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1. lim
x→2+

4− x2

(x− 2)2 =

−∞(a)

∞(b)

4(c)

0(d)

−4(e)

2. lim
x→0

(4 + x)−1 − 4−1

x
=

−1

16
(a)

1

16
(b)

−1

4
(c)

0(d)

does not exist(e)
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3. If f(x) =
x2 + 1

e3x
, then f ′(1) =

−4

e3(a)

0(b)

−4

e6(c)

2

e5(d)

8

e3(e)

4. The critical values of g(t) = t2 (2t− 5)1/3 are

{
0,

5

2
,
15

7

}
(a)

{
0,

15

7

}
(b)

{
0,

5

2

}
(c)

{
5

2
,
15

7

}
(d)

{0}(e)
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5. If f(x) = 3x2/3− x, then f(x) is increasing on the interval

(0, 8)(a)

(8,∞)(b)

(−∞, 0)(c)

(0,∞)(d)

(−∞, 8)(e)

6. The graph of y = ln(x3 + 1) is concave up on the interval

(0,
3
√

2)(a)

(−∞,−1) and (0,
3
√

2)(b)

(0, 2)(c)

(−1, 2)(d)

(0,∞)(e)
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7. If f(x) =





c if x = −3

9− x2

4−√x2 + 7
if − 3 < x < 3

d if x = 3

,

then f is continuous on [−3, 3] if

c = 8, d = 8(a)

c = 8, d = −8(b)

c = −8, d = 8(c)

c = 0, d = 0(d)

c = 1, d = −1(e)

8. If y =

(
cos x

1 + sin x

)4
, then

dy

dx
=

−4 cos3 x

(1 + sin x)4(a)

(−4 sin x

cos x

) (
cos x

1 + sin x

)3
(b)

4

(
cos x

1 + sin x

)3
(c)

−4

(
sin x

cos x

)3

(d)

0(e)
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9. lim
x→∞(x−

√
x2 − 3x) =

3

2
(a)

3(b)

−1

2
(c)

0(d)

∞(e)

10. lim
x→0

|x− 1| − 1

x
=

−1(a)

∞(b)

0(c)

−∞(d)

−2(e)
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11. If the curve y = ax2+bx+c passes through the point (2, 30)
and is tangent to the line y = 3x at the origin, then

a + b = 9(a)

a + b = 7(b)

a + b = 6(c)

a + b = 3(d)

a + b = 2(e)

12. If

x f(x) g(x) f ′(x) g′(x)

3 1 4 8 3

4 3 3 2 −5

and F (x) = [f(x)]2 · g(x), then F ′(3) =

67(a)

35(b)

48(c)

11(d)

61(e)
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13. The slope of normal line to the curve x4y4 = 16 at (2, 1) is

2(a)

−2(b)

1

8
(c)

−1

2
(d)

1

2
(e)

14. If y = 4

√√√√√(4x + 1)(x + 4)2

(x3 + 9)(x2 + 9)
, then

dy

dx

∣∣∣∣∣
x=0

is

3

4
(a)

0(b)

12(c)

9

2
(d)

ln 4− ln 9

2
(e)
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15. If f(x) = sech2(ln(x + 2)), then f ′(0) =

−48

125
(a)

−48

25
(b)

−24

125
(c)

−12

25
(d)

12

25
(e)

16. A particle moves along the curve y =
√

1 + x3. As it reaches
the point (2, 3), the y-coordinate is increasing at a rate of
4 cm/s. At this instant, the x-coordinate is changing at the
rate of

2 cm/s(a)

4 cm/s(b)

8 cm/s(c)

3 cm/s(d)

6 cm/s(e)
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17. The radius of a circle is measured to be 3m with a possible
error of 0.03 m. By using differentials, the relative error
in the area is

0.02(a)

0.03(b)

0.01(c)

0.04(d)

0.06(e)

18. f(x) = −3x2 + 5x + 5 is continuous on [−3,−1] and differ-
entiable on (−3,−1). Then, the value of ‘c’ that satisfies
the conclusion of the Mean Value Theorem is

c = −2(a)

c =
−6

5
(b)

c = −1(c)

c = 0(d)

c =
−11

6
(e)
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19. Given the graph of y = f ′(x) i.e. the graph of first deriv-
ative of function. Then which of the following is not true?

f(0) > f

(
1

2

)
(a)

f(4) < f(3)(b)

f is concave down on (0, 3)(c)

f has critical points at x = 1 and x = 5(d)

f ′′(3) = 0(e)

20. lim
x→0

(cos x)1/x2

=

1√
e

(a)

−∞(b)

0(c)

1(d)

e2(e)
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21. lim
x→∞x sin

16

x
=

16(a)

0(b)

1(c)

1

16
(d)

∞(e)

22. A cylindrical can is to be made to hold 16π cm3 of laban.
If r is the radius and h is the height of the can, then the
dimensions that will minimize the cost of the metal to man-
ufacture the can are

r = 2, h = 4(a)

r =
3
√

16, h =
16

(16)2/3(b)

r =

√√√√8

3
, h =

2√
3

(c)

r = 8, h = 16(d)

r = 4, h = 8(e)
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23. Starting with x1 = 1, the third approximation x3 to the
root of x4 − 6x + 3 = 0 is

[Hint: use Newton’s method]

1

2
(a)

0(b)

59

26
(c)

2(d)

40

7
(e)

24. A curve f(x) has a slope at each point given by
−1

x2 and

passes through the point

(
1

8
, 10

)
. Then

f(x) =
1

x
+ 2(a)

f(x) =
−1

x
+ 14(b)

f(x) =
3

x3 + 2(c)

f(x) =
2

x
+ 2(d)

f(x) =
2

x3(e)
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1. If f(x) =





c if x = −3

9− x2

4−√x2 + 7
if − 3 < x < 3

d if x = 3

,

then f is continuous on [−3, 3] if

c = 8, d = 8(a)

c = −8, d = 8(b)

c = 1, d = −1(c)

c = 8, d = −8(d)

c = 0, d = 0(e)

2. If f(x) =
x2 + 1

e3x
, then f ′(1) =

0(a)

−4

e3(b)

−4

e6(c)

2

e5(d)

8

e3(e)
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3. The critical values of g(t) = t2 (2t− 5)1/3 are

{
5

2
,
15

7

}
(a)

{
0,

5

2

}
(b)

{
0,

5

2
,
15

7

}
(c)

{0}(d)

{
0,

15

7

}
(e)

4. If f(x) = 3x2/3− x, then f(x) is increasing on the interval

(8,∞)(a)

(0, 8)(b)

(0,∞)(c)

(−∞, 8)(d)

(−∞, 0)(e)
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5. lim
x→0

(4 + x)−1 − 4−1

x
=

−1

4
(a)

0(b)

does not exist(c)

1

16
(d)

−1

16
(e)

6. The graph of y = ln(x3 + 1) is concave up on the interval

(0,∞)(a)

(−∞,−1) and (0,
3
√

2)(b)

(0,
3
√

2)(c)

(0, 2)(d)

(−1, 2)(e)
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7. lim
x→2+

4− x2

(x− 2)2 =

∞(a)

4(b)

0(c)

−∞(d)

−4(e)

8. If y =

(
cos x

1 + sin x

)4
, then

dy

dx
=

−4 cos3 x

(1 + sin x)4(a)

(−4 sin x

cos x

) (
cos x

1 + sin x

)3
(b)

4

(
cos x

1 + sin x

)3
(c)

−4

(
sin x

cos x

)3

(d)

0(e)
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9. A curve f(x) has a slope at each point given by
−1

x2 and

passes through the point

(
1

8
, 10

)
. Then

f(x) =
2

x
+ 2(a)

f(x) =
1

x
+ 2(b)

f(x) =
2

x3(c)

f(x) =
−1

x
+ 14(d)

f(x) =
3

x3 + 2(e)

10. The slope of normal line to the curve x4y4 = 16 at (2, 1) is

1

8
(a)

−2(b)

−1

2
(c)

2(d)

1

2
(e)
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11. If f(x) = sech2(ln(x + 2)), then f ′(0) =

−48

125
(a)

−24

125
(b)

12

25
(c)

−12

25
(d)

−48

25
(e)

12. Given the graph of y = f ′(x) i.e. the graph of first deriv-
ative of function. Then which of the following is not true?

f has critical points at x = 1 and x = 5(a)

f(4) < f(3)(b)

f is concave down on (0, 3)(c)

f(0) > f

(
1

2

)
(d)

f ′′(3) = 0(e)
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13. If

x f(x) g(x) f ′(x) g′(x)

3 1 4 8 3

4 3 3 2 −5

and F (x) = [f(x)]2 · g(x), then F ′(3) =

61(a)

67(b)

35(c)

48(d)

11(e)

14. Starting with x1 = 1, the third approximation x3 to the
root of x4 − 6x + 3 = 0 is

[Hint: use Newton’s method]

2(a)

1

2
(b)

0(c)

59

26
(d)

40

7
(e)
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15. A cylindrical can is to be made to hold 16π cm3 of laban.
If r is the radius and h is the height of the can, then the
dimensions that will minimize the cost of the metal to man-
ufacture the can are

r = 8, h = 16(a)

r = 2, h = 4(b)

r = 4, h = 8(c)

r =
3
√

16, h =
16

(16)2/3(d)

r =

√√√√8

3
, h =

2√
3

(e)

16. A particle moves along the curve y =
√

1 + x3. As it reaches
the point (2, 3), the y-coordinate is increasing at a rate of
4 cm/s. At this instant, the x-coordinate is changing at the
rate of

3 cm/s(a)

6 cm/s(b)

4 cm/s(c)

8 cm/s(d)

2 cm/s(e)
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17. If the curve y = ax2+bx+c passes through the point (2, 30)
and is tangent to the line y = 3x at the origin, then

a + b = 9(a)

a + b = 2(b)

a + b = 3(c)

a + b = 7(d)

a + b = 6(e)

18. If y = 4

√√√√√(4x + 1)(x + 4)2

(x3 + 9)(x2 + 9)
, then

dy

dx

∣∣∣∣∣
x=0

is

3

4
(a)

12(b)

0(c)

ln 4− ln 9

2
(d)

9

2
(e)
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19. lim
x→0

|x− 1| − 1

x
=

−∞(a)

∞(b)

−1(c)

−2(d)

0(e)

20. f(x) = −3x2 + 5x + 5 is continuous on [−3,−1] and differ-
entiable on (−3,−1). Then, the value of ‘c’ that satisfies
the conclusion of the Mean Value Theorem is

c =
−6

5
(a)

c = −2(b)

c = −1(c)

c =
−11

6
(d)

c = 0(e)



Page 11 of 12 001

21. lim
x→∞x sin

16

x
=

1(a)

1

16
(b)

16(c)

0(d)

∞(e)

22. The radius of a circle is measured to be 3m with a possible
error of 0.03 m. By using differentials, the relative error
in the area is

0.02(a)

0.03(b)

0.06(c)

0.04(d)

0.01(e)
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23. lim
x→0

(cos x)1/x2

=

1√
e

(a)

−∞(b)

e2(c)

1(d)

0(e)

24. lim
x→∞(x−

√
x2 − 3x) =

0(a)

3

2
(b)

−1

2
(c)

3(d)

∞(e)



Answer Sheet 001

Name .................................................

ID ................................ Sec ..........

1 a b c d e f 36 a b c d e f
2 a b c d e f 37 a b c d e f
3 a b c d e f 38 a b c d e f
4 a b c d e f 39 a b c d e f
5 a b c d e f 40 a b c d e f
6 a b c d e f 41 a b c d e f
7 a b c d e f 42 a b c d e f
8 a b c d e f 43 a b c d e f
9 a b c d e f 44 a b c d e f
10 a b c d e f 45 a b c d e f
11 a b c d e f 46 a b c d e f
12 a b c d e f 47 a b c d e f
13 a b c d e f 48 a b c d e f
14 a b c d e f 49 a b c d e f
15 a b c d e f 50 a b c d e f
16 a b c d e f 51 a b c d e f
17 a b c d e f 52 a b c d e f
18 a b c d e f 53 a b c d e f
19 a b c d e f 54 a b c d e f
20 a b c d e f 55 a b c d e f
21 a b c d e f 56 a b c d e f
22 a b c d e f 57 a b c d e f
23 a b c d e f 58 a b c d e f
24 a b c d e f 59 a b c d e f
25 a b c d e f 60 a b c d e f
26 a b c d e f 61 a b c d e f
27 a b c d e f 62 a b c d e f
28 a b c d e f 63 a b c d e f
29 a b c d e f 64 a b c d e f
30 a b c d e f 65 a b c d e f
31 a b c d e f 66 a b c d e f
32 a b c d e f 67 a b c d e f
33 a b c d e f 68 a b c d e f
34 a b c d e f 69 a b c d e f
35 a b c d e f 70 a b c d e f
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1. If f(x) =
x2 + 1

e3x
, then f ′(1) =

2

e5(a)

−4

e3(b)

0(c)

−4

e6(d)

8

e3(e)

2. If f(x) = 3x2/3− x, then f(x) is increasing on the interval

(0, 8)(a)

(−∞, 0)(b)

(−∞, 8)(c)

(8,∞)(d)

(0,∞)(e)
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3. lim
x→2+

4− x2

(x− 2)2 =

−4(a)

0(b)

∞(c)

−∞(d)

4(e)

4. lim
x→0

(4 + x)−1 − 4−1

x
=

1

16
(a)

does not exist(b)

0(c)

−1

16
(d)

−1

4
(e)
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5. The critical values of g(t) = t2 (2t− 5)1/3 are

{
5

2
,
15

7

}
(a)

{
0,

5

2

}
(b)

{
0,

15

7

}
(c)

{0}(d)

{
0,

5

2
,
15

7

}
(e)

6. If f(x) =





c if x = −3

9− x2

4−√x2 + 7
if − 3 < x < 3

d if x = 3

,

then f is continuous on [−3, 3] if

c = 8, d = 8(a)

c = 8, d = −8(b)

c = 0, d = 0(c)

c = 1, d = −1(d)

c = −8, d = 8(e)
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7. If y =

(
cos x

1 + sin x

)4
, then

dy

dx
=

−4

(
sin x

cos x

)3

(a)

(−4 sin x

cos x

) (
cos x

1 + sin x

)3
(b)

0(c)

4

(
cos x

1 + sin x

)3
(d)

−4 cos3 x

(1 + sin x)4(e)

8. The graph of y = ln(x3 + 1) is concave up on the interval

(0,∞)(a)

(−1, 2)(b)

(0,
3
√

2)(c)

(0, 2)(d)

(−∞,−1) and (0,
3
√

2)(e)
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9. A particle moves along the curve y =
√

1 + x3. As it reaches
the point (2, 3), the y-coordinate is increasing at a rate of
4 cm/s. At this instant, the x-coordinate is changing at the
rate of

6 cm/s(a)

4 cm/s(b)

8 cm/s(c)

3 cm/s(d)

2 cm/s(e)

10. lim
x→0

(cos x)1/x2

=

−∞(a)

1√
e

(b)

e2(c)

0(d)

1(e)
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11. If the curve y = ax2+bx+c passes through the point (2, 30)
and is tangent to the line y = 3x at the origin, then

a + b = 3(a)

a + b = 7(b)

a + b = 9(c)

a + b = 2(d)

a + b = 6(e)

12. The slope of normal line to the curve x4y4 = 16 at (2, 1) is

2(a)

1

8
(b)

−1

2
(c)

1

2
(d)

−2(e)
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13. lim
x→∞x sin

16

x
=

0(a)

1

16
(b)

∞(c)

1(d)

16(e)

14. lim
x→∞(x−

√
x2 − 3x) =

3

2
(a)

0(b)

∞(c)

−1

2
(d)

3(e)
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15. A curve f(x) has a slope at each point given by
−1

x2 and

passes through the point

(
1

8
, 10

)
. Then

f(x) =
3

x3 + 2(a)

f(x) =
2

x
+ 2(b)

f(x) =
2

x3(c)

f(x) =
1

x
+ 2(d)

f(x) =
−1

x
+ 14(e)

16. If

x f(x) g(x) f ′(x) g′(x)

3 1 4 8 3

4 3 3 2 −5

and F (x) = [f(x)]2 · g(x), then F ′(3) =

48(a)

11(b)

61(c)

67(d)

35(e)
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17. If y = 4

√√√√√(4x + 1)(x + 4)2

(x3 + 9)(x2 + 9)
, then

dy

dx

∣∣∣∣∣
x=0

is

ln 4− ln 9

2
(a)

0(b)

12(c)

3

4
(d)

9

2
(e)

18. Starting with x1 = 1, the third approximation x3 to the
root of x4 − 6x + 3 = 0 is

[Hint: use Newton’s method]

0(a)

1

2
(b)

2(c)

59

26
(d)

40

7
(e)
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19. If f(x) = sech2(ln(x + 2)), then f ′(0) =

−48

125
(a)

−24

125
(b)

12

25
(c)

−12

25
(d)

−48

25
(e)

20. A cylindrical can is to be made to hold 16π cm3 of laban.
If r is the radius and h is the height of the can, then the
dimensions that will minimize the cost of the metal to man-
ufacture the can are

r = 2, h = 4(a)

r = 8, h = 16(b)

r =

√√√√8

3
, h =

2√
3

(c)

r = 4, h = 8(d)

r =
3
√

16, h =
16

(16)2/3(e)
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21. The radius of a circle is measured to be 3m with a possible
error of 0.03 m. By using differentials, the relative error
in the area is

0.06(a)

0.03(b)

0.04(c)

0.01(d)

0.02(e)

22. f(x) = −3x2 + 5x + 5 is continuous on [−3,−1] and differ-
entiable on (−3,−1). Then, the value of ‘c’ that satisfies
the conclusion of the Mean Value Theorem is

c = 0(a)

c =
−11

6
(b)

c = −2(c)

c =
−6

5
(d)

c = −1(e)
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23. Given the graph of y = f ′(x) i.e. the graph of first deriv-
ative of function. Then which of the following is not true?

f has critical points at x = 1 and x = 5(a)

f ′′(3) = 0(b)

f is concave down on (0, 3)(c)

f(0) > f

(
1

2

)
(d)

f(4) < f(3)(e)

24. lim
x→0

|x− 1| − 1

x
=

−2(a)

∞(b)

−∞(c)

0(d)

−1(e)
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Name .................................................

ID ................................ Sec ..........

1 a b c d e f 36 a b c d e f
2 a b c d e f 37 a b c d e f
3 a b c d e f 38 a b c d e f
4 a b c d e f 39 a b c d e f
5 a b c d e f 40 a b c d e f
6 a b c d e f 41 a b c d e f
7 a b c d e f 42 a b c d e f
8 a b c d e f 43 a b c d e f
9 a b c d e f 44 a b c d e f
10 a b c d e f 45 a b c d e f
11 a b c d e f 46 a b c d e f
12 a b c d e f 47 a b c d e f
13 a b c d e f 48 a b c d e f
14 a b c d e f 49 a b c d e f
15 a b c d e f 50 a b c d e f
16 a b c d e f 51 a b c d e f
17 a b c d e f 52 a b c d e f
18 a b c d e f 53 a b c d e f
19 a b c d e f 54 a b c d e f
20 a b c d e f 55 a b c d e f
21 a b c d e f 56 a b c d e f
22 a b c d e f 57 a b c d e f
23 a b c d e f 58 a b c d e f
24 a b c d e f 59 a b c d e f
25 a b c d e f 60 a b c d e f
26 a b c d e f 61 a b c d e f
27 a b c d e f 62 a b c d e f
28 a b c d e f 63 a b c d e f
29 a b c d e f 64 a b c d e f
30 a b c d e f 65 a b c d e f
31 a b c d e f 66 a b c d e f
32 a b c d e f 67 a b c d e f
33 a b c d e f 68 a b c d e f
34 a b c d e f 69 a b c d e f
35 a b c d e f 70 a b c d e f
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1. lim
x→0

(4 + x)−1 − 4−1

x
=

does not exist(a)

−1

16
(b)

0(c)

1

16
(d)

−1

4
(e)

2. If f(x) = 3x2/3− x, then f(x) is increasing on the interval

(0, 8)(a)

(0,∞)(b)

(−∞, 0)(c)

(−∞, 8)(d)

(8,∞)(e)
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3. The graph of y = ln(x3 + 1) is concave up on the interval

(0,∞)(a)

(−1, 2)(b)

(0, 2)(c)

(0,
3
√

2)(d)

(−∞,−1) and (0,
3
√

2)(e)

4. If f(x) =
x2 + 1

e3x
, then f ′(1) =

8

e3(a)

2

e5(b)

−4

e6(c)

−4

e3(d)

0(e)
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5. If y =

(
cos x

1 + sin x

)4
, then

dy

dx
=

−4 cos3 x

(1 + sin x)4(a)

4

(
cos x

1 + sin x

)3
(b)

−4

(
sin x

cos x

)3

(c)

(−4 sin x

cos x

) (
cos x

1 + sin x

)3
(d)

0(e)

6. lim
x→2+

4− x2

(x− 2)2 =

4(a)

0(b)

−4(c)

∞(d)

−∞(e)
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7. If f(x) =





c if x = −3

9− x2

4−√x2 + 7
if − 3 < x < 3

d if x = 3

,

then f is continuous on [−3, 3] if

c = 8, d = 8(a)

c = 8, d = −8(b)

c = 0, d = 0(c)

c = 1, d = −1(d)

c = −8, d = 8(e)

8. The critical values of g(t) = t2 (2t− 5)1/3 are

{
0,

5

2

}
(a)

{0}(b)

{
0,

15

7

}
(c)

{
0,

5

2
,
15

7

}
(d)

{
5

2
,
15

7

}
(e)
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9. The slope of normal line to the curve x4y4 = 16 at (2, 1) is

1

8
(a)

−2(b)

2(c)

−1

2
(d)

1

2
(e)

10. If y = 4

√√√√√(4x + 1)(x + 4)2

(x3 + 9)(x2 + 9)
, then

dy

dx

∣∣∣∣∣
x=0

is

12(a)

ln 4− ln 9

2
(b)

3

4
(c)

0(d)

9

2
(e)
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11. If

x f(x) g(x) f ′(x) g′(x)

3 1 4 8 3

4 3 3 2 −5

and F (x) = [f(x)]2 · g(x), then F ′(3) =

61(a)

11(b)

67(c)

48(d)

35(e)

12. lim
x→∞(x−

√
x2 − 3x) =

3(a)

0(b)

−1

2
(c)

∞(d)

3

2
(e)
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13. If f(x) = sech2(ln(x + 2)), then f ′(0) =

−12

25
(a)

−48

125
(b)

12

25
(c)

−48

25
(d)

−24

125
(e)

14. Given the graph of y = f ′(x) i.e. the graph of first deriv-
ative of function. Then which of the following is not true?

f has critical points at x = 1 and x = 5(a)

f is concave down on (0, 3)(b)

f(4) < f(3)(c)

f(0) > f

(
1

2

)
(d)

f ′′(3) = 0(e)
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15. lim
x→∞x sin

16

x
=

1(a)

1

16
(b)

16(c)

0(d)

∞(e)

16. A particle moves along the curve y =
√

1 + x3. As it reaches
the point (2, 3), the y-coordinate is increasing at a rate of
4 cm/s. At this instant, the x-coordinate is changing at the
rate of

3 cm/s(a)

6 cm/s(b)

2 cm/s(c)

8 cm/s(d)

4 cm/s(e)
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17. A cylindrical can is to be made to hold 16π cm3 of laban.
If r is the radius and h is the height of the can, then the
dimensions that will minimize the cost of the metal to man-
ufacture the can are

r = 8, h = 16(a)

r = 2, h = 4(b)

r =

√√√√8

3
, h =

2√
3

(c)

r = 4, h = 8(d)

r =
3
√

16, h =
16

(16)2/3(e)

18. lim
x→0

(cos x)1/x2

=

1(a)

−∞(b)

0(c)

e2(d)

1√
e

(e)
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19. Starting with x1 = 1, the third approximation x3 to the
root of x4 − 6x + 3 = 0 is

[Hint: use Newton’s method]

59

26
(a)

1

2
(b)

0(c)

40

7
(d)

2(e)

20. A curve f(x) has a slope at each point given by
−1

x2 and

passes through the point

(
1

8
, 10

)
. Then

f(x) =
−1

x
+ 14(a)

f(x) =
1

x
+ 2(b)

f(x) =
2

x3(c)

f(x) =
2

x
+ 2(d)

f(x) =
3

x3 + 2(e)
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21. f(x) = −3x2 + 5x + 5 is continuous on [−3,−1] and differ-
entiable on (−3,−1). Then, the value of ‘c’ that satisfies
the conclusion of the Mean Value Theorem is

c = 0(a)

c =
−11

6
(b)

c = −2(c)

c =
−6

5
(d)

c = −1(e)

22. The radius of a circle is measured to be 3m with a possible
error of 0.03 m. By using differentials, the relative error
in the area is

0.01(a)

0.06(b)

0.04(c)

0.03(d)

0.02(e)
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23. lim
x→0

|x− 1| − 1

x
=

0(a)

−1(b)

−2(c)

−∞(d)

∞(e)

24. If the curve y = ax2+bx+c passes through the point (2, 30)
and is tangent to the line y = 3x at the origin, then

a + b = 6(a)

a + b = 9(b)

a + b = 7(c)

a + b = 3(d)

a + b = 2(e)
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Name .................................................

ID ................................ Sec ..........

1 a b c d e f 36 a b c d e f
2 a b c d e f 37 a b c d e f
3 a b c d e f 38 a b c d e f
4 a b c d e f 39 a b c d e f
5 a b c d e f 40 a b c d e f
6 a b c d e f 41 a b c d e f
7 a b c d e f 42 a b c d e f
8 a b c d e f 43 a b c d e f
9 a b c d e f 44 a b c d e f
10 a b c d e f 45 a b c d e f
11 a b c d e f 46 a b c d e f
12 a b c d e f 47 a b c d e f
13 a b c d e f 48 a b c d e f
14 a b c d e f 49 a b c d e f
15 a b c d e f 50 a b c d e f
16 a b c d e f 51 a b c d e f
17 a b c d e f 52 a b c d e f
18 a b c d e f 53 a b c d e f
19 a b c d e f 54 a b c d e f
20 a b c d e f 55 a b c d e f
21 a b c d e f 56 a b c d e f
22 a b c d e f 57 a b c d e f
23 a b c d e f 58 a b c d e f
24 a b c d e f 59 a b c d e f
25 a b c d e f 60 a b c d e f
26 a b c d e f 61 a b c d e f
27 a b c d e f 62 a b c d e f
28 a b c d e f 63 a b c d e f
29 a b c d e f 64 a b c d e f
30 a b c d e f 65 a b c d e f
31 a b c d e f 66 a b c d e f
32 a b c d e f 67 a b c d e f
33 a b c d e f 68 a b c d e f
34 a b c d e f 69 a b c d e f
35 a b c d e f 70 a b c d e f
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1. If f(x) =





c if x = −3

9− x2

4−√x2 + 7
if − 3 < x < 3

d if x = 3

,

then f is continuous on [−3, 3] if

c = 8, d = 8(a)

c = 8, d = −8(b)

c = 0, d = 0(c)

c = −8, d = 8(d)

c = 1, d = −1(e)

2. lim
x→0

(4 + x)−1 − 4−1

x
=

1

16
(a)

−1

4
(b)

−1

16
(c)

0(d)

does not exist(e)
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3. If y =

(
cos x

1 + sin x

)4
, then

dy

dx
=

0(a)

−4

(
sin x

cos x

)3

(b)

(−4 sin x

cos x

) (
cos x

1 + sin x

)3
(c)

−4 cos3 x

(1 + sin x)4(d)

4

(
cos x

1 + sin x

)3
(e)

4. lim
x→2+

4− x2

(x− 2)2 =

∞(a)

4(b)

−∞(c)

0(d)

−4(e)
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5. The critical values of g(t) = t2 (2t− 5)1/3 are

{
0,

15

7

}
(a)

{
5

2
,
15

7

}
(b)

{
0,

5

2

}
(c)

{0}(d)

{
0,

5

2
,
15

7

}
(e)

6. If f(x) = 3x2/3− x, then f(x) is increasing on the interval

(8,∞)(a)

(0,∞)(b)

(0, 8)(c)

(−∞, 0)(d)

(−∞, 8)(e)
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7. The graph of y = ln(x3 + 1) is concave up on the interval

(−∞,−1) and (0,
3
√

2)(a)

(−1, 2)(b)

(0, 2)(c)

(0,∞)(d)

(0,
3
√

2)(e)

8. If f(x) =
x2 + 1

e3x
, then f ′(1) =

0(a)

−4

e6(b)

−4

e3(c)

8

e3(d)

2

e5(e)



Page 5 of 12 004

9. If y = 4

√√√√√(4x + 1)(x + 4)2

(x3 + 9)(x2 + 9)
, then

dy

dx

∣∣∣∣∣
x=0

is

12(a)

3

4
(b)

9

2
(c)

ln 4− ln 9

2
(d)

0(e)

10. lim
x→∞x sin

16

x
=

0(a)

∞(b)

1

16
(c)

16(d)

1(e)
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11. If f(x) = sech2(ln(x + 2)), then f ′(0) =

12

25
(a)

−48

25
(b)

−48

125
(c)

−12

25
(d)

−24

125
(e)

12. A cylindrical can is to be made to hold 16π cm3 of laban.
If r is the radius and h is the height of the can, then the
dimensions that will minimize the cost of the metal to man-
ufacture the can are

r =
3
√

16, h =
16

(16)2/3(a)

r = 4, h = 8(b)

r = 2, h = 4(c)

r = 8, h = 16(d)

r =

√√√√8

3
, h =

2√
3

(e)
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13. lim
x→0

|x− 1| − 1

x
=

0(a)

−2(b)

−∞(c)

∞(d)

−1(e)

14. Starting with x1 = 1, the third approximation x3 to the
root of x4 − 6x + 3 = 0 is

[Hint: use Newton’s method]

1

2
(a)

59

26
(b)

2(c)

0(d)

40

7
(e)
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15. A curve f(x) has a slope at each point given by
−1

x2 and

passes through the point

(
1

8
, 10

)
. Then

f(x) =
−1

x
+ 14(a)

f(x) =
3

x3 + 2(b)

f(x) =
2

x
+ 2(c)

f(x) =
1

x
+ 2(d)

f(x) =
2

x3(e)

16. Given the graph of y = f ′(x) i.e. the graph of first deriv-
ative of function. Then which of the following is not true?

f is concave down on (0, 3)(a)

f ′′(3) = 0(b)

f has critical points at x = 1 and x = 5(c)

f(0) > f

(
1

2

)
(d)

f(4) < f(3)(e)
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17. The radius of a circle is measured to be 3m with a possible
error of 0.03 m. By using differentials, the relative error
in the area is

0.02(a)

0.06(b)

0.04(c)

0.01(d)

0.03(e)

18. If

x f(x) g(x) f ′(x) g′(x)

3 1 4 8 3

4 3 3 2 −5

and F (x) = [f(x)]2 · g(x), then F ′(3) =

48(a)

11(b)

61(c)

67(d)

35(e)
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19. lim
x→∞(x−

√
x2 − 3x) =

3

2
(a)

∞(b)

3(c)

0(d)

−1

2
(e)

20. f(x) = −3x2 + 5x + 5 is continuous on [−3,−1] and differ-
entiable on (−3,−1). Then, the value of ‘c’ that satisfies
the conclusion of the Mean Value Theorem is

c =
−11

6
(a)

c =
−6

5
(b)

c = 0(c)

c = −2(d)

c = −1(e)
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21. The slope of normal line to the curve x4y4 = 16 at (2, 1) is

1

8
(a)

−1

2
(b)

2(c)

1

2
(d)

−2(e)

22. If the curve y = ax2+bx+c passes through the point (2, 30)
and is tangent to the line y = 3x at the origin, then

a + b = 3(a)

a + b = 7(b)

a + b = 2(c)

a + b = 6(d)

a + b = 9(e)
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23. A particle moves along the curve y =
√

1 + x3. As it reaches
the point (2, 3), the y-coordinate is increasing at a rate of
4 cm/s. At this instant, the x-coordinate is changing at the
rate of

4 cm/s(a)

6 cm/s(b)

2 cm/s(c)

8 cm/s(d)

3 cm/s(e)

24. lim
x→0

(cos x)1/x2

=

0(a)

1√
e

(b)

1(c)

−∞(d)

e2(e)
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Name .................................................

ID ................................ Sec ..........

1 a b c d e f 36 a b c d e f
2 a b c d e f 37 a b c d e f
3 a b c d e f 38 a b c d e f
4 a b c d e f 39 a b c d e f
5 a b c d e f 40 a b c d e f
6 a b c d e f 41 a b c d e f
7 a b c d e f 42 a b c d e f
8 a b c d e f 43 a b c d e f
9 a b c d e f 44 a b c d e f
10 a b c d e f 45 a b c d e f
11 a b c d e f 46 a b c d e f
12 a b c d e f 47 a b c d e f
13 a b c d e f 48 a b c d e f
14 a b c d e f 49 a b c d e f
15 a b c d e f 50 a b c d e f
16 a b c d e f 51 a b c d e f
17 a b c d e f 52 a b c d e f
18 a b c d e f 53 a b c d e f
19 a b c d e f 54 a b c d e f
20 a b c d e f 55 a b c d e f
21 a b c d e f 56 a b c d e f
22 a b c d e f 57 a b c d e f
23 a b c d e f 58 a b c d e f
24 a b c d e f 59 a b c d e f
25 a b c d e f 60 a b c d e f
26 a b c d e f 61 a b c d e f
27 a b c d e f 62 a b c d e f
28 a b c d e f 63 a b c d e f
29 a b c d e f 64 a b c d e f
30 a b c d e f 65 a b c d e f
31 a b c d e f 66 a b c d e f
32 a b c d e f 67 a b c d e f
33 a b c d e f 68 a b c d e f
34 a b c d e f 69 a b c d e f
35 a b c d e f 70 a b c d e f



1 ANSWER KEY

Q MM V1 V2 V3 V4

1 a a b b a
2 a b a a c
3 a c d d d
4 a b d d c
5 a e e a e
6 a c a e c
7 a d e a e
8 a a c d c
9 a b e c b
10 a d b c d
11 a a c c c
12 a d a e c
13 a b e b e
14 a b a d a
15 a b d c d
16 a e d c d
17 a a d b a
18 a a b e d
19 a c a b a
20 a b a b d
21 a c e c c
22 a a c e e
23 a a d b c
24 a b e b b



2 Answer Counts

Answer Counts

V a b c d e

1 8 7 5 2 2
2 4 7 4 7 2
3 7 3 2 7 5
4 2 4 5 6 7


