - (c) $dy = (-\pi \sec(\pi x) \tan(\pi x)e^{\cot(\pi x)})dx$
 - (d) $dy = \cot(\pi x)dx$
 - (e) $dy = e^{\cot(\pi x)} dx$

- 8. The graph of $f(x) = \frac{x^2 5x + 6}{x^2 6x + 8}$ has
 - (a) two horizontal asymptotes & two vertical asymptotes
 - (b) one slant asymptote and one vertical asymptote
 - (c) one slant asymptote and one horizontal asymptote
 - (d) one horizontal asymptote and two vertical asymptotes
 - (e) one horizontal asymptote and one vertical asymptote

- 9. If $x^2 + 1 \le f(x) 2x \le 3x^4 1$ for all $x \in (-\infty, \infty)$, then $\lim_{x \to 1} f(x) =$
 - (a) -3
 - (b) 0
 - (c) 1
 - (d) Does not exist
 - (e) 4

- 10. If $\sinh x + \cosh x = 5$, then $\tanh x =$
 - (a) $\frac{3}{4}$
 - (b) $\frac{21}{25}$
 - (c) $\frac{12}{13}$
 - (d) $\frac{13}{16}$
 - (e) $\frac{1}{5}$

- 11. If M and m are respectively the absolute maximum and absolute minimum values of $f(x) = \cos x + \sin x$ on $[0, \pi]$, then $\sqrt{2} M + m =$
 - (a) 1
 - (b) 0
 - (c) $2\sqrt{2}$
 - (d) -1
 - (e) 3

- 12. The polynomial $f(x) = 1 + 2x + 6x^2 x^4$ is [CD: concave downward, CU: concave upward]
 - (a) CD on $(-\infty, -1)$ and $(1, \infty)$; CU on (-1, 1)
 - (b) CD on $(-\infty, 2)$ and $(5, \infty)$; CU on $(2, \infty)$
 - (c) CD on (-3,3); CU on $(-\infty,-3)$ and $(3,\infty)$
 - (d) CD on $(-\infty, 1)$; CU on $(1, \infty)$
 - (e) CD on $(-\infty, \infty)$

- 13. The function $f(x) = \ln(x^2 3x + 2)$ has
 - (a) one local minimum and one local maximum
 - (b) one local maximum and no local minimum
 - (c) one local maximum and two local minima
 - (d) neither local minimum nor local maximum
 - (e) one local minimum and two local maxima

- 14. Let a be a positive real number such that $a \neq e$. The **slope** of the tangent line to the curve $x^y = y^x$ at the point (a, a) is equal to
 - (a) $a \ln a$
 - (b) 1
 - (c) -a
 - (d) $\ln a 1$
 - (e) a^2

15. The function $g(x) = \frac{\sqrt{x^2 - 4}}{x^2 - 3x}$ is **continuous** on

- (a) $(-\infty, \infty)$
- (b) $[-2,0) \cup (0,2]$
- (c) $(-\infty, -2] \cup [2, \infty)$
- (d) $(-\infty, 0) \cup (0, 3) \cup (3, \infty)$
- (e) $(-\infty, -2] \cup [2, 3) \cup (3, \infty)$

16. If $f(x) = \begin{cases} \cos x & \text{if } x \le 0 \\ x^2 & \text{if } x > 0, \end{cases}$ then f'(0) =

- (a) 2
- (b) Does not exist
- $(c) \quad 0$
- (d) -1
- (e) 3

- 17. Using Newton's Method to approximate one root of the equation $(x-2)^4 = \ln x$, we find that if $x_1 = 1$, then $x_2 =$
 - (a) $\frac{2}{3}$
 - (b) $\frac{1}{2}$
 - (c) $\frac{4}{3}$
 - (d) $\frac{3}{5}$
 - (e) $\frac{6}{5}$

- 18. The equation of the **tangent line** to the curve $y = x^4 2x$ at x = 1 is
 - (a) y = 2x 3
 - (b) y = -4x + 3
 - (c) y = 3x 4
 - (d) y = x 2
 - (e) y = -2x + 1

19. Let $y = Ax^2 + Bx + C$. If

$$y'' + y' - 2y = x^2$$

then A + B + C =

- (a) $-\frac{7}{4}$
- (b) $\frac{3}{2}$
- (c) $\frac{5}{7}$
- (d) 0
- (e) -1

- 20. The function $f(x) = \frac{\sqrt{1-x^2}}{x}$ is
 - (a) increasing on (0,1) and dcreasing on (-1,0)
 - (b) decreasing on $(-\infty, \infty)$
 - (c) decreasing on (-1,0) and on (0,1)
 - (d) increasing on (-1,0) and decreasing on (0,1)
 - (e) increasing on (-1,0) and on (0,1)

21. If
$$f(x) = \frac{1}{2 + e^x}$$
, then $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} =$

- (a) e^{-x}
- (b) $\frac{-e^x}{(2+e^x)^2}$
- (c) $2 + e^x$
- (d) $\frac{-2}{(2+e^x)^2}$
- (e) $\frac{1}{3}$

22. Applying the Mean Value Theorem to $f(x) = \tan^{-1} x$ on the interval [1, 2], we conclude that

(a)
$$\frac{\pi}{4} + \frac{1}{2} < \tan^{-1} 2 < \frac{\pi}{2}$$

(b)
$$\frac{1}{5} < \tan^{-1} 2 < \frac{1}{2}$$

(c)
$$\frac{\pi}{8} < \tan^{-1} 2 < \frac{\pi}{4} + \frac{1}{5}$$

(d)
$$\frac{\pi}{2} < \tan^{-1} 2 < \pi$$

(e)
$$\frac{\pi}{4} + \frac{1}{5} < \tan^{-1} 2 < \frac{\pi}{4} + \frac{1}{2}$$

23. If $2x^2 + 3y^2 = 18$, then $y^3y'' =$

- (a) -4
- (b) 3
- (c) -6
- (d) $-\frac{1}{6}$
- (e) $\frac{8}{9}$

24. The equation of **the normal line** to the curve

$$y = x^4 - 10x + 11$$

that is parallel to the line x - 6y = 3 is

- (a) y = -6x + 3
- (b) $y = \frac{1}{6}x + \frac{11}{6}$
- (c) $y = \frac{1}{6}x \frac{5}{3}$
- (d) $y = -\frac{1}{6}x + \frac{1}{3}$
- (e) $y = -6x \frac{11}{6}$

25. If $f(t) = 5 + 6\sin(3t)$, then $f^{(21)}\left(\frac{\pi}{3}\right) =$

- (a) (21)!
- (b) $6 \cdot 3^{21}$
- (c) $-6 \cdot 3^{21}$
- (d) 0
- (e) 3^{21}

26. $\lim_{x \to 0^+} (1 - 4\sin(3x))^{5\cot(9x)} =$

- (a) $e^{-5/4}$
- (b) $e^{-15/4}$
- (c) 1
- (d) e^{-20}
- (e) $e^{-20/3}$

- 27. Using differentials (or a linear approximation), the value of $(64.018)^{2/3}$ is approximately equal to
 - (a) 16.003
 - (b) 12.002
 - (c) 16.01
 - (d) 16.018
 - (e) 4.003

- 28. If $f'(t) = 2t 3\sin t$ and f(0) = 5, then $f(\pi) =$
 - (a) $\pi^2 + 2$
 - (b) 2π
 - (c) $\pi^2 + 5$
 - (d) $\pi^2 1$
 - (e) $\pi 3$

Name		
ID	S_{ec}	

1	a	b	c	d	е	f
2	a	b	c	d	е	f
3	a	b	\mathbf{c}	d	е	f
4	a	b	\mathbf{c}	d	е	f
5	a	b	c	d	е	f
6	a	b	c	d	е	f
7	a	b	c	d	е	f
8	a	b	c	d	е	f
9	a	b	c	d	e	f
10	a	b	c	d	е	f
11	a	b	\mathbf{c}	d	е	f
12	a	b	\mathbf{c}	d	е	f
13	a	b	\mathbf{c}	d	е	f
14	a	b	c	d	е	f
15	a	b	c	d	е	f
16	a	b	С	d	е	f
17	a	b	c	d	е	f
18	a	b	С	d	е	f
19	a	b	$^{\mathrm{c}}$	d	e	f
20	a	b	c	d	е	f
21	a	b	С	d	е	f
22	a	b	c	d	е	f
23	a	b	С	d	е	f
24	a	b	c	d	е	f
25	a	b	c	d	е	f
26	a	b	\mathbf{c}	d	е	f
27	a	b	c	d	е	f
28	a	b	С	d	е	f
29	a	b	c	d	е	f
30	a	b	c	d	е	f
31	a	b	c	d	е	f
32	a	b	c	d	е	f
33	a	b	c	d	е	f
34	a	b	c	d	е	f
35	a	b	c	d	е	f

36	a	b	С	d	е	f
37	a	b	С	d	е	f
38	a	b	c	d	е	f
39	a	b	c	d	е	f
40	a	b	С	d	е	f
41	a	b	c	d	е	f
42	a	b	С	d	е	f
43	a	b	c	d	е	f
44	a	b	С	d	е	f
45	a	b	С	d	е	f
46	a	b	С	d	е	f
47	a	b	c	d	е	f
48	a	b	c	d	е	f
49	a	b	c	d	е	f
50	a	b	c	d	е	f
51	a	b	c	d	е	f
52	a	b	С	d	е	f
53	a	b	c	d	е	f
54	a	b	c	d	е	f
55	a	b	c	d	е	f
56	a	b	c	d	е	f
57	a	b	c	d	е	f
58	a	b	С	d	е	f
59	a	b	c	d	е	f
60	a	b	c	d	е	f
61	a	b	c	d	е	f
62	a	b	c	d	е	f
63	a	b	c	d	е	f
64	a	b	c	d	е	f
65	a	b	c	d	е	f
66	a	b	c	d	е	f
67	a	b	c	d	е	f
68	a	b	c	d	е	f
69	a	b	c	d	е	f
70	a	b	С	d	е	f

King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics

CODE 003

Math 101 Final Exam Term 102

CODE 003

Thursday, June 9, 2011 Net Time Allowed: 180 minutes

Name:		
ID:	Sec:	

Check that this exam has 28 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. The function $g(x) = \frac{\sqrt{x^2 - 4}}{x^2 - 3x}$ is **continuous** on

- (a) $(-\infty, -2] \cup [2, \infty)$
- (b) $(-\infty, 0) \cup (0, 3) \cup (3, \infty)$
- (c) $[-2,0) \cup (0,2]$
- (d) $(-\infty, -2] \cup [2, 3) \cup (3, \infty)$
- (e) $(-\infty, \infty)$

2. If $\sinh x + \cosh x = 5$, then $\tanh x =$

- (a) $\frac{12}{13}$
- (b) $\frac{1}{5}$
- (c) $\frac{3}{4}$
- (d) $\frac{13}{16}$
- (e) $\frac{21}{25}$

- 3. Applying the Mean Value Theorem to $f(x) = \tan^{-1} x$ on the interval [1, 2], we conclude that
 - (a) $\frac{\pi}{2} < \tan^{-1} 2 < \pi$
 - (b) $\frac{\pi}{4} + \frac{1}{2} < \tan^{-1} 2 < \frac{\pi}{2}$
 - (c) $\frac{\pi}{4} + \frac{1}{5} < \tan^{-1} 2 < \frac{\pi}{4} + \frac{1}{2}$
 - (d) $\frac{\pi}{8} < \tan^{-1} 2 < \frac{\pi}{4} + \frac{1}{5}$
 - (e) $\frac{1}{5} < \tan^{-1} 2 < \frac{1}{2}$

- 4. If $x^2 + 1 \le f(x) 2x \le 3x^4 1$ for all $x \in (-\infty, \infty)$, then $\lim_{x \to 1} f(x) =$
 - (a) 4
 - (b) 1
 - (c) -3
 - (d) 0
 - (e) Does not exist

5. The equation of **the normal line** to the curve

$$y = x^4 - 10x + 11$$

that is parallel to the line x - 6y = 3 is

- (a) $y = -\frac{1}{6}x + \frac{1}{3}$
- (b) $y = \frac{1}{6}x + \frac{11}{6}$
- (c) $y = \frac{1}{6}x \frac{5}{3}$
- (d) y = -6x + 3
- (e) $y = -6x \frac{11}{6}$

- $6. \qquad \lim_{x \to 0} \frac{x \tan x}{x \sin x} =$
 - (a) 0
 - (b) 1
 - (c) -2
 - (d) -1
 - (e) 2

7. The differential of $y = e^{\cot(\pi x)}$ is

- (a) $dy = e^{\cot(\pi x)} dx$
- (b) $dy = (\sec^2(\pi x)e^{\cot(\pi x)})dx$
- (c) $dy = (-\pi \sec(\pi x) \tan(\pi x) e^{\cot(\pi x)}) dx$
- (d) $dy = \cot(\pi x) dx$
- (e) $dy = (-\pi \csc^2(\pi x)e^{\cot(\pi x)})dx$

8. Let $y = Ax^2 + Bx + C$. If

$$y'' + y' - 2y = x^2$$

then A + B + C =

- (a) $\frac{3}{2}$
- (b) $\frac{5}{7}$
- (c) $-\frac{7}{4}$
- (d) 0
- (e) -1

- 9. $\lim_{x \to 0^{-}} \tan^{-1}(e^{1/x}) =$
 - (a) $-\frac{\pi}{2}$
 - (b) ∞
 - (c) 0
 - (d) $\frac{\pi}{2}$
 - (e) $\frac{\pi}{4}$

- 10. The function $f(x) = \frac{\sqrt{1-x^2}}{x}$ is
 - (a) increasing on (0,1) and dcreasing on (-1,0)
 - (b) decreasing on (-1,0) and on (0,1)
 - (c) increasing on (-1,0) and decreasing on (0,1)
 - (d) increasing on (-1,0) and on (0,1)
 - (e) decreasing on $(-\infty, \infty)$

- 11. Two sides of a triangle are 5 m and 8 m in length and the angle between them is increasing at a rate of 0.3 rad/s. The rate at which **the area of the triangle** is increasing when the angle between the sides of fixed length is $\frac{\pi}{3}$ is
 - (a) $2.5 \text{ m}^2/\text{s}$
 - (b) $3 \text{ m}^2/\text{s}$
 - (c) $10 \text{ m}^2/\text{s}$
 - (d) $5 \text{ m}^2/\text{s}$
 - (e) $6.5 \text{ m}^2/\text{s}$

- 12. If $f(t) = 5 + 6\sin(3t)$, then $f^{(21)}\left(\frac{\pi}{3}\right) =$
 - (a) $-6 \cdot 3^{21}$
 - (b) 3^{21}
 - (c) (21)!
 - (d) 0
 - (e) $6 \cdot 3^{21}$

- 13. The **sum** of the critical numbers of $f(x) = (x-1)^{3/5} \cdot (4-x)$ is
 - (a) 0
 - (b) $\frac{25}{8}$
 - (c) $\frac{3}{7}$
 - (d) $-\frac{9}{8}$
 - (e) $\frac{17}{8}$

- 14. The sum of two positive numbers is 5. If the product P of the square of the first number and the cube of the second number is **maximized**, then P =
 - (a) 72
 - (b) 25
 - (c) 16
 - (d) 64
 - (e) 108

- 15. The polynomial $f(x) = 1 + 2x + 6x^2 x^4$ is [CD: concave downward, CU: concave upward]
 - (a) CD on (-3,3); CU on $(-\infty, -3)$ and $(3, \infty)$
 - (b) CD on $(-\infty, 2)$ and $(5, \infty)$; CU on $(2, \infty)$
 - (c) CD on $(-\infty, -1)$ and $(1, \infty)$; CU on (-1, 1)
 - (d) CD on $(-\infty, \infty)$
 - (e) CD on $(-\infty, 1)$; CU on $(1, \infty)$

- 16. $\frac{d}{dt}[\ln(\cosh t) \frac{1}{2}\tanh^2 t] =$
 - (a) $\tanh t \operatorname{sech}^2 t$
 - (b) 0
 - (c) $\coth t + \tanh t \operatorname{sech} t$
 - (d) $\tanh t \tanh^2 t$
 - (e) $\tanh^3 t$

17. If $f'(t) = 2t - 3\sin t$ and f(0) = 5, then $f(\pi) =$

- (a) 2π
- (b) $\pi^2 + 5$
- (c) $\pi 3$
- (d) $\pi^2 + 2$
- (e) $\pi^2 1$

18. Using Newton's Method to approximate one root of the equation $(x-2)^4 = \ln x$, we find that if $x_1 = 1$, then $x_2 =$

- (a) $\frac{1}{2}$
- (b) $\frac{2}{3}$
- (c) $\frac{3}{5}$
- (d) $\frac{4}{3}$
- (e) $\frac{6}{5}$

- 19. The function $f(x) = \ln(x^2 3x + 2)$ has
 - (a) neither local minimum nor local maximum
 - (b) one local minimum and two local maxima
 - (c) one local maximum and two local minima
 - (d) one local minimum and one local maximum
 - (e) one local maximum and no local minimum

- 20. If $2x^2 + 3y^2 = 18$, then $y^3y'' =$
 - (a) -4
 - (b) $\frac{8}{9}$
 - (c) 3
 - (d) -6
 - (e) $-\frac{1}{6}$

- 21. If M and m are respectively the absolute maximum and absolute minimum values of $f(x) = \cos x + \sin x$ on $[0, \pi]$, then $\sqrt{2} M + m =$
 - $(a) \quad 0$
 - (b) 1
 - (c) 3
 - (d) -1
 - (e) $2\sqrt{2}$

- 22. Let a be a positive real number such that $a \neq e$. The **slope** of the tangent line to the curve $x^y = y^x$ at the point (a, a) is equal to
 - (a) $\ln a 1$
 - (b) -a
 - (c) $a \ln a$
 - (d) 1
 - (e) a^2

- 23. Using differentials (or a linear approximation), the value of $(64.018)^{2/3}$ is approximately equal to
 - (a) 16.01
 - (b) 4.003
 - (c) 16.003
 - (d) 16.018
 - (e) 12.002

- 24. The graph of $f(x) = \frac{x^2 5x + 6}{x^2 6x + 8}$ has
 - (a) one slant asymptote and one horizontal asymptote
 - (b) one horizontal asymptote and two vertical asymptotes
 - (c) one horizontal asymptote and one vertical asymptote
 - (d) two horizontal asymptotes & two vertical asymptotes
 - (e) one slant asymptote and one vertical asymptote

25. If
$$f(x) = \begin{cases} \cos x & \text{if } x \le 0 \\ x^2 & \text{if } x > 0, \end{cases}$$
 then $f'(0) =$

- (a) 3
- (b) Does not exist
- (c) -1
- (d) 0
- (e) 2

- 26. The equation of the **tangent line** to the curve $y = x^4 2x$ at x = 1 is
 - (a) y = x 2
 - (b) y = 2x 3
 - (c) y = -2x + 1
 - (d) y = -4x + 3
 - (e) y = 3x 4

27. $\lim_{x \to 0^+} (1 - 4\sin(3x))^{5\cot(9x)} =$

- (a) 1
- (b) $e^{-5/4}$
- (c) $e^{-20/3}$
- (d) $e^{-15/4}$
- (e) e^{-20}

28. If
$$f(x) = \frac{1}{2 + e^x}$$
, then $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \frac{1}{2 + e^x}$

- (a) $\frac{1}{3}$
- (b) $\frac{-e^x}{(2+e^x)^2}$
- (c) e^{-x}
- (d) $\frac{-2}{(2+e^x)^2}$
- (e) $2 + e^x$

Name		
ID	 Sec	

1	a	b	С	d	е	f
2	a	b	c	d	е	f
3	a	b	c	d	e	f
4	a	b	\mathbf{c}	d	е	f
5	a	b	c	d	е	f
6	a	b	\mathbf{c}	d	е	f
7	a	b	c	d	e	f
8	a	b	\mathbf{c}	d	е	f
9	a	b	c	d	е	f
10	a	b	\mathbf{c}	d	е	f
11	a	b	\mathbf{c}	d	е	f
12	a	b	c	d	е	f
13	a	b	$^{\mathrm{c}}$	d	е	f
14	a	b	c	d	е	f
15	a	b	c	d	е	f
16	a	b	С	d	е	f
17	a	b	С	d	е	f
18	a	b	c	d	е	f
19 20	a	b	c	d	е	f
	a	b	c	d	е	f
21	a	b	c	d	е	f
22	a	b	С	d	е	f
23	a	b	c	d	е	f
24	a	b	С	d	е	f
25	a	b	c	d	е	f
26	a	b	c	d	е	f
27	a	b	С	d	е	f
28	a	b	c	d	е	f
29	a	b	c	d	е	f
30	a	b	c	d	е	f
31	a	b	c	d	е	f
32	a	b	С	d	е	f
33	a	b	С	d	е	f
34	a	b	c	d	е	f
35	a	b	c	d	е	f

36	a	b	c	d	е	f
37	a	b	c	d	е	f
38	a	b	c	d	е	f
39	a	b	С	d	е	f
40	a	b	С	d	е	f
41	a	b	С	d	е	f
42	a	b	С	d	е	f
43	a	b	С	d	е	f
44	a	b	С	d	е	f
45	a	b	С	d	е	f
46	a	b	c	d	е	f
47	a	b	С	d	е	f
48	a	b	c	d	е	f
49	a	b	c	d	е	f
50	a	b	c	d	е	f
51	a	b	С	d	е	f
52	a	b	c	d	е	f
53	a	b	С	d	е	f
54	a	b	c	d	е	f
55	a	b	С	d	е	f
56	a	b	c	d	е	f
57	a	b	С	d	е	f
58	a	b	c	d	е	f
59	a	b	c	d	е	f
60	a	b	c	d	е	f
61	a	b	c	d	е	f
62	a	b	c	d	е	f
63	a	b	С	d	е	f
64	a	b	c	d	е	f
65	a	b	c	d	е	f
66	a	b	С	d	е	f
67	a	b	c	d	е	f
68	a	b	c	d	е	f
69	a	b	c	d	е	f
70	a	b	c	d	е	f

King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics

CODE 004

Math 101 Final Exam Term 102

CODE 004

Thursday, June 9, 2011
Net Time Allowed: 180 minutes

Name:		
ID:	Sec:	

Check that this exam has 28 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. The function $f(x) = \ln(x^2 - 3x + 2)$ has

- (a) one local maximum and no local minimum
- (b) one local minimum and two local maxima
- (c) neither local minimum nor local maximum
- (d) one local maximum and two local minima
- (e) one local minimum and one local maximum

2.
$$\frac{d}{dt}[\ln(\cosh t) - \frac{1}{2}\tanh^2 t] =$$

- (a) $\tanh t \tanh^2 t$
- (b) $\tanh t \operatorname{sech}^2 t$
- (c) $\coth t + \tanh t \operatorname{sech} t$
- (d) $\tanh^3 t$
- (e) 0

- 3. If $f'(t) = 2t 3\sin t$ and f(0) = 5, then $f(\pi) =$
 - (a) $\pi 3$
 - (b) $\pi^2 + 5$
 - (c) $\pi^2 + 2$
 - (d) $\pi^2 1$
 - (e) 2π

- 4. Using Newton's Method to approximate one root of the equation $(x-2)^4 = \ln x$, we find that if $x_1 = 1$, then $x_2 =$
 - (a) $\frac{6}{5}$
 - (b) $\frac{4}{3}$
 - (c) $\frac{2}{3}$
 - (d) $\frac{3}{5}$
 - (e) $\frac{1}{2}$

5. The equation of **the normal line** to the curve

$$y = x^4 - 10x + 11$$

that is parallel to the line x - 6y = 3 is

- (a) $y = \frac{1}{6}x + \frac{11}{6}$
- (b) $y = -\frac{1}{6}x + \frac{1}{3}$
- (c) y = -6x + 3
- (d) $y = -6x \frac{11}{6}$
- (e) $y = \frac{1}{6}x \frac{5}{3}$

6. Let $y = Ax^2 + Bx + C$. If

$$y'' + y' - 2y = x^2$$

then A + B + C =

- (a) -1
- (b) $\frac{5}{7}$
- (c) $\frac{3}{2}$
- (d) $-\frac{7}{4}$
- $(e) \quad 0$

7. If
$$f(x) = \begin{cases} \cos x & \text{if } x \le 0 \\ x^2 & \text{if } x > 0, \end{cases}$$
 then $f'(0) =$

- (a) 2
- (b) 3
- (c) Does not exist
- (d) 0
- (e) -1

8. If
$$f(t) = 5 + 6\sin(3t)$$
, then $f^{(21)}\left(\frac{\pi}{3}\right) =$

- (a) 3^{21}
- (b) 0
- (c) $-6 \cdot 3^{21}$
- (d) (21)!
- (e) $6 \cdot 3^{21}$

- 9. The polynomial $f(x) = 1 + 2x + 6x^2 x^4$ is [CD: concave downward, CU: concave upward]
 - (a) CD on (-3,3); CU on $(-\infty,-3)$ and $(3,\infty)$
 - (b) CD on $(-\infty, \infty)$
 - (c) CD on $(-\infty, -1)$ and $(1, \infty)$; CU on (-1, 1)
 - (d) CD on $(-\infty, 1)$; CU on $(1, \infty)$
 - (e) CD on $(-\infty, 2)$ and $(5, \infty)$; CU on $(2, \infty)$

- 10. If $2x^2 + 3y^2 = 18$, then $y^3y'' =$
 - (a) 3
 - (b) -4
 - (c) $-\frac{1}{6}$
 - (d) $\frac{8}{9}$
 - (e) -6

- 11. The function $g(x) = \frac{\sqrt{x^2 4}}{x^2 3x}$ is **continuous** on
 - (a) $(-\infty, \infty)$
 - (b) $[-2,0) \cup (0,2]$
 - (c) $(-\infty, 0) \cup (0, 3) \cup (3, \infty)$
 - (d) $(-\infty, -2] \cup [2, \infty)$
 - (e) $(-\infty, -2] \cup [2, 3) \cup (3, \infty)$

- 12. Two sides of a triangle are 5 m and 8 m in length and the angle between them is increasing at a rate of 0.3 rad/s. The rate at which **the area of the triangle** is increasing when the angle between the sides of fixed length is $\frac{\pi}{3}$ is
 - (a) $10 \text{ m}^2/\text{s}$
 - (b) $3 \text{ m}^2/\text{s}$
 - (c) $5 \text{ m}^2/\text{s}$
 - (d) $6.5 \text{ m}^2/\text{s}$
 - (e) $2.5 \text{ m}^2/\text{s}$

- 13. $\lim_{x \to 0^+} (1 4\sin(3x))^{5\cot(9x)} =$
 - (a) $e^{-20/3}$
 - (b) $e^{-15/4}$
 - (c) 1
 - (d) $e^{-5/4}$
 - (e) e^{-20}

- 14. The equation of the **tangent line** to the curve $y = x^4 2x$ at x = 1 is
 - (a) y = -4x + 3
 - (b) y = x 2
 - (c) y = 2x 3
 - $(d) \quad y = 3x 4$
 - (e) y = -2x + 1

- 15. The differential of $y = e^{\cot(\pi x)}$ is
 - (a) $dy = \cot(\pi x)dx$
 - (b) $dy = (-\pi \csc^2(\pi x)e^{\cot(\pi x)})dx$
 - (c) $dy = (-\pi \sec(\pi x) \tan(\pi x) e^{\cot(\pi x)}) dx$
 - (d) $dy = e^{\cot(\pi x)} dx$
 - (e) $dy = (\sec^2(\pi x)e^{\cot(\pi x)})dx$

- 16. The function $f(x) = \frac{\sqrt{1-x^2}}{x}$ is
 - (a) increasing on (-1,0) and decreasing on (0,1)
 - (b) increasing on (-1,0) and on (0,1)
 - (c) increasing on (0,1) and dcreasing on (-1,0)
 - (d) decreasing on $(-\infty, \infty)$
 - (e) decreasing on (-1,0) and on (0,1)

- 17. If $x^2 + 1 \le f(x) 2x \le 3x^4 1$ for all $x \in (-\infty, \infty)$, then $\lim_{x \to 1} f(x) =$
 - (a) 4
 - (b) 0
 - (c) Does not exist
 - (d) 1
 - (e) -3

- 18. If M and m are respectively the absolute maximum and absolute minimum values of $f(x) = \cos x + \sin x$ on $[0, \pi]$, then $\sqrt{2} M + m =$
 - (a) -1
 - (b) $2\sqrt{2}$
 - (c) 3
 - (d) 0
 - (e) 1

- 19. Using differentials (or a linear approximation), the value of $(64.018)^{2/3}$ is approximately equal to
 - (a) 4.003
 - (b) 16.003
 - (c) 16.018
 - (d) 16.01
 - (e) 12.002

- 20. The graph of $f(x) = \frac{x^2 5x + 6}{x^2 6x + 8}$ has
 - (a) one horizontal asymptote and two vertical asymptotes
 - (b) one slant asymptote and one horizontal asymptote
 - (c) two horizontal asymptotes & two vertical asymptotes
 - (d) one slant asymptote and one vertical asymptote
 - (e) one horizontal asymptote and one vertical asymptote

- 21. $\lim_{x \to 0^{-}} \tan^{-1}(e^{1/x}) =$
 - (a) $\frac{\pi}{2}$
 - (b) $\frac{\pi}{4}$
 - (c) 0
 - (d) ∞
 - (e) $-\frac{\pi}{2}$

22. Applying the Mean Value Theorem to $f(x) = \tan^{-1} x$ on the interval [1, 2], we conclude that

(a)
$$\frac{\pi}{4} + \frac{1}{5} < \tan^{-1} 2 < \frac{\pi}{4} + \frac{1}{2}$$

(b)
$$\frac{\pi}{2} < \tan^{-1} 2 < \pi$$

(c)
$$\frac{\pi}{8} < \tan^{-1} 2 < \frac{\pi}{4} + \frac{1}{5}$$

(d)
$$\frac{1}{5} < \tan^{-1} 2 < \frac{1}{2}$$

(e)
$$\frac{\pi}{4} + \frac{1}{2} < \tan^{-1} 2 < \frac{\pi}{2}$$

- 23. The sum of two positive numbers is 5. If the product P of the square of the first number and the cube of the second number is **maximized**, then P =
 - (a) 25
 - (b) 72
 - (c) 64
 - (d) 108
 - (e) 16

- 24. If $\sinh x + \cosh x = 5$, then $\tanh x =$
 - (a) $\frac{13}{16}$
 - (b) $\frac{12}{13}$
 - (c) $\frac{1}{5}$
 - (d) $\frac{21}{25}$
 - (e) $\frac{3}{4}$

- 25. The **sum** of the critical numbers of $f(x) = (x-1)^{3/5} \cdot (4-x)$ is
 - (a) $\frac{3}{7}$
 - (b) 0
 - (c) $\frac{25}{8}$
 - (d) $\frac{17}{8}$
 - (e) $-\frac{9}{8}$

- $26. \qquad \lim_{x \to 0} \frac{x \tan x}{x \sin x} =$
 - (a) 1
 - (b) 0
 - (c) -2
 - (d) 2
 - (e) -1

- 27. Let a be a positive real number such that $a \neq e$. The **slope** of the tangent line to the curve $x^y = y^x$ at the point (a, a) is equal to
 - (a) $a \ln a$
 - (b) 1
 - (c) $\ln a 1$
 - (d) a^2
 - (e) -a

- 28. If $f(x) = \frac{1}{2 + e^x}$, then $\lim_{h \to 0} \frac{f(x+h) f(x)}{h} = \frac{1}{2 + e^x}$
 - (a) $\frac{-2}{(2+e^x)^2}$
 - (b) $\frac{-e^x}{(2+e^x)^2}$
 - (c) e^{-x}
 - (d) $\frac{1}{3}$
 - (e) $2 + e^x$

Name		
ID	 Sec	

1	a	b	c	d	е	f
2	a	b	c	d	е	f
3	a	b	\mathbf{c}	d	е	f
4	a	b	\mathbf{c}	d	е	f
5	a	b	c	d	е	f
6	a	b	c	d	е	f
7	a	b	c	d	e	f
8	a	b	c	d	e	f
9	a	b	c	d	e	f
10	a	b	c	d	e	f
11	a	b	\mathbf{c}	d	е	f
12	a	b	\mathbf{c}	d	е	f
13	a	b	\mathbf{c}	d	е	f
14	a	b	c	d	е	f
15	a	b	c	d	е	f
16	a	b	С	d	е	f
17	a	b	c	d	е	f
18	a	b	С	d	е	f
19	a	b	$^{\mathrm{c}}$	d	e	f
20	a	b	c	d	е	f
21	a	b	С	d	е	f
22	a	b	c	d	е	f
23	a	b	С	d	е	f
24	a	b	c	d	е	f
25	a	b	c	d	е	f
26	a	b	\mathbf{c}	d	е	f
27	a	b	c	d	е	f
28	a	b	С	d	е	f
29	a	b	c	d	е	f
30	a	b	c	d	е	f
31	a	b	c	d	е	f
32	a	b	c	d	е	f
33	a	b	c	d	е	f
34	a	b	c	d	е	f
35	a	b	c	d	е	f

36	a	b	С	d	е	f
37	a	b	c	d	е	f
38	a	b	С	d	е	f
39	a	b	С	d	е	f
40	a	b	c	d	е	f
41	a	b	С	d	е	f
42	a	b	С	d	е	f
43	a	b	С	d	е	f
44	a	b	С	d	е	f
45	a	b	С	d	е	f
46	a	b	С	d	е	f
47	a	b	С	d	е	f
48	a	b	c	d	е	f
49	a	b	c	d	е	f
50	a	b	c	d	е	f
51	a	b	c	d	е	f
52	a	b	С	d	е	f
53	a	b	С	d	е	f
54	a	b	С	d	е	f
55	a	b	С	d	е	f
56	a	b	c	d	е	f
57	a	b	С	d	е	f
58	a	b	c	d	е	f
59	a	b	С	d	е	f
60	a	b	c	d	е	f
61	a	b	С	d	е	f
62	a	b	c	d	е	f
63	a	b	С	d	е	f
64	a	b	c	d	е	f
65	a	b	С	d	е	f
66	a	b	c	d	е	f
67	a	b	c	d	е	f
68	a	b	c	d	е	f
69	a	b	c	d	е	f
70	a	b	С	d	е	f

Q	MM	V1	V2	V3	V4
1	a	d	d	d	С
2	a	a	b	a	d
3	a	d	d	С	d
4	a	b	b	a	a
5	a	d	a	b	a
6	a	a	a	С	d
7	a	b	b	е	c
8	a	b	е	С	c
9	a	b	е	С	С
10	a	b	С	b	b
11	a	a	a	b	е
12	a	b	a	a	b
13	a	d	d	b	a
14	a	b	b	е	С
15	a	a	е	С	b
16	a	a	b	е	е
17	a	С	е	е	a
18	a	d	a	е	е
19	a	С	a	a	b
20	a	b	c	a	е
21	a	С	b	b	c
22	a	b	е	d	a
23	a	a	a	С	d
24	a	е	b	С	b
25	a	a	c	b	С
26	a	a	е	b	С
27	a	b	a	С	b
28	a	е	d	b	b

Answer Counts

V	a	b	c	d	е
1	10	4	4	4	6
2	7	1	6	9	5
3	8	8	7	4	1
4	7	7	2	6	6