

The linear approximation of $f(x) = e^{\sin x}$ at a = 0 is given by

e six and e e

(a)
$$e^{\sin x} \approx 1 + x$$

(b)
$$e^{\sin x} \approx 1 - x$$

(c)
$$e^{\sin x} \approx 1 + 2x$$

(d)
$$e^{\sin x} \approx 2 + x$$

(e)
$$e^{\sin x} \approx \frac{1}{2} - x$$

Q 2 Let $y = x^4 + 5x^2 - 2$. Using differentials, the change in y when x changes from 1 to 1.001 is approximately equal to

- $(a) \quad 0.014$
- (b) 0.001
- (c) 0.01
- (d) 0.021
- (e) 0.045

- (a) $2\cosh(30x)$
- (b) $2 \sinh(30x)$
- (c) e^{30x}
- (d) $(2\cosh x)^{30}$
- (e) 2
- \bigcirc 4 The base of an isosceles triangle is fixed at 10 cm. If the two equal sides are increasing at the rate of $\frac{\sqrt{3}}{5}$ cm / sec, then how fast is the area increasing when the two equal sides are equal to the base?
 - (a) $2 cm^2 / sec$.
 - (b) $\frac{3}{2} em^2 / sec$.
 - $(c) \frac{5}{2} \, cm^2 \, / sec.$
 - (d) $1 \, cm^2 / sec$.
 - (e) $3 cm^2 / sec$.
- Sand is being dumped from a truck at a rate of $0.5 \text{ ft}^3/\text{min}$ to form a pile in the shape of a cone whose height is always equal to the diameter of its base. When the pile is 2 ft high, the height of the pile is increasing at a rate of [The volume of a cone is $V = \frac{1}{3}\pi r^2 h$]
 - (a) $\frac{1}{2\pi}$ ft/min
 - (b) $\frac{\pi}{2}$ ft/min
 - (c) $\frac{2}{\pi}$ ft/min
 - (d) 2π ft/min
 - (e) $\frac{1}{2}$ ft/min