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Abstract

This paper deals with numerical Toeplitz matrix approximation. Our ap-
proach is based on (i) a projection algorithm which converges globally but
slowly; and (ii) the quasi-Newton method which is faster. Hybrid methods that
attempt to combine the best features of both methods are then considered.
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1 Introduction

The problem we are interested in, is the best approximation of a given matrix by a
positive semi-definite symmetric Toeplitz matrix. Toeplitz matrices appear naturally
in a variety of problems in engineering. Since positive semi-definite Toeplitz matrices
can be viewed as shift-invariant autocorrelation matrices, considerable attention has
been paid to them, especially in the areas of stochastic filtering and digital signal
processing applications [12] and [21]. Several problems in digital signal processing
and control theory require the computation of a positive definite Toeplitz matrix that
closely approximates a given matrix. For example, because of rounding or truncation
errors incurred while evaluating F , F does not satisfy one or all conditions. Another
example in the power spectral estimation of a wide-sense stationary process from a
finite number of data, the matrix F formed from the estimated autocorrelation co-
efficients, is often not a positive definite Toeplitz matrix [18]. In control theory, the
Gramian assignment problem for discrete-time single input system requires the com-
putation of a positive definite Toeplitz matrix which also satisfies certain inequality
constraints [16]. Consider the following problem:

Given a data matrix F ∈ IRn×n, find the nearest symmetric positive semi-definite
Toeplitz matrix T to F that minimizes

minimize φ = ‖F − T‖F (1.1)

where ‖.‖F denotes the Frobenius norm.
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A similar problem was studied by Suffridge et. al. [17]. They solve the problem

using the self-inversive polynomial P (x). The roots of the derivative of P (z)
zn−1 enable

them to approximate the data matrix. They also solve (1.1) using the ideas of a
modified alternating projection algorithm that was successfully used in solving similar
approximation problems for distance matrices [3]. In [9], alternating convex projection
techniques are used to solve the problem. Oh et. al. [15] use alternating projection
onto fuzzy convex sets when three or more convex sets do not intersect. Toeplitz
matrix approximations are also discussed in [5] and [13].

In the past ten years, there has been much interest in the interior point methods
applied to problems with semidefinite matrix constraints (e.g. the survey papers [20],
[19] and [22] and the references therein). Semidefinite programming optimizes a linear
function subject to positive semidefinite matrix. It is a convex programming problem
since the objective and the constraints are convex. In this paper, we deal with a little
different problem since the objective is quadratic; also an additional rank constraint
is added which makes the problem unconvex and harder to solve. Here, we use a
different approach than the interior point methods.

In Section 2, (1.1) is solved using the von Neumann algorithm. In Section 3, the
problem is formulated as a smooth unconstrained minimization problem, then solved
using the BFGS method. In Section 4, two new hybrid methods are described to
solve (1.1): firstly, there is Algorithm 1, which starts with the projection method
to determine the rank m(k) and continues with the BFGS method; and secondly,
Algorithm 2 is described which solves the problem by the BFGS method and uses the
projection method to update the rank.

A symmetric Toeplitz matrix A is denoted by

T =


t1 t2 . . . tn
t2 t1 . . . tn−1
...

...
. . .

...
tn tn−1 . . . t1

 = Toeplitz(t1, t2, . . . , tn). (1.2)

2 The Projection Algorithm

In this section, we describe a projection algorithm for solving (1.1). This algorithm
is derived from an alternating projection algorithm due to Dykstra [6] for finding the
least distance from a fixed point to an intersection of convex sets. This algorithm
is given independently by Han [10]. An important feature of this algorithm is the
generation of formulae for certain projection maps that are needed.

The Dykstra-Han algorithm solves the problem

minimize ‖f − x‖2

subject to x ∈
m⋂

i=1

Ki,
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where Ki are convex sets in IRn and f is given. The algorithm initializes f0 = f and
generates a sequence {f (k)} using the iteration formula

f (k+1) = f (k) + Pm(. . . P1(f
(k)) . . .)− P1(f

(k)). (2.1)

Here, Pi(f) denotes the l2 projection of f on to Ki; that is, the (unique) nearest vector
to f in Ki. It is shown by Boyle and Dykstra [4] that Pi(. . . P1(f

(k)) . . .) → x∗ for any
i ≥ 1. However, the sequence {f (k)} does not, in general, converge to x∗ (see [2]).

It is convenient to define two convex sets for the purpose of reconstructing (1.1).
The set of all n× n symmetric positive semi-definite matrices

KIR = {A : A ∈ IRn×n, AT = A and zT Az ≥ 0 ∀ z ∈ IRn} (2.2)

is a convex cone of dimension n(n + 1)/2. Also, define

KT = {T : T ∈ IRn×n, T is Toeplitz}, (2.3)

which is a subspace of dimension n.
In applying the Dykstra-Han algorithm to the Toeplitz matrix approximation, it

is appropriate to use the Frobenius matrix norm, and to express (1.1) as

minimize ‖F − T‖F

subject to T ∈ KIR ∩KT , (2.4)

where KIR and KT are given by (2.2) and (2.3), respectively.
To apply algorithm (2.1), we need formulae for the projection maps PIR(.) and

PT (.), corresponding, respectively, to P1(.) and P2(.) in (2.1). These are the maps
from K = {A : A ∈ IRn×n} on to KIR and KT . The projection map PIR(F ) formula
on to KIR is given by [11]

PIR (F ) = UΛ+UT , (2.5)

where

Λ+ =
[
Λm 0
0 0

]
, (2.6)

and Λm = diag [λ1, λ2, . . . , λm] is the diagonal matrix formed from the positive
eigenvalues of F .

The projection map PT (F ) formula on to KT is given by

PT (F ) = Toeplitz(t1, t2, . . . , tn), (2.7)

where

tk+1 =
1

2(n− k)

n−k∑
i=1

(fi i+k + fi+k i). k = 1, 2, . . . , n.
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We can now use the projection maps PIR(F ) and PT (F ) given by (2.5) and (2.7)
to implement the Dykstra-Han algorithm (2.1). Given a distance matrix F ∈ IRn×n,
the algorithm is initialized by F (0) = F and the iteration formula is

F (k+1) = F (k) + (PT (PIR(F (k))))− PIR(F (k)). (2.8)

It follows from [4] that both The sequences {PIR(F (k))} and {PT (PIR(F (k)))} generated
by (2.8) globally converge to the solution A∗ of (2.4) and hence (1.1). This algorithm
was also given by [9] and [17] in a similar manner.

3 Solution by Unconstrained Minimization

In the previous section, the alternating projection algorithm computes a unique so-
lution for (2.4) since the sets KIR and KT are convex. When quasi-Newton methods
are applied to solve the problem, this requires the knowledge of the rank of the ma-
trix (T ); hence (2.4) loses convexity and this increases the difficulty. In this section,
we consider a different approach to (2.4). The main idea is to replace (2.4) by a
smooth unconstrained optimization problem in order to use superlinearly convergent
quasi-Newton methods. Problem (2.4) is solved by BFGS method, also the relevant
formulae for derivatives are given. Partial connection between the problem and signal
processing is given in the following factorization.

Classical results about Toeplitz matrices that go back to [7] may be re-stated
according to which a nonsingular positive semi-definite Toeplitz matrix can be rep-
resented as the product of a Vandermonde matrix and its transpose and a diagonal
matrix in between

T = V DV T , (3.1)

where D is an m×m diagonal matrix with positive diagonal entries and V is an n×m
Vandermonde matrix

V = [xi
j], i = 0, . . . , n− 1, j = 1, . . . ,m (3.2)

(see [1, 14]).
We assume that the rank of T is known to be m. If the rank m is known, it

is possible to express (1.1) as a smooth unconstrained optimization problem in the
following way: Since the unknown in (1.1) is the matrix T , therefore the unknowns
are chosen to be the elements of the matrices V ; x1, . . . , xm and D; d11, . . . , dmm

introduced in (3.1). This gives us an equivalent unconstrained optimization problem
to (1.1) in 2m unknowns expressed as

minimize φ(V, D) = ‖F − V DV T‖2
F . (3.3)

Then the objective function φ(V, D) is readily calculated by first forming T from V
and D as indicated by (3.1) and (3.2), after which φ is given by φ(V, D) = ‖F −
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T‖2
F = ‖F − V DV T‖2

F . The elements of the matrix T take the form

tij =
m∑

k=1

dkkx
i+j−2
k . (3.4)

Hence

φ(V, D) =
n∑

i,j=1

(tij − fij)
2 =

n∑
i,j=1

({
m∑

k=1

dkkx
i+j−2
k } − fij)

2. (3.5)

Our chosen method to minimize φ(X) is the BFGS quasi-Newton method (see for
example [8]). This requires expressions for the first partial derivatives of φ, which are
given from (3.5) by

∂φ

∂dss

=
n∑

i,j=1

2({
m∑

k=1

dkkx
i+j−2
k } − fij)x

i+j−2
s (3.6)

∂φ

∂xs

=
n∑

i,j=1
i=j 6=1

2({
m∑

k=1

dkkx
i+j−2
k } − fij)(i + j − 2)dssx

i+j−3
s (3.7)

The BFGS method also requires the Hessian approximation to be initialized. Where
necessary, we do this using a unit matrix.

Some care has to be taken when choosing the initial value of the matrices V and
D, in particular the rank m. If not, the minimization method may not be able to
increase m. An extreme case occurs when the initial matrix V = 0 and D = 0 is
chosen, and F 6= 0. It can be seen from (3.6) and (3.7) that the components of the
gradient vector are all zero, so that V = 0 and D = 0 is a stationary point, but not
a minimizer. A gradient method will usually terminate in this situation, and so fail
to find the solution.

An advantage of the unconstrained method is that it allows the spatial dimensions
to be chosen by the user. This is useful when the rank is already known. For example
if the entries in F are derived from a matrix that has rank m = 2 or m = 3.

In general however the rank of the matrix is not known, for example the matrix
that assumed has rank m = 3 might be irreducibly embedded in matrix with rank
m = 1 or m = 2. We therefore must consider an algorithm in which we are prepared
to revise our estimate of m. A simple strategy is to repeat the entire unconstrained
method for different values of m. If m∗ denotes the correct value of m which solves
(1.1), then it is observed that the BFGS method converges rapidly if m ≤ m∗, and
exhibits superlinear convergence. On the other hand if m > m∗ then slow conver-
gence is observed. One reason is that there are more variables in the problem. Also
redundancy in the parameter space may have an effect. Thus it makes sense to start
with a small value of m, and increase it by one until the solution is recognised. One
way to recognise termination is when T (k) agrees sufficiently well with T (k+1), where
T (k) denotes the positive semi-definite Toeplitz matrix obtained by minimizing φ in
the kth iteration.
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4 Hybrid Methods

A combination of both algorithms is introduced. Projection methods are globally
convergent and hence potentially reliable, but often converge slowly, which can be
very inefficient. Quasi-Newton methods are reliable and have a superlinear order
rate of convergence, but require the correct rank m∗ to be known. We therefore
consider hybrid methods in which the projection algorithm is used sparingly as a way
of establishing the correct rank, whilst the BFGS method is used to provide rapid
convergence.

In order to ensure that each component method is used to best effect, it is impor-
tant to transfer information from one method to the other. In particular, the result
from one method is used to provide the initial data for the other, and vice versa. This
mechanism has a fixed point property so that if one method finds a solution, then
the other method is initialized with an iterate that also corresponds to the solution.
It is clear how to use the output data from BFGS in the projection method but,
unfortunately, the reverse is not easy.

We will evaluate two different algorithms which differ in respect of how m(0) is
initialized. Algorithm 1 is expressed as follows: Given any data matrix F ∈ IRn×n,
let s be some pre-selected positive integer number and ε some small number. Then
the following algorithm solves (1.1)

Algorithm 1 (T (0) := F, s, ε):
repeat projection method
until m(l) = m(l−j) j = 1, 2, . . . , s.
repeat

Apply one iteration of projection method;
m(0) := m(l);
repeat BFGS method;
until ‖x(k−1) − x(k)‖ ≤ ε and ‖d(k−1) − d(k)‖ ≤ ε;
T (k) = V DV T ; (x(k) and d(k) from BFGS method)

until ‖T (k−1) − T (k)‖ ≤ ε;
return (T ∗ := T (k),x∗ := x(k),d∗ := d(k), m∗ := m(k)).

where diag(d) = D. The choice of s is a compromise between two effects. If s is
small then the rank may not be accurately estimated, but the number of (expensive)
iterations taken in the projection method is small. On the other hand, if s is large then
a more accurate rank is obtained but the projection method needs more iterations.

In Algorithm 2, m(0) is supplied by the user. This approach avoids the initial
sequence of projection iterations, but works well if the user is able to make a good
estimate of the rank, which is often the case. Thus, we can express Algorithm 2 as
follows: Given any data matrix F ∈ IRn×n, let ε be some small number; also choose
m(0) as a small integer number. Then the following algorithm solves (1.1)
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Algorithm 2 (T (0) := F, m(0), ε):
repeat

repeat BFGS method;
until ‖x(k−1) − x(k)‖ ≤ ε and ‖d(k−1) − d(k)‖ ≤ ε;
F (k) = V DV T ; (x(k) and d(k) from BFGS method)
Apply one iteration of projection method;
m(0) := m(l);

until ‖T (k−1) − T (k)‖ ≤ ε;
return (T ∗ := T (k),x∗ := x(k),d∗ := d(k), m∗ := m(k)).

Conclusions In this paper, we have studied the Toeplitz matrix approx-
imation problem involving the positive semidefinite matrix constraint, using both
projection and BFGS methods. The problem needs more study in terms of the hy-
brid methods involving some numerical experiment comparisons.
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