King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics

CODE 004

Math 101 Exam 2

CODE 004

Term 102 Monday, April 25, 2011

Net Time Allowed: 120 minutes

Nan	ie:	 		
ID:		 	Sec:	

Check that this exam has 20 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. If $x^3 + x^2y 4y^2 = 6$, then y' =
 - (a) $\frac{-3x^2}{x^2 8y}$
 - (b) $\frac{x + 3xy}{4y^2 + 4x}$
 - $(c) \quad \frac{xy 3x^2}{4y 2x}$
 - (d) $\frac{2xy + 3x^2}{8y x^2}$
 - (e) $\frac{3x^2 + xy}{8y}$

- 2. The x-coordinates of the points on the curve $y = 3x \sin x$ at which the tangent line has slope 4 are
 - (a) $n\pi$, n is integer
 - (b) $2n\pi$, n is integer
 - (c) $\frac{2n+1}{2}\pi$, *n* is integer
 - (d) $\frac{n\pi}{3}$, n is integer
 - (e) $(2n+1)\pi$, n is integer

- 3. The equation of the **normal line** to the curve $y = 4x^3 6\sqrt{x}$ at the point (1, -2) is
 - (a) y + 9x 17 = 0
 - (b) 9y + x + 17 = 0
 - $(c) \quad y = 17x 9$
 - (d) y + 9x 11 = 0
 - (e) y = 9x + 11

- 4. The slope of the tangent line to the curve $y = 4 \sec x + \tan x$ at $x = \frac{\pi}{4}$ is equal to
 - (a) $1 + \sqrt{2}$
 - (b) 2
 - (c) $-4\sqrt{2}$
 - (d) -6
 - (e) $2 + 4\sqrt{2}$

- 5. If $f(x) = \sqrt[3]{x^2} + \frac{1}{\sqrt[4]{x}}$, then f''(1) =
 - (a) $\frac{13}{144}$
 - (b) $\frac{-3}{56}$
 - (c) $\frac{13}{56}$
 - (d) $\frac{101}{144}$
 - (e) $\frac{77}{144}$

- $6. \quad \lim_{x \to 0} \frac{\cos x + \sin(2x) 1}{\tan x} =$
 - (a) 2
 - (b) Does not exist
 - (c) -3
 - (d) 1
 - (e) 0

7. If
$$f(x) = \frac{2x-1}{(x+3)^3}$$
, then $f'(x) =$

- (a) $\frac{3+2x}{(x+3)^4}$
- (b) $\frac{5+4x}{(x+3)^5}$
- (c) $\frac{9-4x}{(x+3)^4}$
- (d) $\frac{3x+2}{(x+3)^6}$
- (e) $\frac{7-4x}{(x+3)^5}$

8. If
$$y = \sqrt[5]{u^2 - 3}$$
 and $u = \sqrt[3]{x^2 - 1}$, then $\frac{dy}{dx}\Big|_{x=3} =$

- (a) $\frac{8}{\sqrt[3]{2}}$
- (b) $\frac{1}{5}$
- (c) $\frac{2}{5}$
- (d) $\frac{8}{15}$
- (e) $\frac{3}{\sqrt[5]{4}}$

- 9. If $h(x) = \ln(x + 2 \ln x)$, then h'(x) =
 - (a) $\frac{x+1}{x^2+2\ln x}$
 - (b) $\frac{1}{x + 2\ln x}$
 - (c) $\frac{2}{x(x+2\ln x)}$
 - (d) $\frac{x+2}{x^2+2x\ln x}$
 - (e) $\frac{x+2}{x+2\ln x}$

- 10. If $f(t) = 3^{\sin^2(3t)}$, then f'(t) =
 - (a) $\sin^2(3t) \cdot 3^{\sin^2(3t)-1}$
 - (b) $3^{\sin^2(3t)} \cdot \ln 3 \cdot 3\sin(3t) \cdot \cos(3t)$
 - (c) $3^{\sin^2(3t)} \cdot \ln 9 \cdot 3\cos(3t)$
 - (d) $3^{\sin^2(3t)} \cdot \ln 3 \cdot 2\sin(3t)$
 - (e) $3^{\sin^2(3t)} \cdot \ln(27) \cdot \sin(6t)$

- 11. Let f be a differentiable function such that f(2) = 2, f(4) = 1, f'(2) = 3, and f'(4) = -1. If $G(x) = f(2x) \cdot f(x)$, then G'(2) =
 - (a) -1
 - (b) 0
 - (c) 5
 - (d) 3
 - (e) 1

- 12. The equation of the tangent line to the curve $x^2 + (y x)^3 = 9$ at x = 1 is
 - (a) $y = \frac{5}{6}x + \frac{13}{6}$
 - (b) $y = \frac{5}{3}x + \frac{4}{3}$
 - (c) $y = \frac{1}{6}x + \frac{17}{6}$
 - (d) $y = \frac{7}{6}x + \frac{11}{6}$
 - (e) $y = \frac{3}{6}x \frac{17}{6}$

13. If
$$y = x^{\sin^{-1} x}$$
, then $\frac{y'}{y} =$

(a)
$$\frac{\sin^{-1} x}{x} + \frac{\ln x}{\sqrt{1 - x^2}}$$

- (b) $x^{\sin^{-1}x} \cdot \ln x$
- (c) $\frac{1}{x\sqrt{1-x^2}}$
- (d) $(\sin^{-1} x) \ln x$
- (e) $\frac{\sin^{-1} x}{\sqrt{1-x^2}} + \frac{\ln x}{x}$

14.
$$\lim_{t \to 0} \frac{\sin^2(3t)}{t^3 - 3t^2} =$$

- (a) $\frac{2}{3}$
- (b) $\frac{1}{9}$
- (c) 3
- (d) $\frac{4}{27}$
- (e) -3

- 15. If y = mx + k is the equation of a line parallel to the line y = x and tangent to the graph of $y = e^{x+2}$, then m + k = x
 - (a) -2
 - (b) 5
 - (c) 3
 - (d) 2
 - (e) 4

- 16. The volume of a cube is increasing at a rate of 10 cm³/min. When the length of an edge is 30 cm, the **surface area** of the cube is increasing at a rate of
 - (a) $5 \text{ cm}^2/\text{min}$
 - (b) $6 \text{ cm}^2/\text{min}$
 - (c) $\frac{5}{3}$ cm²/min
 - (d) $\frac{4}{3}$ cm²/min
 - (e) $\frac{5}{9}$ cm²/min

- 17. If $y = \tan^{-1}\left(\frac{1+x}{1-x}\right)$, then $\frac{dy}{dx} =$
 - (a) $\frac{2}{2+x^2}$
 - (b) $\frac{1}{1+x^2}$
 - (c) $\frac{2}{(1+x)^2}$
 - (d) $\frac{(1-x)^2}{1-(1+x)^2}$
 - (e) $\frac{(1+x)^2}{(1-x)^2}$

- 18. A parabola $y = ax^2 + bx + c$ passes through the point (1, 7), has a tangent line at x = -1 with slope 6, and has a tangent line at x = 5 with slope -2. The value of 6a + 3b + c is equal to
 - (a) 13
 - (b) 7
 - (c) -8
 - (d) 0
 - (e) -12

19. If $f(x) = \frac{\sqrt[3]{3x-2}}{e^{x^2}(x^3+1)^{10}}$, then f'(1) =

[Hint: you may use logarithmic differentiation]

- (a) $\frac{-16}{5e}$
- (b) $\frac{-1}{64e}$
- (c) $\frac{e}{15}$
- (d) $\frac{32}{e}$
- (e) $\frac{1}{16e}$

20. A particle moves according to the law of motion

$$f(t) = 9te^{-t/3}, \quad 0 \le t \le 8.$$

The time interval(s) on which the particle is **slowing down** is(are)

- (a) (0,2) and (3,6)
- (b) (0,3) and (4,8)
- (c) (0,3) and (6,8)
- (d) (2,6)
- (e) (3,6)

Q	MM	V1	V2	V3	V4
1	a	С	е	a	d
2	a	a	е	d	е
3	a	С	d	е	b
4	a	a	a	a	е
5	a	a	a	С	a
6	a	d	a	С	a
7	a	е	d	е	С
8	a	a	С	a	С
9	a	d	е	a	d
10	a	С	d	b	е
11	a	b	е	b	a
12	a	b	b	d	a
13	a	е	a	е	a
14	a	b	е	a	е
15	a	a	b	е	е
16	a	a	d	С	d
17	a	a	d	С	b
18	a	a	a	е	a
19	a	С	b	d	b
20	a	b	a	е	С