
Chapter 4

Hybrid methods for finding the

nearest Euclidean distance

matrix

4.1 Introduction

In this chapter new methods for solving problem (3.3.3) are considered. The methods described

here depend upon both projection and unconstrained methods using a hybrid method. The

hybrid method works in two stages. First stage is the projection method which converges

globally so is potentially reliable but often converges only at first order or slower which can

be slow. Meanwhile in the second stage there is quasi–Newton method, in particular Method

3.4.2, which converges superlinearly if the correct rank r∗ is given. The main disadvantage

of the unconstrained methods are that they require the correct r∗. A hybrid method is one

which switches between these methods and aims to combine their best features. To apply an

unconstrained method requires a knowledge of the rank r∗ and this knowledge can also be

gained from the progress of the projection method. Hybrid methods can work well but there is

one disadvantage. If the distance matrix have the same rank as the Euclidean distance matrix

in which Method 3.4.2 works well, then most of the time will be taken up in the first stage,

using the projection method. If this converges slowly then the hybrid method will not solve

the problem effectively. Thus it is important to ensure that the second stage method is used
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to maximum effect. Hence in the algorithm of Section 4.4 the quasi–Newton method is applied

first.

In Sections 4.3 and 4.4 two new methods are described. Firstly, there is the projection–

unconstrained method, which starts with the projection method to determine the rank r(k)

and continues with the unconstrained method. Secondly, the unconstrained–projection method

is described, which solves the problem by the unconstrained method and uses the projection

method to update the rank. In Section 4.2 a procedure of how to move from one method to

another is given. A modified projection algorithm is given in this section, which involves an

initial matrix to create a good starting point for the method. Also in this section a method is

given, showing how to obtain an initial matrix for the unconstrained method from the result

matrix from the projection method. Finally numerical results and comparisons between these

hybrid methods and methods of Chapter 3 are given in Section 4.5.

4.2 Updating the result from the projection method to

the unconstrained method and conversely

The methods in this chapter are constructed from both the projection method and uncon-

strained method, starting from one method and then alternating between the two methods at

a specific iteration. These alternating methods perform without losing any information. This

is because for every result coming from one method will be used to form the initial data for the

other method at every alternation. This section shows how this can be done.

Since the rank in the unconstrained method is unknown, it is important to know if D(k)

is a Euclidean distance matrix or not every time we rerun the unconstrained algorithm. To do

this (3.3.13) is used to test if the matrix D(k) is Euclidean distance matrix or not.

First, consider updating the result data from the unconstrained method to obtain initial

data for the projection method.

Let − D(k) be the Euclidean distance matrix obtained from the unconstrained

method. If D(k) is a solution to (3.3.3) then there exists some ∆(k) in

D(k) = PM (F (k)) = PM (F + ∆(k)) (4.2.1)

for some ∆(k) and ∆(k) in general is given by (3.3.11). Denote
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F (k) = Q

[
F

(k)
1 f (k)

f (k)T ζ(k)

]
Q, (4.2.2)

and let F
(k)
1 = U (k) Λ(k) U (k) be the spectral decomposition of F

(k)
1 . By (3.3.9)

D(k) = PM (F (k)) = Q

[
U (k)Λ(k)+U (k) f (k)

f (k)T ζ(k)

]
Q. (4.2.3)

Hence

(D(k) − F (k))e = Q

[
X(k) 0

0T 0

]
Qe

= Q

[
X(k) 0

0T 0

]
en = 0. (4.2.4)

Since F (k) = ∆(k) + F from (3.3.11), it follows from (4.2.4) that

( D(k) − ∆(k) − F )e = 0 (4.2.5)

or

∆(k)e = (D(k) − F )e (4.2.6)

Because ∆(k) is diagonal, (4.2.6) can be used to compute ∆(k) from D(k). Now if −D(k)

from unconstrained algorithm does have the correct rank, and ∆(k) is computed from (4.2.6),

then

Diag PM (F + ∆(k)) = 0 (4.2.7)

and ∆(k) can be identified as the solution to problem (3.3.3). If it does not have the correct

rank then

Diag PM (F + ∆(k)) 6= 0

and further iterations of the projection algorithm will take place. In this case the diagonal

matrix ∆(k) is used as starting matrix for the projection algorithm. Thus rewriting Algorithm

3.3.4 with this initial matrix gives
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Algorithm 4.2.1

Let − F ∈ <n×n be any distance matrix

F (0) = F + ∆(k) (4.2.8)

For s = 1, 2, ...

F (s+1) = F (s) + [PdPM (F (s)) − PM (F (s))]

Conversely, let − D(k) be a Euclidean distance matrix obtain during the projection

method. Let r be the rank of the matrix D
(k)
1 , (D1 is given in (3.2.10)). The initial matrix

X for Method 3.4.2 can be calculated using Theorem 3.2.3 as follows:

Define the elements A from D(k) by

aij = − 1/2[ d1i + d1j − dij ] (2 ≤ i, j ≤ n) (4.2.9)

(the minus in (4.2.9) is because − D(k) is the Euclidean distance matrix). If the spectral

decomposition of A is

A = U Λ UT

then the initial matrix XT for Method 3.4.2 is given by

XT = Λ1/2
r UT

r (4.2.10)

where Λr = diag [λ1, λ2, . . . , λr], the r largest eigenvalues in Λ and Ur ∈ <n−1×r

comprises the corresponding columns of U.

4.3 Projection–unconstrained method

The main disadvantage of the unconstrained method is finding the exact rank r∗, since it

is not known in advance it is necessary to estimate it by an integer r(k). It is suggested that

the best estimate of the matrix rank r(k) is obtained by carrying out some iterations of the

projection method. This is because the projection method is a globally convergent method.
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Consider Λr in (4.2.10), then at the solution the number of eigenvalues in Λr is equal to

the rank r∗. Thus

No. Λ∗r = r∗ (4.3.1)

where No. Λ is the number of positive eigenvalues in Λ. A similar equation to (4.3.1) is

used to calculate an estimated rank r(k) given by

No. Λ(k)
r = r(k).

where Λr is given by (4.2.10). The range of error is relatively small. Then the unconstrained

method will be applied to solve the problem as described in Section 3.4.

The projection–unconstrained algorithm can be described as follows.

Algorithm 4.3.1

Given any distance matrix − F, let s be a positive integer. Then the following

algorithm solves problem (3.3.3).

i. Let F (0) = F

ii. Apply the projection method until

No. Λ(k)
r = No. Λ(k+j)

r j = 1, 2, . . . , s (4.3.2)

iii. r(k) = No. Λ(k)
r

iv. Find the initial matrix X for the unconstrained method from the result matrix

D(k) (see(4.2.10)).

v. Minimize φ in (3.4.11) using Method 3.4.2 to find D(k).

vi. Use (4.2.6) to calculate ∆(k) from D(k).

If

Diag PM (F + ∆(k)) = 0

Then

D∗ = D(k) and terminate

Endif
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vii. Apply one iteration of the modified projection method (Algorithm 4.2.1).

viii. Go to (iii).

The integer s in Algorithm 4.3.1 can be any positive number. If it is small then the rank

r(k) may not be accurately estimated, however the number of iterations taken by projection

method is small. In the other hand if s is large then a more accurate rank is obtained but the

projection method needs more iterations.

The advantage of using the projection method as a first stage of the projection–

unconstrained method is that if − F (0) is already a Euclidean distance matrix then the

projection method terminates at the first iteration. Moreover it gives the best estimate to r(k).

Sometimes using Method 3.4.1 instead of Method 3.4.2 for n < 10 gives fewer line searches.

The test (4.2.7) is used to test if the matrix −D(k) is the nearest Euclidean distance matrix

or not. If −D(k) is not the nearest Euclidean distance matrix then the rank r(k) 6= r∗

and r(k) is updated using the projection algorithm. The problem (3.4.11) needs to be solved

again using Method 3.4.2, also the initial matrix X is calculated from the matrix D(k) using

(4.2.10).

Example 4.3.2

An example of this algorithm for n = 4

−F =


0 1 4 36

1 0 9 16

4 9 0 25

36 16 25 0

 .

After two iteration of the projection method equation (4.3.2) is satisfied with s = 2 and the

number of positive eigenvalues in Λr is 2, therefore r(2) = 2. The unconstrained method

is then applied with initial matrix

XT =


0.8367 1.8100

−1.9001 1.2859

0.1567 5.8974
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Method 3.4.2 gives the optimal matrix

−D∗ =


0 3.9965 5.2387 34.8097

3.9965 0 7.7810 17.1714

5.2387 7.7810 0 25.4842

34.8097 17.1714 25.4842 0



and the test (4.2.7) is satisfied with

Diag PM (F + ∆∗) = 0.

Thus the matrix −D∗ is the nearest Euclidean distance matrix.

4.4 Unconstrained–projection method

Starting with the projection method has the advantage of knowing if the given matrix is a

Euclidean distance matrix or not, and it gives the best estimate for the matrix rank r(k).

However sometimes it takes many iterations before equation (4.3.2) is satisfied, since the pro-

jection method is a slowly convergent method. Also, in many distance matrices − F with

large n the rank r(k) estimated by the projection method is bigger then r∗, which mean slow

convergence in the unconstrained method. In this method an algorithm starts with the uncon-

strained method with an arbitrary rank r(k). Then one iteration of the projection method

will be calculated after every stage of the unconstrained–projection algorithm. In every stage

of this algorithm the resulting matrix D(k) will be used as an initial matrix to the next stage,

thus the matrix D(k) is updated at every stage from the previous one.

Now the unconstrained–projection algorithm can be described as follows.

Algorithm 4.4.1

If − F is any distance matrix then the following algorithm solves problem (3.3.3)

i. Let F (0) = F.

ii. Choose r(k).
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iii. Minimize φ in (3.4.11) using Method 3.4.2 to find D(k).

iv. Calculate Diag PM (F + ∆(k)) using (4.2.6) to calculate ∆(k) from D(k) then

If

Diag PM (F + ∆(k)) = 0

Then

D∗ = D(k) terminate

Endif

v. Calculate the diagonal matrix ∆(k).

vi. Apply one iteration of the modified projection method (Algorithm 4.2.1).

vii. r(k) = No. Λ(k)
r .

viii. Find the initial matrix X for the unconstrained method from the result matrix

D(k) (see(4.2.10)).

ix. Go to (iii).

r(k) in stage ii can be chosen using projection method or from the given distance matrix

− F (0) using Λr in (4.2.10).

Another advantage of this algorithm is that if the rank is not correct then instead of adding

one to r(k) it goes back to the projection method to provide a better estimate to r(k). This

will increase or decrease r(k) nearer to r∗, therefore variables will be added to or subtracted

from the problem. The new variables are estimated using the projection method. Another

advantage is that at every stage only one iteration of projection method is used giving a faster

converging algorithm.

Example 4.4.2

An example of this algorithm for n = 5

−F =



0 1 2 4 2

1 0 1 2 4

2 1 0 1 2

4 2 1 0 1

2 4 2 1 0


.
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If we choose r(0) = 2, and minimize φ, we find that Diag PM (F + ∆(k)) 6= 0 and we

have

∆(k) =



−0.02140

−0.09230

0.7068

−0.09230

−0.31140


.

Apply one iteration of Algorithm 4.2.1 with starting diagonal matrix ∆(k). This implies

that r(k) = 3. Finally minimize φ with starting matrix X derived from D(k) given by

Algorithm 4.2.1. We find that

−D∗ =



0 1.33 2 3.67 2.33

1.33 0 1 2.33 3.67

2 1 0 1 2

3.67 2.33 1 0 1.33

2.33 3.67 2 1.33 0



and hence we find that Diag PM (F + ∆(k)) = Diag PM (F + ∆∗) = 0.

4.5 Numerical results

The algorithms of the Sections 4.3 and 4.4 are applied to solve problem (3.3.3). The numerical

tests are a set of randomly generated distance matrices with values distributed between 10−3

and 103. The numerical result for unconstrained–projection method is given in Table 4.5.1

in more detail. Table 4.5.2 compares the four methods projection method, unconstrained

Method 3.4.2, projection–unconstrained method and unconstrained–projection method

using ‖F (k) − F (k−1)‖ < 10−5 as a stopping criterion. All four algorithms converge to

essentially the same values. A Fortran program has been written for these methods to solve

problem(3.3.3). The eigenvalues for the projection method are solved using the NAG library.
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The computations have been carried out on a Sun computer. In the unconstrained method, for

most cases it is observed that fewer iterations are required to solve (3.3.3) as r increases.

For the unconstrained–projection method it is observed that fewer iterations are required

as r is increased. This is because it has a good starting matrix updated from the projection

method every time r increases. In the unconstrained method for large n we may increase

r by 2 or more, this will reduce number of minimizing φ in (3.4.11) to half or more. The

disadvantage is slow convergence when r exceeds r∗. The projection–unconstrained method

and unconstrained–projection method are both very good, and need only a small number of

iterations as is shown in both Table 4.5.1 and Table 4.5.2. In the projection–unconstrained

method for example the unconstrained method converges very fast (with n = 50 only 13 line

searches are used), this is because of the good starting initial matrix given by the projection

method. Also in the unconstrained–projection method for n = 50 only 17 line searches are

needed. In Table 4.5.2 for the unconstrained method r(0) is the initial rank then r is

increased by one and unconstrained method is repeated until we find the correct rank r∗.
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UPA
n r(0) NL r(k) NL

in from in
UA OPA UA

5 2∗ 12

10 3 33 4∗ 11

15 4 63 5∗ 13

20 5 70 7∗ 11

25 6 94 8∗ 12

30 6 42 9∗ 10

35 6 98 9∗ 11

40 6 22 10∗ 16

45 6 46 11∗ 18

50 5 125 13∗ 17

Table 4.5.1: Result from unconstrained–projection Algorithm 4.4.1.

OPA: One iteration from projection Algorithm 4.2.1.
UA: Unconstrained algorithm (Method 3.4.2).
NL: Number of line searches.
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PA UA PUA UPA
n r∗ NI r(0) TNL NV NI r(k) NL r(0) TNL

5 2 21 2∗ 12 8 2 2∗ 7 2∗ 12

10 4 46 3 80 36 2 4∗ 15 3 44

15 5 64 4 140 70 4 6(5∗) 22 4 76

20 7 101 5 176 133 4 7∗ 18 5 81

25 8 85 6 221 192 4 8∗ 14 6 106

30 9 129 6 144 261 4 10(9∗) 19 6 52

35 9 115 6 382 306 8 9∗ 23 6 109

40 10 168 6 161 390 7 11(10∗) 21 6 38

45 11 136 6 246 484 9 11∗ 17 6 64

50 13 171 6 288 637 7 13∗ 13 5 142

Table 4.5.2: Comparing the four methods.

PA: Projection Algorithm 3.3.4.
UA: Unconstrained algorithm (Method 3.4.2).
PUA: Projection–Unconstrained Algorithm 4.3.1.
UPA: Unconstrained–Projection Algorithm 4.4.1.
NI: Number of iteration in projection algorithm.
NL: Number of line searches in unconstrained algorithm.
TNL: Total number of line searches in unconstrained algorithm.
NV: Number of variables in unconstrained algorithm.


