
Numerical Experiments with Toeplitz Matrix
Approximation Methods

Suliman Al-Homidan∗

January 16, 2005

Abstract

Positive semidefinite Toeplitz matrix constraints arise naturally in
a variety of problems in engineering. This paper deals with the nu-
merical of this problem. Our approach is based on (i) interior point
primal-dual path-following method; (ii) a projection algorithm which
converges globally but slowly; (iii) the filterSQP method which is
faster. Hybrid methods that attempt to combine the best features
of both methods are then considered. Comparative numerical results
are reported.

Key words : Alternating projections, filterSQP method, non-smooth op-
timization, positive semidefinite matrix, primal-dual interior-point method,
Toeplitz matrix.
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1 Introduction

The problem we are interested in is the best approximation of a given ma-
trix by a positive semidefinite symmetric Toeplitz matrix. Toeplitz matri-
ces appear naturally in a variety of problems in engineering. Since positive
semidefinite Toeplitz matrices can be viewed as shift-invariant autocorrela-
tion matrices, considerable attention has been paid to them, especially in

∗Department of Mathematical Sciences, King Fahd University of Petroleum and Min-
erals, Dhahran 31261, PO Box 119, Saudi Arabia. Email: homidan@kfupm.edu.sa.

1

http://www.kfupm.edu.sa/math/People/homidan.htm


2

the areas of stochastic filtering and digital signal processing applications [12]
and [26]. Several problems in digital signal processing and control theory
require the computation of a positive definite Toeplitz matrix that closely
approximates a given matrix. For example, because of rounding or trunca-
tion errors incurred while evaluating a data matrix F , F does not satisfy
one or all conditions. Another example in the power spectral estimation of
a wide-sense stationary process from a finite number of data, the matrix F
formed from the estimated autocorrelation coefficients, is often not a posi-
tive definite Toeplitz matrix [19]. In control theory, the Gramian assignment
problem for discrete-time single input system requires the computation of a
positive definite Toeplitz matrix which also satisfies certain inequality con-
straints [17]. Here we consider two problems in which they differ by the rank
requirement, and this makes the second problem unconvex and harder to
solve.

First problem is; Given a data matrix F ∈ IRn×n, find the nearest sym-
metric positive semidefinite Toeplitz matrix T to F that minimizes

minimize φ = ‖F − T‖F (1.1)

where ‖.‖F denotes the Frobenius norm.
Second problem is; Given a data matrix F ∈ IRn×n, and rank m find

the nearest symmetric positive semidefinite Toeplitz matrix T to F and
rank(T ) = m that minimizes

minimize φ = ‖F − T‖F . (1.2)

Problem (1.2) was studied by Suffridge et. al. [18]. They solve the prob-
lem using the self-inversive polynomial P (x). The roots of the derivative of
P (z)
zn−1 enable them to approximate the data matrix. They also solve (1.1) using
the ideas of a modified alternating projection algorithm that was successfully
used in solving similar approximation problems for distance matrices [3]. In
[9], alternating convex projection techniques are used to solve problem B. Oh
et. al. [14] use alternating projection onto fuzzy convex sets when three or
more convex sets do not intersect. Toeplitz matrix approximations are also
discussed in [4, 13, 16].

In [2], a similar problems is studied. One approach followed is a projection
algorithm which converges globally but the rate of convergence is very slow.
Another approach is the quasi-Newton method which is faster. Then a hybrid
method to combine the best features of both is used. A similar problem which
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requires the knowledge of the rank was studied in [1] and formulated as a
nonlinear minimization problem and then solved using techniques related to
filterSQP [8].

Recently, there has been much interest in the interior point methods
applied to problems with semidefinite matrix constraints (e.g. the survey
papers [20, 23, 27] and the references therein). Semidefinite programming
optimizes a linear function subject to positive semidefinite matrix. It is a
convex programming problem since the objective and constraints are convex.
In this paper, we deal with a little different problem since the objective is
quadratic; also an additional rank constraint is added in (1.2) which makes
the problem unconvex and harder to solve. Howevere, in Section 2, we slove
(1.1) using the interior point method, where we formulate the problem as first
semidefinite programming (SDP) problem then as a mixed SDP and second-
order cone problem. In Section 3, (1.1) is solved using the von Neumann
algorithm. Section 4, describes briefly how (1.2), which requires rank(T )
to be m, formulated as a nonlinear minimization problem and then solved
using the filter Sequential Quadratic Programming (SQP) [8]. This method
was studied in details in [1]. In Section 5, two new hybrid methods are
described to solve (1.1) firstly, there is Algorithm 5.1, which starts with the
projection method to determine the rank and continues with the filterSQP
method; and secondly, Algorithm 5.2 is described which solves the problem
by the filterSQP method and uses the projection method to update the rank.
Numerical compressions are reported in Section 6.

1.1 Notation

Define PO(W ) to be the orthogonal projection of W onto the subspace of
Toeplitz matrices O. We also need the operator T : IRn −→ IRn×n

T (x) =


x1 x2 . . . xn

x2 x1 . . . xn−1
...

...
. . .

...
xn xn−1 . . . x1

 . (1.3)

Also, define the isometry operator tvec : O −→ IRn as

x̂ = tvec (T (x)) = [
√

nx1

√
2n− 2x2 · · ·

√
2xn]T (1.4)
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for any x ∈ IRn. Similarly, define ŷ and ŝ. tvec is a linear operator satisfying
the following conditions: For any x, y ∈ IRn

T (x) • T (y) = x̂T ŷ, ‖T (x)− T (y)‖2
F = (x̂− ŷ)T (x̂− ŷ). (1.5)

2 Mixed-Cone Formulation

A direct approach for the nearest positive semidefinite Toeplitz matrix prob-
lem is obtained by formulating it as a first SDP problem then as a mixed
SDP and second-order cone problem.

To take the advantage of the isometry operator tvec , we need F to be
Toeplitz. If we project F onto O, we get PO(F ). The following lemma
shows that the nearest symmetric Toeplitz positive semidefinite matrix to
F is exactly equal to the nearest symmetric Toeplitz positive semidefinite
matrix to PO(F ).

Lemma 2.1 Let T (x) be the nearest symmetric Toeplitz positive semidefinite
matrix to PO(F ), then T (x) is so for F .

Proof. If PO(F ) is positive semidefinite, then we are done. If not, then
for any T (x) ∈ O, we have

(T (x)− PO(F )) • (PO(F )− F ) = 0

since PO(F ) is the orthogonal projection of F . Thus,

‖T (x)− F‖2
F = ‖T (x)− PO(F )‖2

F + ‖PO(F )− F‖2
F .

This complete the proof since the second part of the above equation is con-
stant.

Therefore, an equivalent problem to (1.1) is

µ∗ = minimize
1

2
||T (x)− PO(F )||2F

subject to T (x) � 0. (2.1)

Now, we have the following equivalences (for 0 ≤ α ∈ IR):

‖T (x)− PO(F )‖2
F ≤ α

⇔ (x̂− f̂)T (x̂− f̂) ≤ α by (1.5) (2.2)

⇔ α− (x̂− f̂)T I(x̂− f̂) ≥ 0

⇔
(

I (x̂− f̂)
(x̂− f̂)T α

)
� 0 by Schur Complement , (2.3)
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where f̂ = tvec (PO(F )). Hence, we have the following SDP problem:

minimize α

subject to

 T (x) 0 0
0 I (x̂− f̂)
0 (x̂− f̂)T α

 � 0. (2.4)

This SDP problem has dimensions n + 1 and 2n + 1. Also, by formulating
the problem as a mixed SDP and second-order (or Lorentz) cone problem:
we have the following:

‖T (x)− PO(F )‖2
F = ‖x̂− f̂‖2

2.

So we have the following equivalent problem:

minimize α

subject to T (x) � 0(
α

x̂− f̂

)
≥Q 0. (2.5)

The dimension of SOC is n + 1. The constraint ≥Q is the second-order cone
constraint.

Several public domain software packages can solve (2.4) and (2.5). Many
of them can be accessed via NEOS [6], (see also [11]). The main work per
iteration for solving this problem is to form and solve the usually normal
equations for the Newton search direction. There are many complications
when forming and solving this system, since it is usually ill-conditioned at
the solution.

3 The projection Method

The method of successive cyclic projections onto closed subspaces Ci’s was
first proposed by von Neumann [24] and independently by Wiener [25]. They
showed that if, for example, C1 and C2 are subspaces and d is a given point,
then the nearest point to d in C1 ∩ C2 could be obtained by:

Algorithm 3.1 Alternating Projection Algorithm
Let x1 = d

For k = 1, 2, 3, . . .
xk+1 = P1(P2(xk)).
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Then xk converges to the near point d in C1 ∩ C2, where P1 and P2 are the
orthogonal projections on C1 and C2, respectively. Dykstra [5] modified von
Neumann’s algorithm to handle the situation when C1 and C2 are replaced by
convex sets. Other proofs and connections to duality along with applications
were given in Han [10]. Express (1.1) as

minimize ‖T (x)− F‖F

subject to T (x) ∈ P ∩ O. (3.1)

The modified Neumann’s algorithm when applied to the above yields: Given
a data matrix F ,

Algorithm 3.2 Modified Alternating Projection Algorithm
Let F1 = F

For j = 1, 2, 3, . . .
Fj+1 = Fj + [PP(PO(Fj))− PO(Fj)].

Then {PO(Fj)} and {PP(PO(Fj))} converge in Frobenius norm to the solu-
tion. Here, PP(F ) is the projection of F onto the convex cone P . It is simply
setting the negative eigenvalues of the spectral decomposition of F to zero.

4 The SQP Algorithms

In the previous section, the alternating projection algorithm computes a
unique solution for (1.1) since the sets P and O are convex. It is the loss of
convexity that increases the difficulty of (1.2). The main idea is to replace
(1.2) by a smooth nonlinear programming problem in order to use a second
order convergent SQP method. In this section, we use techniques related to
filterSQP [8] for solving nonlinear programming problems in order to develop
an algorithm to solving (1.2).

It is difficult to deal with the matrix cone constraints in (3.1) since it is not
easy to specify if the elements are feasible. Using partial LDLT factorization
of T (x), this difficulty can be overcome. Since m, the rank of the optimal
T (x), is known, therefore for F sufficiently close to T (x), the partial factors
T (x) = LDLT can be calculated such that

L =

[
L11

L21 I

]
, D =

[
D1

D2

]
, T (x) =

[
T11 T T

21

T21 T22

]
, (4.1)



7

where L11, D1 and T11 are m×m matrices; I, D2 and T22 are n−m×n−m
matrices; L21 and T21 are n−m×m matrices; D1 is diagonal and D1 � 0, and
D2 has no particular structure other than the Toeplitz form. At the solution,
D2 = 0 and T (x) are symmetric positive semidefinite Toeplitz matrix. In
general,

D2(T (x)) = T22 − T21T
−1
11 T T

21 (4.2)

which enables the constraint T (x) ∈ P to be written in the form

D2(T (x)) = 0. (4.3)

The condition that F is close to T (x) is needed to ensure that D1(T (x)) � 0.
Hence, (1.2) can now be expressed as

minimize φ

subject to D2(T (x)) = 0 = ZTT (x)Z, (4.4)

where Z =

[
−T−1

11 T T
21

I

]
is the basis matrix for the null space of T (x)

when D2 = 0. This approach has been studied in a similar way by [7]. The
structure of the Toeplitz matrix T (x) as given in (1.3), is

φ =
n∑

i,j=1

(fij − x|i−j+1|)
2, (4.5)

For the gradient and Hessian of φ see [1] and since both are available,
therefore the filterSQP can be used to solve (4.4). Also for more details of
the method and comments on the constraints D1 � 0, see [1].

5 Hybrid Methods

A combination of Algorithm 3.2 and filterSQP are introduced to solve (1.1).
Projection methods are globally convergent and hence potentially reliable,
but often converge slowly, which can be very inefficient. SQP methods are
reliable and have a second order rate of convergence, but require that the
correct rank is known. We therefore consider hybrid methods in which the
projection algorithm is used sparingly as a way of establishing the correct
rank, whilst the filterSQP method is used to provide rapid convergence.
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In order to ensure that each component method is used to best effect,
it is important to transfer information from one method to the other. In
particular, the result from one method is used to provide the initial data for
the other, and vice versa. This mechanism has a fixed point property so that
if one method finds a solution, then the other method is initialized with an
iterate that also corresponds to the solution.

We will evaluate two different algorithms which differ in respect of how
the rank m(0) is initialized. Algorithm 5.1 is expressed as follows: Given any
data matrix F ∈ IRn×n, let s be some pre-selected positive integer number
and ε some small number. Then the following algorithm solves (1.1)

Algorithm 5.1 (F (0) := F, s, ε):
repeat projection method
until m(l) = m(l−j) j = 1, 2, . . . , s.
repeat

Apply one iteration of projection method;
m(0) := m(l);
x(0) := x(l); (x(l) from projection method)

repeat filterSQP method;
until ‖D2(x)‖ ≤ ε;

until ‖x(k) − x(l)‖ ≤ ε; (x(k) filterSQP method)
return (F ∗ := F (k), x∗ := x(k), m∗ := m(k)).

The choice of s is a compromise between two effects. If s is small then
the rank may not be accurately estimated, but the number of (expensive)
iterations taken in the projection method is small. On the other hand if s is
large then a more accurate rank is obtained but the projection method needs
more iterations.

In Algorithm 5.2, m(0) is supplied by the user. This approach avoids the
initial sequence of projection iterations, but works well if the user is able to
make a good estimate of the rank, which is often the case. Thus, we can
express Algorithm 5.2 as follows: Given any data matrix F ∈ IRn×n, let ε be
some small number; also choose m(0) as a small integer number. Then the
following algorithm solves (1.1)

Algorithm 5.2 (F (0) := F, m(0), ε):
repeat

repeat filterSQP method;
until ‖D2(x)‖ ≤ ε;



9

x(0) := x(k); (x(k) from filterSQP method)
Apply one iteration of projection method;
m(0) := m(l);
x(0) := x(l); (x(l) from projection method)

until ‖x(k) − x(l)‖ ≤ ε;
return (F ∗ := F (k), x∗ := x(k), m∗ := m(k)).

6 Numerical Results

Two sets of randomly generated problems are solved. First, we solve (1.2)
using filterSQP and the result are summarized in Table 6.1. Second, problem
(1.1) solved using the four approaches mentions in Sections 2, 3 and 5 and
the results summarized in Figure 6.1.

The algorithm has been tested on randomly generated matrices with val-
ues distributed between 10−3 and 103. A Fortran codes have been written
to program solver for (4.4) using filterSQP. The termination criterion for al-
gorithm is ‖F (k) − F (k−1)‖ < 10−5. Table 6.1 summarizes the results
for the filterSQP algorithm. The initial value m(0) is tabulated, and m is
increased by one until the solution is found. The number of iterations is tab-
ulated, and within this figure, it is found that fewer iterations are required
as m increases. Also the initial value m(0) is rather arbitrary: a smaller value
of m(0) would have given an even larger number of iterations. An asterisk
indicates where the correct rank has been identified. In some cases, the final
rank is m∗ + 1 but the solution is within the required tolerance.

For (1.1), we solve set of problems using the four approaches: (i) Algo-
rithm 3.1, (ii) the mixed-cone SDP formulation (2.5), (iii) Algorithm 5.1, and
(iv) Algorithm 5.2. The SDPT3-3.0 code [21, 22] was used for approache (ii).
The tests were done using MATLAB 6.5 on a Pentium IV PC with 512MB
of RAM.

We solved problems with dimensions n = 5, . . . , 200. The results were ob-
tained by applying the methods as follows: A positive definite Hankel matrix
A was formed randomly, then the matrix obtained was perturbed by adding
random noise matrix S to A, where elements of S vary between −0.50 and
0.50. The problem is to recover the matrix before the noise was added. In all
cases, we found the optimum to high accuracy, at least ten decimals. The re-
sults appear in Figures 6.1. We can see the correlation between the cputime
and the size of the matrix A. For the projection algorithm, each iteration
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n m nq φ n m nq φ
5 1 10 52.0961 50 5 11 221.351

2∗ 9 51.4198 6 9 213.765
10 3 11 72.9793 7 7 210.251

4 8 69.4593 8∗ 8 209.179
5∗ 7 68.2386 9 8 209.180

20 4 12 121.763 100 7 14 431.122
5 8 115.923 83 10 423.231
6 6 112.913 9 7 421.658
7∗ 5 112.501 10 8 420.345

30 6 13 153.155 11 8 419.532
7 8 148.103 12∗ 7 419.463
8∗ 7 147.873

Table 6.1: The filterSQP method

involves an eigensolution, which entails relatively expensive O(n3) calcula-
tions. Thus the projection algorithm is not competitive. For Algorithms 5.1
and 5.2, the housekeeping associated with each iteration is O(n2). Also, if
care is taken, it is possible to calculate the gradient and Hessian in O(n2) op-
erations. Thus each iteration is much less expensive than an iteration of the
projection method. The total number of iterations required by the filterSQP
in Table 6.1 is much greater than the total number of iterations required by
the filterSQP in Algorithms 5.1 and 5.2.

Both hybrid algorithms are seen to be effective. As n increases, Algorithm
5.1 takes an increasing number of projection iterations before the rank settles
down. We find it better to increase the value of s as the value of m increases.
Once the projection iteration has settled down, the filter-SQP method finds
the solution rapidly and no further projection steps are needed. Algorithm
5.2 requires a relatively large number of iterations in the first call of the
filterSQP method, after which one projection step finds the correct rank, and
the next call of filterSQP finds the solution in a few iterations. This is because
of the good initial starting vector x given by the projection method. Because
the projection steps in Algorithm 5.1 are relatively expensive, in some cases
it is slower than SDPT3 algorithm, however in most cases the difference in
computing time between these algorithms is not very significant. As is typical
with interior-point methods, the number of iterations required by SDPT3
remains essentially constant, 14 to 20 iterations for SDPT3, independently of
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Figure 6.1: Comparing all four approaches

the dimension of the problem. However the time consumed in each iterations
is depend on the size of the problem and that what make a different.
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