
Chapter 5

Methods for minimizing least

distance functions with

semi–definite matrix constraints

5.1 Introduction

Minimizing a general function subject to semi–definite matrix constraint is a problem which

arises in many practical situations, particularly in statistics where the semi–definite matrix

constraint is usually a covariance matrix with varying elements. We are interested here in

problems in which only the diagonal of the matrix is allowed to change, in the following way.

Given a symmetric positive definite matrix F ∈ <n×n then we consider the problem

minimize f(x)

subject to F̄ + diag x ≥ 0

xi ≤ vi i = 1, ..., n (5.1.1)

where F̄ = F − Diag F, diag v = Diag F and f is real valued function of x. In

Chapters 6 and 7, such problems are studied in which the objective function is linear.

In this chapter a least distance problem of the following type is solved. Given a symmetric
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positive semi–definite matrix F ∈ <n×n then we consider

minimize xT x x ∈ <n

subject to F̄ + diag x ≥ 0

xi ≤ vi i = 1, ..., n (5.1.2)

where diag v = Diag F. This kind of problem is important by itself and it is also used

subsequently in Chapters 6 and 7. Problem (5.1.2) can be more general if we express it as

minimize ‖a − x‖22 x ∈ <n

subject to F̄ + diag x ≥ 0

xi ≤ vi i = 1, ..., n (5.1.3)

where a is an initial point and then we have a different problem with every different a.

Problems of this type can be solved in a similar way to methods of this chapter.

Two methods are developed for solving problem (5.1.2). Firstly, a projection algorithm

is given for solving problem (5.1.2) using Algorithm 2.2.7 which converges linearly or slower

and globally. This method is described in Section 5.2. Subsequently this method is also used

in Chapter 6. Secondly an implementation of the l1 SQP method is used. Fletcher [1985]

developed an algorithm for solving problem (5.1.1) in the case f(x) is linear. It is the purpose

of this chapter to follow his method but to apply it to problem (5.1.2). Various methods of this

type are investigated in Section 5.3.

In Section 5.4 a hybrid method is described, which starts with the projection method to

estimate the rank r(k) and continues with the l1SQP method in a similar way to Section 4.3.

Finally in Section 5.5 numerical comparisons of these methods are carried out.

5.2 The Projection algorithm

In this section we give a description of a projection algorithm for solving problem (5.1.2), using

the alternating projection method of Algorithm 2.2.7. The constraints in problem (5.1.2) can

be expressed as F̄ + diag x ∈ K< ∩ Koff ∩ Kb which gives an equivalent problem to

(5.1.2) and can be expressed as
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Given a symmetric positive definite matrix F = FT ∈ <n×n

minimize ‖F̄ − A‖

subject to A ∈ K< ∩Koff ∩Kb. (5.2.1)

The matrix norm here means the Frobenius norm given in Definition 1.2.2.

Then we follow Algorithm 2.2.7 with m = 3 and K1 = K<, K2 = Koff and

K3 = Kb as given in (1.3.1), (1.3.5) and (1.3.6) respectively. Algorithm 2.2.7 is the projection

algorithm used in this section, and guarantees global convergence to the solution of problem

(5.1.2). The projection algorithm requires formulae, which are also given, for calculating the

projection maps on to Koff , Kb and on to K<. Subsequently two examples are given for

solving problem (5.1.2) using the projection algorithm. Finally an interesting result relating

normal cone of the intersection of Koff , Kb and K< to the solution of problem (5.2.1) is

given.

Dykstra’s algorithm depends crucially upon the computational complexity of the relevant

projections. The minimization problem (5.2.1) is solved by applying Algorithm 2.2.7 to it.

Problem (5.2.1) is to find the projection of a matrix to the intersection of three convex sets by

a sequence of projections to the individual set successively. First we need definitions for the

projection maps P<(·), Poff (·) and Pb(·), later formulae for them are obtained.

Definition 5.2.1

Let

K = {A : A ∈ <n×n, A = AT },

then define the projection map P<(A) from K on to K<, the projection map Poff (A)

from K on to Koff and the projection map Pb(A) from K on to Kb.

The projection map P<(A) formula on to K< for solving the following problem

minimize ‖F − A‖F

subject to A ∈ K< (5.2.2)

is
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P< (F ) = UΛ+UT . (5.2.3)

where

Λ+ =

[
Λr 0

0 0

]
(5.2.4)

and Λr = diag [λ1, λ2, . . . , λr] is the diagonal matrix formed from the positive eigenvalues

of F . The proof has been given in Theorem 3.3.3.

Since Koff consists of all real symmetric n × n matrices, in which the off–diagonal

elements are fixed to F (the given matrix) then

Poff (A) = F̄ + Diag A. (5.2.5)

Also, since Kb consisting of all real symmetric n × n matrices, in which the diagonal

elements are not greater than diag v = Diag F , we have

Pb (A) = Ā + diag [h1, h2, ..., hn]. (5.2.6)

where

h =

{
hi = aii if aii ≤ vi

hi = vi if aii > vi

}

We can now use projections P<, Poff and Pb given by (5.2.3), (5.2.5) and (5.2.6)

respectively to implement Algorithm 2.2.7 giving the following algorithm

Algorithm 5.2.2 (projection algorithm)

Given any positive definite matrix F, let F (0) = F

For k = 0, 1, 2, . . .

F (k+1) = F (k) + [PbPoffP<(F (k)) − P<(F (k))]

The convergence of this algorithm follows from Theorem 2.2.8 in which the sequences

{P<(F (k))}, {Poff P<(F (k))} and {Pb Poff P<(F (k))} generated by Algorithm 5.2.2 con-

verge in the Frobenius norm to the solution A∗ of (5.2.1).
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Example 5.2.3

An example of Algorithm 5.2.2 for n = 3, let

F̄ =


0 2 3

2 0 2

3 2 0

 v =


4

5

6

 .

The solution is x∗ = (3, 4/3, 3), no bounds are active, the rank of F ∗ = F̄ + diag x∗

is r = 1.

Example 5.2.4

Another example for n = 4, let

F̄ =


0 1 2 −2

1 0 3 2

2 3 0 1

−2 2 1 0

 v =


2

4

8

10

 .

The solution is x∗ = (2, 2.6505, 4.1209, 6.3537). The bound x1 ≤ v1 is active. If v1 is

increased to v1 = 5 then the bound x1 ≤ v1 is not active and the new solution for this

modified problem is

x∗ = (3.4555, 3.1833, 3.1833, 3.4555).

The rank of F ∗ = F̄ + diag x∗ is r = 2 in both cases.

In the rest of this section another result is developed giving conditions under which A∗

solves (5.2.1). The normal cone ∂K<(A) at A ∈ K< is given in (1.3.12). Also the normal

cone for Koff ∩Kb is given in Theorem 1.3.5. This is based on normal cones for the relevant

convex sets. A general result for the normal cone of the intersection of two sets has been given

in (1.3.9). Therefore, as in Theorem 3.3.1, if A ∈ K< ∩Koff ∩Kb then

∂(K< ∩Koff ∩Kb)(A) = ∂K<(A) + ∂(Koff ∩Kb)(A) (5.2.7)

Now ∂K<(A) and ∂(Koff ∩Kb(A))(A) are given in (1.3.12) and (1.3.16) respectively and

we let Z, Λ and B denote the matrices that arise. From (5.2.7) and (2.1.3) we can deduce

that A∗ solves problem (5.2.1) if and only if
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F −A∗ = −Z Λ Z + B = U

[
0 0

0 −Λ

]
UT + B (5.2.8)

where U = [Y Z] as in (1.3.15). Then (5.2.8) is equivalently to

F = U

[
Λr 0

0 −Λ

]
UT + B

since

A∗ = U

[
Λr 0

0 0

]
UT , (5.2.9)

from the spectral decomposition of A∗ since A∗ ∈ K< from (5.2.1) and U is the same as

U in (5.2.8) from Theorem 1.3.7.

5.3 The l1SQP method

The main idea in this section is to find an algorithm which is globally convergent at a second

order rate for solving problem (5.1.2). The idea of transforming the semi–definite matrix con-

straints in to the form D2(A) = 0 given in (1.5.10) is used. The SQP methods in Section 1.7

are used in order to have the benefit of the ready availability of second derivatives of (1.5.10)

which enables a second order rate of convergence to be achieved. At the end of this section a

strategy is described of how to choose the rank r needed to determine D2. Also two examples

for solving problem (5.1.2) are given which are similar to Examples 5.2.3 and 5.2.4. However in

the first part of this section we consider the normal cone and the feasible directions sets for the

special case in which the positive semi–definite matrix cone K< is restricted to the diagonal

elements of A (i. e. A ∈ K< ∩ Koff ).

Now problem (5.2.1) can be expressed as

minimize
x

xT x x ∈ <n

subject to Ā + diag x ∈ K< ∩Koff (A), x ≤ v (5.3.1)
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where diag v = Diag F (the given matrix).

A useful form of ∂(K< ∩Koff )(A) can be deduced using (1.3.12), let B̄ = B − Diag B

then

∂(K< ∩Koff )(A) =

{B́| Diag B́ = B − B̄, B = − ZΛZT , Λ = ΛT , Λ ≥ 0} (5.3.2)

that is the set of the vectors that are diagonal elements of all matrices of the form − ZΛZT ,

where Λ is any symmetric positive semi–definite matrix and Z is the null space matrix.

Furthermore feasible directions for the set K< ∩ Koff (A) can be deduced using

(1.4.5)

F(A) = F (A) = {Ā + diag s| ZT [diag s]Z ≥ 0}. (5.3.3)

Optimality conditions follow using Theorem 1.5.2. The first order necessary conditions for

x∗ to solve (5.3.1) are that x∗ is feasible and there exist a matrix B́∗ ∈ ∂(K< ∩Koff )(A∗)

and a vector π∗ ≥ 0 (π∗ ∈ <n) such that

2x∗ + b∗ + π∗ = 0 (5.3.4a)

π∗T (v − x∗) = 0 (5.3.4b)

where diag b∗ = Diag B́∗.

Now we going to use the second derivatives of (1.5.10) to solve problem (5.3.1).

Assume that the rank of A∗ is known to be r (1 ≤ r < n). Permute the variables so

that the bounds xi ≤ vi are inactive for i = r+1, . . . , n, then (5.3.1) can be expressed as

minimize
x

xT x x ∈ <n

subject to D2(x) = 0, x ≤ v (5.3.5)

where

D2(x) = D2(Ā + diag x) = D2(A)

and D2(A) is given by (1.5.9). The Lagrangian for problem (5.3.5) is

L(x,Λ,π) = xT x − < Λ, D2(x) > + πT (x − v). (5.3.6)
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Also, the first order conditions for this problem are given by (5.3.4a) and (5.3.4b). From

(5.3.2) Diag B́ is a diagonal matrix which has the same elements as the diagonal of the matrix

− ZT Λ∗Z where Λ∗(= [λ∗ij ] i, j = r + 1, . . . , n) is the matrix of Lagrange multipliers

for the constraints D2(x) = 0 and Z is the null space matrix for A∗. The elements of the

Lagrange matrix Λ are indexed from r+ 1, . . . , n to correspond to the elements dij of D2.

Then using (1.5.9) in (5.3.6)

∂L
∂xi

= 2xi − λii + πi = 0. i = r + 1, . . . , n (5.3.7)

The assumption that the bounds are inactive at the solution for i > r i.e. πi = 0 implies

that

λii = 2xi. i = r + 1, . . . , n (5.3.8)

To eliminate the variables xi, i = r + 1, . . . , n (1.5.9) is utilized by using the diagonal

elements of D2(x)

dii(x) = xi −
r∑

k,l=1

aik [A−1
11 ]kl ail = 0 i = r + 1, . . . , n (5.3.9)

where aik and ail are elements in A21. Therefore the unknown variables are reduced to

x = [x1, x2, . . . , xr]T ∈ <r. Then (5.3.5) reduces to

minimize
x

f(x) =
r∑

k=1

x2
k +

n∑
i=r+1

x2
i (x)

subject to dij(x) = 0, i 6= j, i, j = r + 1, . . . , n

x ≤ v (5.3.10)

the alternative unknown vector is determined by (5.3.9). xi(x) denotes that xi is the

function of x given by

xi(x) =
r∑

k,l=1

aik [A−1
11 ]kl ail i = r + 1, . . . , n (5.3.11)
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where Diag A11 = diag x.

In (5.3.10) the constraints dij(x) = 0 and dji(x) = 0 are both equivalent, therefore

in practice the constraints should be presented only for i > j with 2λij as the Lagrange

multiplier for each constraint in this system. However in the rest of this section it is more

convenient to refer to (5.3.10).

If

Λ =


2xr+1(x) . . . . . . λr+1 n

...
. . .

...
...

λn−1 r+1 . . . . . . λn+1 n

λn r+1 . . . λn n−1 2xn(x)



then (5.3.6) is the Lagrangian function for (5.3.10).

In the following expressions for ∇dij and ∇2dij will be derived where ∇

denotes the gradient operator (∂/∂x1, . . . , ∂/∂xr)T . Differentiating A11A
−1
11 = I gives

∂A11

∂xs
A−1

11 + A11
∂A−1

11

∂xs
= 0 s = 1, . . . , r

⇒ A11
∂A−1

11

∂xs
= − ∂A11

∂xs
A−1

11

then

∂A−1
11

∂xs
= − A−1

11

∂A11

∂xs
A−1

11 ,

but since

∂A11

∂xs
= eseT

s

where es = (0, 0, . . . , 0, 1, 0, . . . , 0) with one in the sth component, then

∂A−1
11

∂xs
= − A−1

11 eseT
s A−1

11 . (5.3.12)

Hence from (1.5.9)
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∂D2

∂xs
=

∂

∂xs
(A22 − A21A

−1
11 A

T
21)

= 0 − A21
∂A−1

11

∂xs
AT

21

= A21A
−1
11 eseT

s A−1
11 A

T
21

Using (1.5.11) gives

∂D2

∂xs
= V T

21 eseT
s V21

and hence

∂dij

∂xs
= vsi vsj . (5.3.13)

Furthermore differentiating (5.3.12)

∂2A−1
11

∂xs∂xt
=

∂

∂xt
(− A−1

11 eseT
s A−1

11 )

= −[(−A−1
11 eteT

t A−1
11 ) eseT

s A−1
11 + A−1

11 eseT
s (−A−1

11 eteT
t A−1

11 )]

= A−1
11 (eteT

t A−1
11 eseT

s + eseT
s A−1

11 eteT
t )A−1

11 .

So from (1.5.9)

∂2D2

∂xs∂xt
= − A21A

−1
11 (eteT

t A−1
11 eseT

s + eseT
s A−1

11 eteT
t )A−1

11 A
T
21

= − V T
21(eteT

t A−1
11 eseT

s + eseT
s A−1

11 eteT
t )V21

hence

∂2dij

∂xs∂xt
= − (vsi vtj + vti vsj)[A−1

11 ]st. (5.3.14)

where [A−1
11 ]st means the element of A−1

11 in st position.
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For the SQP method the solution of the QP subproblem (1.7.8) is needed. In (1.7.8)

ci = dij and ∇ci = aT
i = ∇dT

ij , which are given in (5.3.13). From (5.3.9), (5.3.10)

and (5.3.11)

∇ f = 2x + 2
n∑

i=r+1

xi(x) ∇xi(x)

then

∇ f = 2x − 2
n∑

i=r+1

xi(x) ∇dii (5.3.15)

and

∇2 f = 2I − 2
n∑

i=r+1

[xi(x) ∇2dii − (∇dii)(∇dii)T ] (5.3.16)

Now in the QP subproblem (1.7.8) W = ∇2L(x,Λ,π) then from (5.3.6) and (5.3.16)

W (k) = ∇2L(x(k),Λ(k),π(k))

= 2I − 2
n∑

i=r+1

[xi(x(k)) ∇2dii(x(k)) (5.3.17)

− (∇dii(x(k)))(∇dii(x(k)))T ] −
n∑

i,j=r+1
i6=j

λ
(k)
ij ∇

2dij(x(k)). (5.3.18)

Including term (5.3.17) in the diagonal of the last term of (5.3.18) with λ
(k)
ii = 2xi(x(k))

(from (5.3.8)) gives

W (k) = 2I + 2
n∑

i=r+1

[(∇dii(x(k)))(∇dii(x(k)))T ] −
n∑

i,j=r+1

λ
(k)
ij ∇

2dij(x(k)). (5.3.19)

Now

n∑
i=r+1

[(∇dii(x(k)))(∇dii(x(k)))T =


∑

i v
2
1iv

2
1i . . .

∑
i v

2
1iv

2
ri

...
. . .

...∑
i v

2
riv

2
1i . . .

∑
i v

2
riv

2
ri


= UUT (5.3.20)
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since ∂dii/∂xs = v2
si, where U = [V12][V12] and [ ][ ] means the componentwise

product. Rearranging (5.3.19) using (5.3.20) and (5.3.14) gives

[W (k)]st = [2I]st + 2[UUT ]st + 2[V12Λ(k)V T
12]st[A−1

11 ]st

= [2I]st + 2[UUT ]st + 2[V12Λ(k)V T
12]st[V11D

−1
1 V T

11]st (5.3.21)

where s, t = 1, . . . , r. V and D in (5.3.21) are calculated using (1.5.11) and (1.5.4–5).

From the above expressions the QP subproblem (1.7.8) can be expressed as

minimize
δ

f (k) + ∇f (k)δ + 1
2 δTW (k)δ δ ∈ <r

subject to d
(k)
ij + ∇ d

(k)T
ij δ = 0 i 6= j i, j = r + 1, . . . , n

x(k) + δ ≤ v (5.3.22)

giving a correction vector δ(k), so that x(k+1) = x(k) + δ(k). Further the Lagrange multipliers

of the equations in (5.3.22) become the elements λ
(k+1)
ij for the next iteration.

The matrix W ∗ is positive semi–definite. This can be proved using (5.3.21) because

zTW ∗z = 2zT z + 2zTUUT z + 2zT [V12Λ∗V T
12][V11D

−1
1 V T

11]z. (5.3.23)

Since zTUUT z ≥ 0 and from (5.3.2) Λ∗ ≥ 0 then

zTW ∗z = 2zT z + 2zTUUT z + 2 tr(V12Λ∗V T
12[diag z]V11D

−1
1 V T

11[diag z])

= 2zT z + 2zTUUT z

+ 2 tr(D−1/2
1 V T

11[diag z]V12Λ∗V T
12[diag z]V11D

−1/2
1 )

≥ 0 (5.3.24)

since

{D−1/2
1 V T

11[diag z]V12} Λ∗ {V T
12[diag z]V11D

−1/2
1 }T

is symmetric and positive semi–definite. Therefore if x(k) is sufficiently close to x∗ the basic

SQP method converges and the rate is second order (see Section 1.7).

It is shown in Section 1.7 that the SQP method may not converge globally and it is usually

modified by the l1 exact penalty function. An equivalent form to (1.7.11) for problem (5.3.10)

is
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φ(x) =
r∑

k=1

x2
k +

n∑
i=r+1

x2
i (x)

+ σ{
n∑

i,j=r+1
i6=j

|dij(x)| +
n∑

i=r+1

max(vi − xi, 0)}. (5.3.25)

Since the bounds are inactive for i > r, πi is zero, implying that the max terms are zero if

x(k) is sufficiently close to x∗. To guarantee that the minimizer x∗ of (5.3.25) satisfies first

order conditions for (5.3.10), the penalty parameter σ in (5.3.25) must satisfy

σ ≥ max
ij

|λ∗ij |. i, j = r + 1, . . . , n

Now since Λ∗ ≥ 0 and λ∗ii = 2x∗i i = r + 1, . . . , n then

max
ij

|λ∗ij | ≤ 2 max
i

x∗i . i, j = r + 1, . . . , n

Hence σ ≥ 2 maxi x∗i must hold. However, since it is advantageous to choose σ

as small as possible, the choice σ = 2 maxi x∗i is recommended. In practice if the

unnecessarily redundant form of (5.3.10) is used with summation over indices i > j, then a

similar summation is used in (5.3.25) and the choice σ = 4 maxi x
∗
i is recommended.

To ensure the descent property, it may be necessary to choose larger values of σ than

σ = 4 maxi x
∗
i the choice

σ > max
ij

|λ(k+1)
ij | i, j = r + 1, . . . , n

is sufficient. Unfortunately it has been observed that the resulting values of σ are

very large and no successful algorithm of this type has been obtained. For more about how to

choose the penalty parameter σ see Fletcher [1987] Chapter 12.

Algorithm 1.7.3 which has better convergence properties is now recommended. This differs

from the formulation given in (5.3.25). An equivalent form to (1.7.12) is the following

minimize
δ

ψ(k)(δ)

subject to x(k) + δ ≤ v

‖δ‖∞ ≤ ρ(k) (5.3.26)

where
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ψ(k)(δ) = f (k) + ∇f (k)T δ + 1
2 δTW (k)δ + σ{

∑n
i,j=r+1

i6=j
|d(k)

ij + ∇ d
(k)T
ij δ|} (5.3.27)

giving a correction vector δ(k), so that x(k+1) = x(k) + δ(k). Also the Lagrange

multipliers associated with each of the modulus terms in (5.3.27) become the elements of the

matrix Λ(k+1) for the next iteration. The subproblem (5.3.26) can be solved by methods

similar to those used in QP. The two methods (5.3.22) and (5.3.26) are equivalent when

x(k),Λ(k) are sufficiently close to x∗,Λ∗ and σ is large enough.

In Han’s method [1977] it is necessary for ∇2L(k) ≥ 0 to hold, which excludes the

possibility of an unbounded solution to (5.3.22). However in (5.3.26) it is not necessary to force

∇2L(k) ≥ 0 to hold, and the choice σ = 2 maxi x
(k)
i can be used.

The terms |dij(x)| in (5.3.25) are not smooth and can cause slow convergence in practice.

The second order correction is included to alleviate these difficulties. Let δ(k) be the solu-

tion of (5.3.26), then the second order correction is obtained by repeating (5.3.26) with some

modification to (5.3.26), giving the subproblem

minimize
δ

ψ(k)(δ(k))

subject to x(k) + δ ≤ v

‖δ‖∞ ≤ ρ(k) (5.3.28)

where

ψ(k)(δ(k)) = f (k) + ∇f (k)T δ + 1
2 δTW (k)δ + σ{

∑n
i,j=r+1

i6=j
|d(k)

ij + ∇ d
(k)T
ij δ + γ(k)|}

and

γ(k) = 1
2 δ(k)T∇2 d

(k)
ij δ(k) (5.3.29)

and δ(k) calculated from (5.3.26). The solution to (5.3.28) is denoted by δ̃
(k)

. The modified

algorithm solves (5.3.26) as before to get δ(k) then calculates γ(k) using (5.3.29) then recalcu-

lates δ̃
(k)

using (5.3.28) and revised Lagrange multipliers Λ̃(k+1). Now x(k+1) = x(k) + δ̃
(k)

and Λ̃(k+1) is used in place of Λ(k+1). Using the second order correction takes advantage of

the readily available second derivative matrices ∇2 dij i, j = r + 1, . . . , n.

An important constraint has been neglected up till now, that is the variables x ∈ <r

must permit the matrix Ā + diag x to be factorized as in (1.5.4) with D1 > 0.

Therefore the restriction D1(x) > 0 on the feasible region of (5.3.10) is enforced. Also
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certain degenerate cases must be excluded. However if x(k) is sufficiently close to x∗ and r

is identified correctly this restriction will usually be inactive at the solution. If x(k) is remote

from the solution then two constraints are introduced to avoid these disadvantages. Firstly

the linearization of the constraint dii(x) ≥ 0

d
(k)
ii + ∇ d

(k)T
ii δ ≥ 0. i = r + 1, . . . , n (5.3.30)

are added to the subproblems (5.3.22),(5.3.26) or (5.3.28). Secondly the linearization of the

constraint D1(x) > 0 about x(k)

d(k)
ss + ∇ d(k)T

ss δ > 0. s = 1, . . . , r (5.3.31)

However it is advisable not to allow dss(x(k) + δ) to become too close to zero, especially for

small s which causes the factorization to fail (D1 6> 0). As a result the constraints

s d(k)
ss /r + ∇ d(k)T

ss δ ≥ 0. s = 1, . . . , r (5.3.32)

are also included to the subproblems (5.3.22),(5.3.26) or (5.3.28).

Even with these extra conditions it might be difficult to find a partial factor for the matrix

Ā + diag x in the form (1.5.5) for some iterates x(k). In this case smaller radius for the trust

region is chosen with ρ(k+1) = ρ(k)/4, x(k+1) = x(k) and Λ(k+1) = Λ(k) are chosen for

the next iteration.

Another restriction on the variables x ∈ <r of (5.3.10) is that the bounds

xi ≤ vi, i = r + 1, . . . , n must remain inactive. This can be done by permuting

the variables, although an acceptable permutation is not known in advance. Therefore the

following procedure has been adopted. In the beginning of an iteration every variable is

tested individually to reorganize the variables so that the active variables is first. As result

of that the active bounds are those on variables x
(k)
s , s = 1, . . . , p where p is number

of active bounds. This permutation makes a complete change to the factorization (1.5.9) so

that the matrix D2 and the basis matrix Z are redefined. The Lagrange multipliers are

reset to zero since they are not suitable to the redefined basis. Also the function φ(x) in

(5.3.25) is redefined. The number of permutations made during the course of the

algorithm must be finite, this is because the above procedures conflict with the global

convergence strategy of reducing φ(x(k)) monotonically if the number of permutations are

not finite.
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Another important consideration for the l1 SQP method is how the integer r∗ can be

identified correctly. Since r∗ is not known in advance it is necessary to estimate it by an

integer denoted by r(k). Any change to r(k) causes a change to φ(x), and the number of

variables in φ(x). It is important to consider the effect of making a fixed incorrect estimate r

to r∗. If r(k) < r∗ then the l1 SQP method converges satisfactorily at a second order rate

to a minimizer φ(x). Since r is too small this minimizer is not a solution to (5.3.10) because

dij(x) 6= 0 for some indices i 6= j i, j = r + 1, . . . , n, and also because Λ ≥ 0 does

not usually hold. On the other hand if r(k) > r∗ then the l1 SQP algorithm converges to

the minimizer of φ(x), which is the solution of (5.3.10) but the rate of convergence is very slow

because the number of variables in φ(x) are increased. The slow rate of convergence indicates

that the nonsmooth nature of the problem is not accounted for. The initial idea is to increase

or decrease r(k) as the iteration proceeds, using the fact that Λ(k) 6≥ 0 to increase r(k),

and the existence of an active constraint for s = r in (5.3.31) to decrease r(k). The above

idea by Fletcher [1982] was not in fact investigated, which it may be necessary to do for large

problems. However the more simple strategy described in Section 5.5 below proved to be very

reliable and reasonably efficient, especially for n ≤ 20.

Two examples for problem (5.3.1) are given which are similar to Examples 5.3.2 and 5.3.3.

Example 5.3.1

Consider problem (5.3.1) where

F̄ =


0 2 3

2 0 2

3 2 0

 v =


4

5

6

 .

The solution is x∗ = (3, 4/3, 3), no bounds are active i.e. π∗ = 0, and the set

K< ∩ Koff (F̄ + diag x) = {F̄ + diag x|


x1 2 3

2 x2 2

3 2 x3

 ≥ 0} (5.3.33)

is illustrated in the neighbourhood of x∗ in Figure 5.3.1
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It can be observed that K< ∩ Koff (F̄ + diag x) is convex but not a cone and is

nonsmooth at x∗. The rank of F ∗ = F̄ + diag x∗ is r = 1, and its partial factors

are

D =


3

0

0

 L =


1

2/3 1

1 0 1



L−1 = V =


1

... −2/3 −1

... 1 0

... 1

 .

thus

Z =


−2/3 −1

1 0

0 1



The vector b∗ = − 2x∗ = (−6, − 8/3, − 6) satisfies (5.3.4a) and the corresponding

B∗ ∈ ∂K< is generated by the matrix

Λ∗ =

[
8/3 −8/9

−8/9 6

]

(Λ∗ > 0 as required), and

B∗ = − ZΛ∗ZT = −


6 −8/9 −146/27

−8/9 8/3 −8/9

−146/27 −8/9 6

 .

Example 5.3.2

Another example for n = 4, let
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Figure 5.3.1: The boundary of the restricted cone (K< ∩ Koff )(F̄ + diag x) in (5.3.33)
(contours of x2).

F̄ =


0 1 2 −2

1 0 3 2

2 3 0 1

−2 2 1 0

 v =


2

4

8

10

 .

The solution is (2, 2.6505, 4.1209, 6.3537)T . The rank of F ∗ = F̄ + diag x∗ is r = 2,

and its partial factors are

D =


2

2

0

0

 L =


1

0.5 1

1 1 1

−1 1.5 0 1
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L−1 = V =


1 −0.5

... −2/3 −1

1
... −1 −1.5
... 1 0
... 1

 .

thus

Z =


−2/3 −1

−1 −1.5

1 0

0 1

 .

The bound x1 ≤ v1 is active and has a Lagrange multiplier π∗1 = 55.37079. The vector

b∗ + π∗ = − 2x∗ satisfies (5.3.4a) and the corresponding B∗ ∈ ∂K< is generated by the

matrix

Λ∗ =

[
8.2418 −10.5108

−10.5108 12.7074

]

If the bound v1 is increased to v1 = 4 for example, then the bound x1 ≤ v1

becomes inactive and the vector (2, 2.6505, 4.1209, 6.3537)T is feasible but not optimal

with
√

xT x = 8.269. This time the conditions (5.3.4a) and (5.3.4b) do not hold. The

optimal solution to this modified problem is

x∗ = (3.4555, 3.1833, 3.1833, 3.4555)T

with
√

xT x = 6.644 and r = 2. Second order conditions are used in this modified problem.

5.4 A hybrid method

In this section a new method for solving problem (5.1.2) is considered. The method described

here depends upon both projection and l1 SQP methods using a hybrid method. The
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projection method which converges globally but often converges at very slow order. Meanwhile

in the l1 SQP method which converges at second order if the correct rank r∗ is given. The

main disadvantage of the l1 SQP method are that they require the correct r∗. The projection–

l1 SQP method starts with the projection method to determine the rank r(k) and continues

with the l1 SQP method.

The method in this section follows a similar strategy to that in Section 4.3. Since r∗ is not

known in advance it is necessary to estimate it by an integer r(k). It is suggested that the best

estimate of the matrix rank r(k) is obtained by carrying out some iterations of the projection

method. This is because the projection method is a globally convergent method.

Consider Λr from (5.2.4) then at the solution the number of eigenvalues in Λr is equal

to the rank of A∗. Thus

No. Λ∗r = rank(A∗) = r∗ (5.4.1)

where No. Λ is the number of positive eigenvalues in Λ. A similar equation to (5.4.1) is

used to calculate an estimated rank r(k) and is given by

No. Λ(k)
r = r(k).

where Λr is given by (5.2.4). The range of error is relatively small. The l1 SQP method

will be applied to solve the problem as described in Section 5.3.

The projection–l1 SQP algorithm can be described as follows.

Algorithm 5.4.1

Given any matrix F = FT ∈ <n×n, let s be a positive integer. Then the following

algorithm solves problem (5.1.2)

i. Let F (0) = F

ii. Apply the projection method until

No. Λ(k)
r = No. Λ(k+j)

r j = 1, 2, . . . , s (5.4.2)

iii. r(k) = No. Λ(k)
r

iv. Use the result vector x from projection method as an initial vector for the l1 SQP

method
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v. Apply the l1 SQP method for solving problem (5.1.2).

The integer s in Algorithm 5.4.1 can be any positive number. If it is small then the rank

r(k) may not be accurately estimated, however the number of iterations taken by the projection

method is small. In the other hand if s is large then a more accurate rank is obtained but the

projection method needs more iterations.

The advantage of using the projection method as the first stage of the projection–l1

SQP method is that if F (0) is positive semi–definite (singular) then the projection method

terminates at the first iteration. Moreover it gives the best estimate to r(k).

It has been found difficult to produce an algorithm starting with l1SQP method and then

using the projection method to update the rank, in contrast to the method in Section 4.4.

A way of finding a lower bound on the rank r(k) is suggested by Fletcher [1985]. The

number of free variables in problem (5.1.2) are at most n, and this can be reduced to n − p

if there are p active bounds at the solution. Since D2 ∈ <(n−r)×(n−r) and symmetric then

the equation D2 = 0 introduces 1/2 (n − r + 1)(n − r) conditions, so except in degenerate

cases it follows that

n − p ≥ 1/2 (n − r + 1)(n − r) (5.4.3)

which imposes a significant restriction on the dimensions of D2. For example if n − p = 20

and n = 21 then r can be no smaller than 14.

5.5 Numerical results and comparisons

In this section numerical examples are given for the projection algorithm l1 SQP algorithm

and Algorithm 5.4.1. First numerical examples for Algorithm 5.2.2 are given in some detail in

Table 5.5.1 then the same numerical examples for l1 SQP algorithm and Algorithm 5.4.1 are

given in Table 5.5.2.

The numerical test problems are obtained from the data given in Table 6.2.1, by Woodhouse

[1976].

The projection Algorithm 5.2.2, l1 SQP algorithm and Algorithm 5.4.1 are applied to solve

problem (5.1.2). The Woodhouse data set is a 64×20 data which corresponds to 64 students
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and 20 subtests. Various selections from the set of subsets of columns are used to give various

test problems to form the matrix A. These subsets are those given in the first columns of Tables

5.5.1 and 5.5.2, the value of n is the number of elements in each subset.

The results obtained by the Algorithm 5.2.2 are tabulated in Table 5.5.1. Using

‖x(k+1)‖ − ‖x(k)‖ < 10−8 as a stopping criterion it is estimated that the xi are ac-

curate to 4− 5 decimal places and ‖x‖2 is accurate to 6− 7 decimal places. In Table 5.5.1

the column headed by NI gives the number of iterations used by the projection method. It is

clear from Table 5.5.1 that when the bounds are active the number of iterations becomes very

large. The x∗i elements marked by (∗) are the active elements.

Moreover Table 5.5.1 gives the correct rank r∗ for each particular problem.

The order of convergence is very slow as can be seen from Table 5.5.1. Also in Table 5.5.1 the

optimal x∗i for i = 1, 2, ..., n and ‖x∗‖2 are given. Finally, the eigenvalues for the projection

method are solved using the NAG library.

At the end of Section 5.3 a difficult strategy had been described for applying the l1 SQP

method. A more simple strategy has been adopted. Initially choosing r(k) as the smallest

integer compatible with (5.4.3). Starting from x(0) = v, Λ(0) = 0 and ρ(0) supplied by

the user then φ(x) is minimized by the iteration based on (5.3.26) as described in Section

5.3. Thus if ‖D2(x)‖ ≤ ε for some small ε, at the solution then the algorithm terminates.

If not then r(k) is increased by one. Then a new variable xr+1 is adding to problem (5.3.10).

This variable is estimated by adding the value of the l1 norm of the first column of D2 to

the current value of xr+1 as given by (5.3.9). Then the partial factors of the new matrix are

well–determined. Also increases in r(k) reduce the dimension of D2. The Lagrange multiplier

matrix is changed by deleting all the elements in the first row and column. The radius ρ(k)

is reinitialized and finally the iteration based on (5.3.26) is used to solve this problem. After a

few repetitions r∗ will be identified.

In Table 5.5.2 three methods are compared: projection method (PM), l1SQP

algorithm and projection–l1SQP algorithm (Pl1SQP). The stopping criterion is

‖x(k+1)‖ − ‖x(k)‖ < 10−8 = ε. It is estimated that xi are accurate to 4 − 5 decimal

places and ‖x‖ is accurate to 6 − 7 decimal places. In Table 5.5.2 the columns headed

by NI give the number of iterations used by the projection method and the columns headed by

NQP gives the number of times that the major l1SQP problem (5.3.26) is solved. r(0) in

the column headed by l1SQP gives the initial rank for F using equation (5.4.3) and r(0) in

the column headed by Pl1SQP gives the initial rank for F using Algorithm 5.4.1. The three
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Columns which
determine F r∗ NI x∗i i = 1, 2, .., n

√∑
(x2∗

i )
1,2,5,6 3 63 182.7042 146.9628 69.6629 45.8211 248.8602
1,3,4,5 2 115 235.0096 88.4015 189.1918 67.6986 321.5913

1,2,3,6,8,10 5 141 367.4156 273.0114 279.8192 50.4784 616.2334
228.0582 193.2790

1,2,4,5,6,8 4 881 317.4348 146.2721 244.8117 65.6893 491.7348
4.1061 235.3253

1–6 5 336 222.2243 282.8910 262.8245 238.0719 510.3758
71.5195 14.2313

1–8 6 387 369.8391 290.2214 255.5179 176.0771 640.5922
56.6419 48.0679 223.0925 194.3380

1–10 8 954 401.7844 299.7303 249.6374 194.1057 736.9839
35.6192 50.3791 240.8572 214.9912
232.9831 171.9279

1–12 10 1360 386.8981 286.8628 264.6721 195.7548 800.0756
67.2526 39.7566 232.4680 227.8524
266.8375 187.5834 131.9821 252.7745

1–14 12 854 404.4696 294.5210 265.8667 213.4180 882.7606
73.4999 35.6596 254.5520 235.9188
250.0652 191.7257 161.8923 250.0233
267.8237 160.7042

1–16 14 3663 407.5394(*) 290.8398 275.5972 215.0889 945.4555
81.3601 33.5239 248.6281 244.9842
261.4713 197.1172 168.2075 258.6026
259.0489 159.3373 99.1123 294.4601

1–18 15 30326 407.5394(*) 296.5150 265.6089 216.2863 1108.5326
98.2078 44.7847 260.8753 246.8023
248.7318 185.1102 176.9004 270.7481
258.8518 160.6789 101.7151 308.4449
435.4937 358.0457

1–20 18 11037 407.5394(*) 312.4666 258.1156 227.1807 1253.6603
120.1546 49.2651 292.7023 272.3617
244.4578 201.3850 175.7458 279.3872
250.5748 158.5493 100.0581 310.8974
457.7386 356.8083 406.2569 327.4915

Table 5.5.1: Results for problem (5.1.2) from projection Algorithm 5.2.2.
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methods converge to approximately the same values.

In l1SQP one of the variables in almost every test example is adjusted by a small unit

(< 2.0) so that the matrix Ā + diag x∗ is exactly singular and positive semi–definite for all

methods. The initial value of ρ(0) is 20.0. In l1SQP most cases require a few iterations for

solving (5.3.10) as r increases. For each value of r second order convergence of the iteration

based on (5.3.26) and (5.3.28) is obtained.

The projection method is a very slowly convergent method especially when the bounds

are active. Therefore it will be used only for estimating the rank r. In the Pl1SQP algorithm

the initial value of ρ(0) is 5.0.

Finally the projection method is not very successful in estimating the rank r∗ especially

when n ≥ 12 and a more effective method is required to give a better estimate for r∗ similar

to those methods in Chapter 4.
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Columns which PM l1SQP Pl1SQP
determine A r∗ NI r(0) NQP NI r(0) NQP

1,2,5,6 3 63 2 10 5 3 4

1,3,4,5 2 115 2 16 6 2 5

1,2,3,6,8,10 5 141 3 11 10 4 9

1,2,4,5,6,8 4 881 3 20 8 4 7

1–6 5 336 3 22 12 5 9

1–8 6 387 5 18 13 5 11

1–10 8 954 6 19 7 8 7

1–12 10 1360 8 27 16 8 24

1–14 12 854 10 30 20 10 14

1–16 14 3663 11 35 27 10 33

1–18 15 30326 13 33 38 12 13

1–20 18 11037 15 45 55 15 27

Table 5.5.2: Numerical comparisons of methods of this chapter.


